ON THE ESTIMATION OF CONTRASTS IN LINEAR MODELS
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1. Summary. In linear models with several observations per cell, a class of
estimates of all contrasts are defined in terms of rank test statistics such as the
Wilcoxon- or normal scores statistic, which extend the results of Hodges and
Lehmann (1963) and Lehmann (1963). The asymptotic efficiency of these esti-
mates relative to the standard least squares estimates, as the number of observa-
tions in each cell gets large, is shown to be the same as the Pitman efficiency of
the rank tests on which they are based to the corresponding i-tests.

2. A Class of Estimates of Contrasts. Let the observable random variables
be X , and suppose they are of the form

(2.1) Xia = & + Usa (=1, - ,mi;0=1,--,¢)

where the variables Ui, are independently distributed with common distribution
F having density f, and the £’s are unknown constants. Denote by X the vector
(Xu, -+, Xim;) and suppose that the Hodges-Lehmann statistic & [(3.1) of
[4]] is calculated for every pair of samples, there being ¢(¢ — 1)/2 pairs in all.
We shall write k:;(X;, X;) for the value obtained from the 7th and jth samples
(4,7 =1, -+ ,¢;¢ ¥ j). Thus we have

(2:2) hii( X, X;) = 2kia Eo[VEP],

where S; < -+ < Su; denote the ranks of Xji, - -+, Xjm; in the combined 7th
and jth samples, and Where VO < ... < V™) denote an ordered sample of
size (m; + m;) from a dlstrlbutlon v, Let

AY; = sup {Aythi(Xe, X; — Ay) > ul,
A = inf {Aythi(Xe, Xj — Ay) < p,
where p is the point of symmetry of the distribution of h“(X iy Xj ) when A” =0
i.e. when & = & . It was shown in [4] that the estimate Ay = (AY + AFF)/2 of
£ — £; has more robust efficiency than the classical estimate T;; = Xi. — X,
where X;. = D wiy Xio/m; .

Since the estimates A;; are incompatible in the sense that they do not satisfy

the linear relations satisfied by the differences they estimate [see Lehmann
[5], [6]], Lehmann proposed the adjusted estimates Z.; of the type

(2.3)
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where
(2.5) Ai = 25/

(For a short cut method of computing A;; , the reader is referred to [4], p. 602.)
Then for any contrast Y ¢ with > ¢; = 0, which can also be written in the
form

(2.6) 0 = Dt 25 dis(ki — &)
the estimate
(2.7) 0= 2 D diZiy = 2 ia 2 dii(Bi — Ay)

is proposed.

3. Asymptotic distribution and efficiency. The asymptotic distribution of
the adjusted estimates Z;; is given by the following theorem, where the sample
sizes m; are assumed to tend to infinity in such a way that m; = p;N, N —
andz =1, ---,c.

THEOREM 3.1.

(1) The joint dustribution of (Vi, ---, Ve1) where

(3.1) Vi= N — (& — &)]
1s asymplotically normal with zero mean and covariance mairix

Var (Vz) = (I/Pz + 1/P6>A2/B2y

3.2
(32) Cov (Vi, V) = A%/(pBY)
where
(3.3) A* = [ J(z) do — ([oJ (x) dz)’, J=v"
(3.4) B = [J'F()If (z) dz.
Here the density f of F' is assumed to satisfy the regularity conditions of Lemma 7.2
of [8].

(ii) For any < and j,
(3.5) N'Ay; ~ N'(&i — Az),

where ~ indicates that the difference of the two sides tend to zero in probability.
(iii) The difference N %(Z i — Ay tends to zero in probability for all €, j.
The proof of (i) rests on the following lemma.
Lemma 1. Suppose that the variables X ;o have the distribution specified in connec-
tion with (2.1) with fixed F but a sequence of means

(‘El y T Ec) = (EI(N)7 ) EC(N)>
satisfying

(3.6) £ — ™ = '—ai/N%-
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Let hij(X,;, X,) be defined as in (2.2) with ¥ satisfying the assumptions of
Theorem 1 of [1], then the variables (Wy, -+, W.1) given by
(3.7) Wi = N'heo/m. — pacl i=1-,c—1

have a joint asymptotic normal distribution as N — oo, with zero mean and co-
variance matrix

Var (Wz) = A2Pi/(pi + pc)pc )

(38) 2
Cov (W¢ , WJ) = A PiPJ'/Pc(Pi + Pc)(Pj + Pc)

and
- f [ Be—F(o) + —— Fla + a/N') :IdF(x).
The proof of this lemma is given in the appendix.
Proor or TurorEM 3.1. (i) By 9.1 of [4],
lim P{N*[A; — (& — &)] < a; for all 4}
= lim Py{N*[(1/m¢)hi; — o] < O for all 4}

where a = fJ [F(xz)] dF(x) and Py indicates that the probability is computed
for a sequence of means satisfying (3.6). Furthermore since by Lemma 7.2 of [§]
N*(pie — a) = —a.Bpi/(p: + p.) as N — =, it follows that

lim P{N*[A;; — (& — &)] < a; for all 4}
= lim PN{N*[(I/mc)hw —_ [J,,'c] é aini/(pi + pc) for all ’L}

By Lemma 1, this is equal to @(a:, - -+, a._1) where @ is the (¢ — 1) dimen-
sional multivariate normal distribution with zero mean and covariance matrix
(3.2).

Parts (ii) and (iii) of the theorem follow by Lemma 2 of Lehmann (1963 ).

The proof of the following theorem exactly parallels Lehmann’s argument,
see for example Theorem 3 of [6], and is therefore omitted.

TuroreM 3.2. The asymplotic efficiency of the estimate 6 = Y iy D 51 disZ.,
Of 6 = Z$=1 Z;=1 d”(fl el 5,:]) relative to the estimate Z:=1 Z§=1 dz](X, —_ X])

(3.9) e = °B*/A%,

where o> = Var (Xia), and where A> and B® are given by (3.3) and (3.4) respec-
lively.

In particular when J = &', where ® is the standard normal cumulative distri-
bution function having the density ¢ then (3.9) is the same as the Pitman efficiency
of the normal scores test relative to the t-test [cf. 1].

4. Appendix.
Proof of Lemma 1. Let Fn; (x) be the cdf (cumulative distribution function)
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of m; observations X, --+, X, of which the population cdf is Fi(z) =
F(x — &). Denote m;,. = m; + m, and \;e = me/mic ;¢ = 1, -+, ¢ — 1.
Define H,,,(2) = NFm,(2) + (1 — Ne)Fm,(z) and Hi(z) = NeFe(z) +
(1 — N )Fi(z). Then [cf. Chernoff-Savage (1958)] we can write

(4.1) Tie = hi/m. = A® + BG + B + 2k C%v,
where

(4.2) A = [JH(2)] dFo(z),

(4.3) ¥ = [JHu(2)] dlFm(z) — Fo(2)],

(4.4) ) = [ [Huo(2) — Hie(2)J Hu(z)] dFo(2)

and the C-terms are all 0,N _%..
The difference N*(T;, — A™) — N*(B{x¥” + Bi”) tends to zero in probability

and so, by a well-known theorem ([2], p. 299) the vectors (Wy, ---, W._1) and
(Zi, -+, Zoy) where Z; = N} (B + By’ possess the same limiting distribu-
tion. Thus to prove the lemma it suffices to show that for any real §;; ¢ =
1, ---,c¢ — 1, not all zero, »_5=1 8;Z; has normal distribution in the limit. Now
proceeding as in [1] or [8], we find
(4 ~) Zi—i 6 Z = —‘Zz—l 6 ((1 LC)/m> a—l {Bzc(Xza> - EBZL‘(X )}]
)

+ Z =10; (1 kic){mc_l mcle(Xca> - EBZC(X )}
where
(4.6) Bi(z) = [2:0J [Hie(y)] dFi(y),
(4.7) Bi(z) = [%:J [Hie(y)] dFo(y)

and z, is such that H;.(z) = %

The above summations involve independent samples of identically distributed
random variables having finite first two moments. Hence =1 8,Z; when properly
normalized has normal distribution in the limit. The proof follows.

The covariance matrix (3.8) is obtained by taking limits of N Var (B{y’

B$¥’) and N Cov (B + B5i, Bi¥ + Bii) as N — .
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