INCREASING PROPERTIES OF POLYA FREQUENCY
FUNCTIONS

By BrapLEy ErronN
Stanford University

1. Introduction. A probability density function on the real line r(z) is said to
be a Pélya frequency function of order 2 (PF,) if x» = x,, 22 = 2; implies

7‘(331 - 21) 7"(331 - 22)
= 0.

r(es — 21) (x2 — 2)|

The following properties of PF, functions are well known [3]:
PropeErTY 1. Many of the common densities of probability theory are PF;.
In particular the normal density

r(z) = (2r0") " exp {—}[(z — m)/o]},

if PF, for every choice of ¢ > 0.

PropERTY 2. A PF, function is bounded, non-zero on an interval and zero
outside this interval (which may be infinite).

ProrERTY 3. A PF, function is logarithmically concave, and hence has first
and second derivatives existing almost everywhere (with respect to Lebesgue

measure).
ProprerTY 4. Let r(z) be PF, . Then
ra(x) = r(x)/ for(z) dz a<z<bh
=0 otherwise

is also PF,. (Here a or b may be infinite.)
PropErTY 5. Let r(z) and g(x) be PF,. Then their convolution

p(@) = [Zor(t)glz — t) dt
is also PF, .

2. The main theorem. The theorem presented below was originally suggested
by Dr. S. Karlin. (The special case in which the underlying random variables
are binomial has been previously verified in unpublished work of F. Proschan
and R. E. Barlow.) Its proof hinges on a simple geometric property of PF,
density functions, which will be pointed out explicitly following the body of the
argument.

TaeorEM. Let X1, X, , -+, X, be n independent random variables with PF,
densities ri(x), ro(x), - -+, ra(x) respectively, let S = ZI‘ X be their sum, and
let® (21,22, -+, Tn) be a real measurable function on Euclidean n-space which is
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POLYA FREQUENCY FUNCTIONS 273

non-decrecsing in each of its arguments. Then
E®(X:, X, -, Xa) |8 =05)

18 a non-decreasing function of s.
Proor. One version of the conditional expectation is

f_: /::tls((xl, et s -nzl_:lxi>r1(x1)

n—1

‘ rn—l(xn—l)rn <3 - Z xz) dxl e dil;',,—l

1
) ) n—1 °
f e f rl(xl) e r,._l(x,,_l)r,, (S - Z CL’,) dxl e d:cﬂ_l
|~ o0 |~ 00 1

In the sequel, the symbol E(® | S = s) will always refer to the expression on the
right, above. It will be shown that whenever the denominator of this expression
is non-zero for two values of the argument, ¢ = s, and the numerator exists at
the points s and ¢, either as a finite number or as == «, then

E®@|S=1t)=2 E®|S =s).
It is sufficient to verify the theorem for bounded ®. For if ®, is defined to be
b, =P for [P =¢
P, =¢ for &>¢

E®|S =3 =

b, = —¢c for & < —¢,

then the monotone convergence theorem applied to the positive and negative
parts of ® implies

limeso E(P. |8 =) = E@|S = s),

whenever the right side exists.
For every ¢ > 0 consider the frequency functions

rie(x) = (2r6”) [ ri(x — 1) exp [—3(8/0%)] dt, i=1,2 -, n

The 7, (x) are positive for all values of  and are PF, by Properties 1 and 5.
Moreover for & bounded, using obvious notation,

limeso B, (B[S = 5) = E@| S = s).

(This follows from an improved version of the Helly-Bray theorem. Although
® is not necessarily continuous here, the limiting distribution is absolutely con-
tinuous, which is sufficient.) Therefore in addition to assuming that ® is bounded,
it can be assumed without loss of generality that the r:(x) are everywhere posi-
tive. Together these two conditions imply that the expression given previously
for E(®| S = s) exists finitely everywhere.

Assume the theorem has been verified for 2, 3, - -- , n — 1 random variables,
and define
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n—1
g(t,u) = E<<I> | > X = t, Xn = u)
1
© 0 n—2
/ “‘f @(xl,"'xn—iyt—zxi;u>rl(xl)
-0 o0 1
n—2
.. "I'n—l(t — Z $1,> dzy -+ da,—s
. 1
— "L © n—2 .
[ ce [ (@) -+ ra—a(Tn—a) a1 (t - ; xz) dry -+ dTp—s

g(t, u) is non-decreasing in ¢ by the induction hypothesis, and non-decreasing in
u by the non-decreasing nature of ® in its last argument.
The random variable .1 X, has density

r(t) = ffoo cee ffw r(@1) -+ Pna(Tnog)Taa(t — ?_2 x:) dzy -+ dn_s,

which is PF, by Property 5 (applied n — 2 times successively). Thus, applying
the main theorem with » = 2, the function

[Z0g(t, s — )rs(t)ra(s — t) dt/ [Zo ra(t)ra(s — t) dt

is increasing in s. Let T be the random variable D" X;. Then the expression

above can be rewritten as
E@T, X)|T+Xo=5) = B(E@| 2" X, X)) | 207" Xi 4+ X = 5)

E@| 2 X:=s)

which verifies the result for » random variables.

It remains to demonstrate the theorem for » = 2 random variables. The in-
equality below, which will be referred to as I'*, follows directly from the defini-
tion of a PF, density r(x).

Ix:r(s+ A —2)/r(s+ A —x1) = r(s — x2)/r(s — 21).

(I is valid for all values of s, o = x;, and A = 0.)

For 0 < a <1, let (Tas, Zas = 8§ — Ta,s) be the unique point on the line
x + 2z = s satisfying

T r(2)ra(s — ) da/ [, 1i(2)re(s — ) dz = a/1 — a.
(Then
f.’.‘*os’ ri(z)r(s — ) dx/ffw r(z)r(s — z) de = «,

i.e., (a5, 2a,s) is the 100« percentile point for the conditional distribution on
the line x + 2 = s, the zero percentile point being taken at the upper left.)

LemMmA. For every value of A = 0, and every value of a, 0 = a = 1,
La,s+A g La,s and Ra,s+A = Ra,s -
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Proor.

To,

f_:’w r(z)r(s + A — ) do [ "r(@)n(s + A — 2)/ra(s + A — Ta,s)] dx

fw r(z)r(s + A — ) de fw rn(z)r(s + A — 2)/ra(s + A — 2a,0)] dz

fzm r(2)[ra(s — z)/re(s — Za,s)] da
<= =

f—w r(@)[re(s — x)/ra(s — Za,s)] da

a,8

the inequality following from I applied to both the numerator and denominator
of the right hand expression of the equality. This implies Za,s44 = Z4,s, and by
SYymmetry, 2o s1a = Zas - )

Making a transformation of variables, (the “probability integral transforma-
tion” @ = F(z |s 4+ A), where F is the conditional cumulative distribution
function on the line 4+ 2 = s + A, and likewise for the line z + 2z = s),

E@®|8S=s+4)

f‘l’q)(xa,8+A ) Za,s+A) do
g f‘l’q)(xa,sy Za,s) da = E'(<I> l S = 8).

This completes the proof of the main theorem.

It is possible to show that the curve (2a,s, 2a,s) traced out in the (z-2) plane
as s varies from — « to « is continuous and differentiable with respect to s
almost everywhere. Since z,,; and z.,; are both increasing functions of s, this
curve must have positive slope at every point. Remembering that (Z.,s, 2a,s)
is the conditional 100« percentile point for each s, the following loose geometric
interpretation is informative: the conditional probability mass given x + z = s
flows in lines of positive slope (with respect to both the x and the 2 axis) as s is
increased.

To make this statement more precise, and at the same time extend it to higher
dimensions, let A be any set in n-space such that if (z;, 2 -+ 2,) ¢ A and 2" =
Ty, T =, e, Tn = Ta, then (z,, 2’ -+ ') € A. The generalization of
the statement ‘“‘the conditional probability mass flows in lines of positive slope”
is P(A|S=1t) =2 P(A|8 = s) for every pair of numbers ¢ = s and every
such set A. That this condition is satisfied follows immediately from the theorem
applied to the indicator functions of the sets A. The converse implication is also
valid, and follows by applying the inequality above to sets A of the form

A, = {®(@1, 2 - T0) > ¢} —o < ¢ < o,

Now let ®;(x1, 22, -- -, x,) be a family of measurable functions increasing
in every argument for each fixed value of ¢, and increasing in ¢ for each fixed
value of oy, 2, -+, Tn .

CoRroLLARY 1. Under the conditions of the theorem, the function
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g(a,b) = E@apps(X1,Xs - Xa)|la £ S=Za+b), b=0,

18 tnereasing in both a and b.

Proor.
9(a,b) = [0 E@ayp_s | 8 = 8)r*(s) ds/ [37 +*(s) ds
where
r*(s) = f:ow e ffm (1) v Paa( @) ra(s — Dt ) doy - - AT

(So r*(s) is PF» by Property 5.) This can be written

[ B8 = )6l caola — 5)/b] ds

g(a, b) = 5
[ &)U caola = 5)/b] ds

where
I o) =1 if —-b=z=0

=0 otherwise.

The function I(,0(x)/b is easily shown to be PF,. Hence the main theorem
applied to the function E(®y4: | S = s) shows that g(a, b) is increasing in a.
Likewise, g(a, b) may be written

[ B S = $)2u(6) U conmn (b — )/B] ds
g(a,b) = == =
[ 7o) can-o(b — £)/B ds

for all b less than some arbitrary positive constant B. Here
rae(s) = [r*(s)]/[ff r*(¢) di] for s=a
=0 otherwise,

a function which is PF, by Property 4. The theorem then implies g(a, b) is in-
creasing in b.

Let ®(x1, 22, -+, z.) be an increasing function as before, and let
I.(x1, 22, -+, Za) be the indicator function of the first orthant,
T(xi, 29, - ,2q) =1 if z, =20 t=1,2 -+ n,
=0 otherwise.
The function I4(x;1, 22, +++ , a)®(21, 22, - -+, 2,) will be Increasing in every
argument if (0, 0, - -- , 0) = 0. Assuming this is the case, the theorem implies

that both E(I,®|S = s) and E(I,|S = s) = P(A|S = s) are increasing
functions of s. Their ratio,
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E(IA(I)IS=S)
PATS =9

[

$— 2111 —-211;

n—1
(b(xl’x2...s_2xi)

ry(@y)re(@a) < e (8 -2 x) ATy ATn—y - -+ dx;
. 1

WS 8=y S—EYT 4z

jo /o o t{) r(xy)re(zy) - - -
Ty <s - nz_:l au) A%y Qs - - - d2y

1

is equal to the conditional expectation E(® | S = s, (X;, Xo, -+, X,) ¢ first
orthant). Corollary 2 shows that this quantity is also increasing in s.
COROLLARY 2. Let A be a rectangle set in n-space

A={@,z )| St b, S0 S be - ay < T S b,

and ®(z1, 22, -+, Tn) @ funclion defined on A and increasing in every argument.
Let X,, Xo, --+, X. be n independent random variables with respective PF.
densities r1(xy), ro(x2) -+ ro(xn). Then

E@X,, X, - X)) 21X, =5  (X1,Xy--X,)ed)

s an increasing function of s.
Proor. Define

Px(xy, 20 - ) = P(by, by - by) if x, > b; for any 17
=®(xy, T Xp) if (y,2---a2,) cd
=®(ay,a - ay) otherwise,

and
r¥@) = (r(2)/(fairie) do) a, sxsb
i1=1,2 - n
=0 otherwise.

The r.*(x) are PF, by Property 4, ®x* is defined over all of n-space and is increas-
ing in each argument, and hence, by the theorem,

© L n—1
f f <I>*(21~~xn_1,s—2x,~)
0 o0 1

n—1
(@) ot <s - xz) dzy - dTa.—
1
) ) n—1
/ ce / 7‘1*(5171) R (8 - Z xl) dzy - - ATy
Lo Lo 1

g(s) =
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is increasing in s. It is easily verified that
g(s) = E((I),S =8, (X17X2; ;Xn) ed).

Nork. In two dimensions, Corollary 2 can be given the following interpreta-
tion: Let f(x; s) represent the conditional density function on the line z 4+ z = s,
evaluated at the point (z, s — ), and let F(x; s) be the corresponding cumula-
tive distribution function, F(z; s) = ffw f(y; ) dy.

Applying the corollary to the set A = {(z, 2) : 2 < d} and the function

P(z,2) =0 if <0
=1 if z =0,
yields

F(d;s) — F(e;s) < F(d;t) —F(c;t)
F(d;s) - F(d;t)

for s £ tand ¢ £ d. This is equivalent to the statement that F(z; s) is totally
positive of order two.

In the lemma to the main theorem, it was shown that the conditional -
percentile line, {(z, z) : F(x;x + 2) = o} has a positive slope everywhere. Let
m(z; s) represent this slope, measured with respect to the z-axis, for the line
which passes through the point (z, s — z). Additional information on the be-
havior of m(z; s) can now be obtained by letting ¢ approach s in the inequality
above. It is then easily seen that the function

f(z; 8) 1
1 — F(z;s) (m(z;s) + 1)

must be non-decreasing in z for each value of z. (The factor f/(1 — F) is itself
non-decreasing: it is the hazard rate of f, which is directly verified to be PF, [1].)
A symmetric argument shows that

fGs —2zs) m(s —zs)
F(s —z;8) m(s — 2;8) + 1

is non-increasing in z. These two restrictions on m(z, s) indicate the ways in
which the property of positive flow of the conditional probability mass (as ex-
pressed in the lemma) is weaker than the assumption of independent PF; mar-
ginal distributions. '

3. Some additional remarks.
1. An integer-valued random variable is said to be PF, if its saltuses satisfy

p(my — n)  plmy — ng)
p(m:» - nl) P(mz — nz) z0

for all pairs of integers ms = m;, 7y = n; . The proofs and theorems presented

here extend without difficulty to such random variables.
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2. A density function which is a member of the exponential family, r(z) =
g(z)h(w)e™, will be PF, for each value of the parameter w if and only if g(z) is
PF; . Given an observation of n independent random variables X; , X, - -+ , X,
each with such a density function r;(z) = g«(x)h(w)e™, 7 = 1,2, ---, n,
(where each g:(x) is PF,), it is desired to make some decision concerning w. A
decision rule d for this situation consists of a set of conditional distributions on
the action space given the observations, d(a |z, 22, - -+, Z.). For each such
rule there is a corresponding rule d* depending only on the sufficient statistic
>t X, yielding the same risk as d for every value of the parameter w:

da«(allixi = s)

/_:"’[:d<a{x1...s—nz::1xi>rl(xl)

n—1
T (8 - Z xz) dxy « - dTp—
1
© © n—1 .
f f r(z) - 7'n<8 - Z xi>d$1 SR -
|0 I—c0 1

In the case where d(a | z1, 22, - - - , %,) is increasing in each of the z,, for some
value of a, it follows from the theorem that d*(a | s) will be an increasing func-
tion of s.

3. There are other multivariate distributions which share the increasing
properties discussed above. For instance, given any multivariate normal dis-
tribution F, the conditional distribution of F in the plane S = s is normal with
covariance independent of s, and mean sV (where V is a vector such that sV
always lies in the plane 8 = s). Thus F will satisfy the conclusion of the main
theorem if and only if V lies in the positive orthant.
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