A SYSTEM OF INEQUALITIES FOR THE INCOMPLETE
GAMMA FUNCTION AND THE NORMAL INTEGRAL!

By SuanTI S. GuprA AND MRUDULLA N. WAKNIS
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1. Introduction and summary. In this paper a new set of inequalities and
bounds for the incomplete gamma function are obtained. These inequalities
and bounds are based on continued fraction expansions of the incomplete gamma
function (Sections 2 and 3).

Comparisons between the two sets of inequalities and some other known in-
equalities are made (Section 4).

Bounds are also obtained for the Mills’ ratio for the normal integral (Section
5) and an analogue of Mills’ ratio (Section 6) for the gamma distribution. Some
other applications of these bounds to distribution theory problems arising in
multiple decision theory are described (Section 6).

2. System of inequalities for v(a, ) based on the continued fraction expan-
sion. Let v(a, ) = [%t*"'¢”* dt. Various authors (see, Khovanskii (1956)) have
derived the following continued fraction expansion

1 az 1+ a)zx ”-(n—1+a)x._.
a—1+a+2z—24+a+ x— n—+a-+z—
where the more commonly used notation has been employed for the representa-

tion of the continued fraction.
The terminating continued fraction

Pu(a,z) _ 1 ax 1+ a)x (n—14+ a)x
Qu(a,2) a—14+a+2z—2+a+ z— n+a+ 2

is called the nth convergent (approximant) of the continued fraction (2.1).
Using certain well-known recurrence relations, it can be shown that

(2.1) z%"y(a,z) =

(2.2)

Pua,z) = D} (n — 1+ a); 2",
(2.3)
Qn(a’x) = (n -1 + a)n,
where (n), =n(n —1) --- (n —r 4+ 1),r = 1, and (n), = 1. Since
(2 4) [Pn(ay x)/Qn(ay .’Ii)] - [Pn—l(aa x)/Qn;l(ay .’L‘)] = [xn-l/(n -1+ a)n] > 0;

2>0,a>0,n 21,

[Pu(a, z)/Qn(a, )] is a monotonically increasing sequence converging to
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€’z "v(a, ). Again from (2.4),

i <Pk(a, z)  Pi(a, x)>

(2.5) k=n %c(a, ) k__le_l(a, x) ( |
- z £ 'n+a
—-lc=n(’0—1+a)k<(n—1+a)n(n+a_x)’ z < (n+ a).
From (2.5),
. Pi(a, z)  Ppa(a, x)
iMoo ? — )
(26) Qk(a’ x) Qn—l(a, x) 1
< z_nta) z<n+ a

n—1+a)n+a—1)’

This leads to the following system of inequalities

P.(a, x) s —a P.(a, x)
(m)mm@<ex“%”<@m@
4 2’(n+ 14+ a) c<n+a+1, n=123,--

n+ a)pun+1+a—12x)’

where + < » 4+ a 4 1 is a necessary restriction only on the inequalitics on the
right hand side of (2.7) and where

Py(a,z) 1 z o
(28) Q.(a, ¥) &[1+ 1 +a+(1 + a)(2 + a)

xnl
T taToe T ---(n+1+a)]'

It should be noted that the length of the interval between the two bounds in
Nis<x"(n+1+a)l/ln+ a)y(n +1 +a —2),2<n+a+ 1.
It follows from (2.8) that for fixed x and n, if we let

(2.9) en(a, ©) = Pu(a, x)/Qu(a, ),

then for fixed x, ¢n(a, x) decreases monotonically as a increases. Hence

(2.10) en(01,2) = on(a, ) = eu(az, ), a=a=a,
(2.11) z y(az,r) £ x y(a,v) £ 2 (4, ), aZa=a,.

In particular, if a; = pand a: = p + 1, p = a < p + 1, where p is a positive
integer,

e PIT(p + 1)( D T=ps (727)/51)
< 27%(a, &) < 2T(p)(D_7=p (e72) /5)).

The two bounds in (2.12) can be computed easily from a table of Poisson

cumulative distribution.
Table IIT at the end of the paper illustrates the sharpness of the inequalities

(bounds) in (2.7).

(2.12)
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It appears that the inequalities (2.7) give close estimates of the funection for z
small (z = 1). The bounds improve in precision as a increases. For fixed a, the
relative error appears to increase with z. For fixed z, the relative error decreases
as @ increases.

3. System of inequalities for I'(a + p, z), (0 <a <1,p = 0,1,2,---) based on
a different continued fraction expansion. Let I'(a, z) = [7 ¢ 2" dx,
0 < a < 1, then a continued fraction expansion for I'(a, x) (see, for example
Wall (1948), Khovanskii (1956) and Erdélyi et al. (1953)) is

11-612-a28-a n—ln-a
x>+ 14+ z4+ 14+ z+ 14+ T+ 1+

The odd and even convergents (approximants) of the above continued fraction
are

(31) a7%I'(a, z) =

Pon(e,2) _ 1 1(1—a) 1 —a)
(3 2) Qén%—l(aa x) Qll(a) x) Ql/(a’7 x)Q2l(a’) .’E) Q2/(a7 x)Q3l(a1 .’E)
' (n)(n — a)a .
T @G 20 (=1
Pua,z) 1 1(1 —a) L _1a-a
(33) Qin(a,2)  Q'(a,z) Q(a, )@ (a,2) ' Q)(a, 2)Q5 (a, x)
' (n—1)1(n —a),
N e [ e R
where
Qun(a, ©) = D J=02"(n — a);(})
(3.4)

and  Qsuia(a, ) = Xt (n + 1 — a)i(7).
For 0 < a < 1, the coefficients of the continued fraction in (3. 1) are positive;
hence the even order convergents Pi.(a, 2)/Qsn(a, z)(n=1,2--+) generate a
monotomcally increasing sequence and the odd order convergents [Panti(a, x)l/
[Qsns1(a, z)](n = 0, 1, 2, ---) generate a monotonically decreasing sequence.
Both sequences converge to the function "z “I'(a, ). Thus, the following system
of inequalities (bounds) is obtained,

[P2a(a, 2)]/[Qon(a, 2)] < €2 °T(a, x)
< [Pensr(a, 2))/[@unsr(a, 2)], a <1,m=1,2,3, ---.
The first two sets of these inequalities are, for any 2 > 0, 1 > q,

1
z+1—a
r+3—a
22+ 22—a)x+ (2 —a)(l —a)

(3.5)

2 —a 1+ 2
T _ -Tr%
< € T(a,z) < T % — o

(3.5a) < €z T(a,z)

< 2(x+5—a) + 2
¥+ 2223 —a) + 22 —a)3 —a)’
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Again, using the recurrence relation
(3.6) T(r,z) = (v — )I'(» — 1, 2) + 2", v > 1,

the following bounds are obtained. For any positive integer p,

’ p—1
(a + p— l)pM + xp_l ZO (tz—_l-i’]__];_)i < exx_aI‘(a + P, x)
=

Q:.(a, 2)
(3.7) P3n11(a, ) & (a+p—1);
) ( — 1), =r=A T P L Y SR
<la + p )p Qénil(a) x) + v .7;0 xl ’
n=123-:--

It can be shown that the length of the interval i.e. the distance d = d(n, p, z)
between the lower and upper bounds in (3.7) satisfies the inequality

(a+p— 1)p(n — a)u(n!)

z(n —a+ 2)*(n + 1 —a+x)"<d(n’p’x)

(3.8)
(a+ p — 1)(n — a)a(nl)

(1l —a+2)*(2 —a+ )’

Table IV at the end of the paper illustrates the sharpness of the bounds in
(3.7).

4. Comparison of inequalities and bounds for the gamma integral. In Sections
2 and 3, two different sets of bounds have been obtained for the integrals v(a, )
and I'(a, z), respectively. The lower bounds for v(a, ) for givena and z as given
in (2.7) form a monotonically increasing sequence converging to the true value.
The upper bounds in (2.7) form a monotonically decreasing sequence converging
to the true value for n = n, , where n, is the smallest positive integer which satis-
fies ¢ < n9 + 1 4 a. The proof of this latter statement is straightforward and
hence has been omitted. If z is small as compared to (1 + a), then the lower
bounds obtained in (2.7) are very good since the successive terms in the series
for this bound rapidly converge to zero. The series for the lower bound was also
obtained by Pearson (1922) by a method different from ours. Pearson (1922)
used this series expansion for computing the tables of the incomplete gamma
function. Pearson and his collaborators (1922) did not obtain explicit expressions
for upper and lower bounds. ‘

For selected values of n, z and a, upper and lower bounds in (2.7) were com-
puted. Forn = 2,3,4,7, 2 = .3, .5,1.0, 1.5 and a = .5, 1.5, 2.5, 5.5, the values
have been included in Table III at the end of the paper. A glance at this table
confirms the earlier assertion that the bounds are very good in the range of values
z and a for which /(1 + a) is very small. For example, if z = .5 and a = 5.5
so that /(1 + a) = 1/13, the upper bound is accurate to 6 decimal places for
n as small as 2. For the same case the lower bound is accurate to within one unit
in the sixth decimal place for n as small as 3.

The system of bounds for I'(a, ) as given in (3.5) and (3.7) are monotone.
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The lower bounds form a monotone increasing sequence and the upper bounds
form a monotone decreasing sequence. Empirical evidence as illustrated in Table
IV shows that for small z, the bounds on v(a z) (as obtained from (3.5) and
(3.7) and following from the relation that v(a, z) + I'(a, ) = I'(a)) are much
worse than the bounds using (2.7). The bounds on I'(a, 2) improve as z increases.
For selected values of n, z and a, the bounds on I'(a, ) were computed and an
excerpt from these values is given in Table IV for n = 2(1)7, z = 1.5, 2.0, 5.0,
10.0 and @ = .5, 1.5, 2.5, 5.5. Of course the lower and upper bounds are formed
by the pairs of convergents corresponding to n = (2, 3), (4, 5) and (6, 7). A
glance at this table shows that for x = 10, and » = 2, there is agreement to 6
decimal places for ¢ < 2.5 and the values agree to 5 decimal places for ¢ < 5.5.
It would be interesting to find out the behaviour of these bounds with respect to
a and also with respect to z/a.

Some other bounds on the incomplete gamma function, I'(a, x), @ < 1, have
been derived by Gautschi (1959). Gautschi’s inequality gives a lower and an
upper bound for fixed @ and z. For ¢ = .5 and z = 1, 2, Table I compares Gaut-
schi’s result with our bounds of Sections 2 and 3.

As z increases, Gautschi’s bounds improve. From Table I and Table IV, it
appears that for z large, the bounds of Section 3 of this paper are as good as
Gautschi’s and seem to be better for n moderately small (n £ 6) and z = 2 and
fora = .5.

Wilk, Gnanadesikan and Huyett (1962) have discussed the approximation of
the incomplete gamma function. These authors studied the truncation error in
using the series earlier also given by Pearson (1922) and the partial sum of which
forms the left hand side of (2.7) derived in this paper by the method of con-
tinued fractions. Thus the right hand side of Equation (5) of their paper gives the
upper bound on truncation error at n terms as

(4.1) 2/la(a + 1) -+ (a + n)(1 — z/(n + a))], x<n+a,
which is greater than the corresponding bound, i.e.,
42) 2'/[a(a+1)---(a+n)(1—z/n+1+4+4a))), z2<n+1+a,

so that (4.2) is sharper than (4.1). Finally, the upper bound in (2.7) of this paper
has been shown to be monotonically decreasing.

TABLE 1
Length of the

. Method Lower Bound Upper Bound Interval
x=1 x =2 x=1 x=2 x=1 x=2
4 Section 2 2787 .0747 .2939 .2377 .0152 .1630
Section 3 L2711 .0804 .2943 .0963 .0232 .0159
Gautschi .2693 .0793 .2924 .0840 .0231 .0047
6 Section 2 .2788 .0801 .2792 .0820 .0004 .0019
Section 3 .2760 .0805 .2830 .0809 .0070 .0004

Gautschi .2693 .0793 .2924 .0840 .0231 .0047
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Reference should be made to Whittlesey (1963) who gave brief details of some
subroutines for computing the incomplete gamma function.

5. System of inequalities for the Mills’ ratio and the cumulative distribu-
tion function of the normal. Let ®(-) and ¢(-) denote the cumulative dis-
tribution function and the density function of the standard normal random
variable. Then the Mills’ ratio is defined as

(5.1) R(z) = (1 — ®(z))/e(2).
Laplace (1802) gave the following (by now well-known) expansion for R(z),
(5.2) R(z) = (1/z+)(1/z+)(2/z+)(3/x+) - -+ (x > 0).

For more recent work on the Mills’ ratio for the normal, reference should be
made to Ruben (1963) and the references contained therein.
Now using the fact that

(5.3) I(},z) = 20 (1 — ®((22)})),
we have from (3.5)

t Pin(3,1/2) t Pauta(3, £/2) —19...
s <P <G gem 0L
where the [P,(%, 1/2)]/[Q.’ (%, */2)] are defined in (3.2) and (3.4). The first
few of these convergents are

P/(%,£/2) 2 P/(3,£/2) 1 P/(3,6/2) 202+ 1)

QG e2) B QG2 e+1 QG2 B+

It should be pointed out that these inequalities in (5.4) are the same as ob-
tained by using the successive convergents of Laplace’s continued fraction ex-
pansion (5.2) as was done by Murty (1952). However, our method of derivation
is different.

The bounds in (5.4) are reasonably good for large ¢ as illustrated by Shenton
(1954). For t = 4.0 and ¢ = 5.0, the value of n required to achieve an accuracy of
the order of 2.5 X 107" is 5 and 4 respectively.

We now give a new set of inequalities for the Mills’ ratio and the normal
integral. Using the fact that

(5.5) v(%, 11/2) = 27 [@(t) — 3], t>0,
we obtain, from (2.7),
;(271_)% et2/2 —|t+ _ti_ + _t_s_ + .-+ t2n~1 ]
2 -3 135 1-3-5--+(2n — 1)
B t2n+l(2n + 3)
2120 + 3 — 1) (n + Han

(54)

< R@{), t>0,f<2n+ 3.

(5.6) % p p
t2/2
R(t) < %(27)° e —-l:t+ T§+1_§_5
t2n-—-1 0
+”'+1.3.5...(2n—1)]’ t>0.
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TABLE II
Illustrating the bounds on R(t) as obtained from (5.6)
t n Lower Bound Upper Bound Exact Value
1 3 .100,334,000,000 .100, 334,000,953 .100,334,000,953
5 5 .543,826,47 .543,826,52 .543,826,52
1.0 5 1.410,582,01 1.410,686,23 1.410,686,13
3.0 8 105.776,010,93 112.896,452,14 112.515,153,2

It is interesting to note that the expression within the square brackets in (5.6)
represents the first » terms in Pélya series (see Formula (2.8) of Pélya (1949))
for (®(t) — 3)/e(t)

To illustrate the bounds in (5.6) we give in Table II values for
R(t) = ((2m)%"")/2 = R(V). _

The entries in Table IT fort = .1 and ¢ = 3.0 can be compared with the values
given by Shenton (see Table I of Shenton (1954 )) which are based on a different
continued fraction expansion. These values are

t=.; n=3, R(t)~~.100,334,001,3; =n =38, R(¢)~.100,334,000,953
{t=30; =n=28, R(t)~987; =n=15R(t)>~112.5152

Table II indicates that the bounds given in (5.6) are sufficiently close (agree
to 7 decimal places with the true value for n = 5,¢ < .5) to the true value. As ¢
increases, the value of » has to be increased to achieve the same degree of ac-
curacy. It should be noted that the value of » is subject to the condition
n = [({ — 3)/2] + 1. Comparison with Shenton’s results seems to indicate that
the bounds in (5.6) are better. It should be pointed that the upper bound in Table
II is very close (much closer than lower bound ) to the true value.

6. Applications of the bounds.

A. Analogue of Mqlls’ ratio and the hazard rate function. Inequalities and
bounds have been obtained for the Mills’ ratio which is (1 — ®(z))/¢(z) where
®(-) and ¢(-) refer to the cumulative distribution function and the density
function of the standard normal distribution. An analogue of this function for the
gamma distribution is

(6.1) R(a, z) = 2 *" [ e " dt.

It should be noted that the reciprocal of the function R(a, x) in (6.1) is the
hazard rate (failure rate) which is important in the study of statistical reliability.
Barlow, Marshall and Proschan (1963) have studied the properties of dis-
tributions with monotone hazard rate. From the results proved in the above
paper, it is seen that

(i) R(a, z) is an increasing function of x for a < 1.

(ii) R(a, x) is a decreasing function of x fora > 1 (fora = 1, R(a, z) is con-
stant for all x).
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The first set of inequalities for R(a, x) is

n—1 J —z nta
o ot plg) — o gt x a4+ a+1) ]
9 e [ (a) =72 = (J+a)y @+ a)ant+a+1—2)
(6.2) n—1 2

< R(a,x) <e™ g~ [I‘(a) — ¢z ], for the first part

= (J + a)in
r<n+1+a,

the second being obvious from (3.5), (3.7).

B. Applications to multiple decision. For the problems of selecting a subset
containing the best of several gamma populations as discussed by Gupta and
Sobel (1962) and Gupta (1963 ) it is found that the following integrals have to be
evaluated:

(6.3) (T(a)]" " [T [v(a, cx)]Pe 2" dx
(64) [T(a)] """ [5 [T(a, ba)IPe 2" da.

Bounds on the above integrals can be obtained by using the results of Sections
2 and 3.

It should be noted that if we equate the integrals in (6.3) to «, then c is
the ath percentile of the statistic Frnax = max (x2/xo, *+, Xo-/x0") where
X0, X1 *** , Xp are (p + 1) independent chi-square random variables with 2a
degrees of freedom. Similarly the integral in (6.4) represents the probability
integral of Fyin = min (X12/X02; cee, xpz/xo2).

We now derive explicitly lower bounds for (6.3) for the special case p = 1.

1 ¢ =OoT(2a+5) ¢
(T(a))? (14 ¢)*(T(a))*i=0 (1 +c)(a+ )i

It should be pointed out that the left member of (6.5) represents the prob-
ability that the random variable F with 2a, 2a degrees of freedom does not
exceed c.

In order to obtain explicit upper bounds on (6.4), one proceeds in a similar
manner as above. It should be pointed out that lower (upper) bounds on the
moments of the smallest (largest) order statistic from a gamma distribution can
also be obtained in the manner outlined above.

Armitage and Krishnaiah (1964) have been interested in the distribution of
the Studentized largest chi-square. The inequalities of Section 2 of the present
paper can be used to obtain the bounds on this distribution function and to ap-
proximate it.

(6.5)

f v(a, cx) e 2 da >
0
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