A TEST FOR REALITY OF A COVARIANCE MATRIX IN A CERTAIN COMPLEX GAUSSIAN DISTRIBUTION

BY C. G. KHATRI1

Gujarat University, Ahmedabad

1. Problem. Let $X_1: p \times n$ and $X_2: p \times n$ be real random variables having the joint density function

$$(1) \quad (2\pi)^{-pn} |\boldsymbol{\Sigma}_0|^{-\frac{1}{2}n} \exp \left\{ -\frac{1}{2} \operatorname{tr} \boldsymbol{\Sigma}_0^{-1} (\boldsymbol{X} - \boldsymbol{\nu}) (\boldsymbol{X} - \boldsymbol{\nu})' \right\}, \quad (-\infty \leq \boldsymbol{X} \leq \infty),$$
where $\boldsymbol{X} = \begin{pmatrix} \boldsymbol{X}_1 \\ \boldsymbol{X}_2 \end{pmatrix}, \quad \boldsymbol{\Sigma}_0 = \begin{pmatrix} \boldsymbol{\Sigma}_1 & -\boldsymbol{\Sigma}_2 \\ \boldsymbol{\Sigma}_2 & \boldsymbol{\Sigma}_1 \end{pmatrix}, \quad \boldsymbol{\nu} = \begin{pmatrix} \boldsymbol{\mu}_1 & -\boldsymbol{\mu}_2 \\ \boldsymbol{\mu}_2 & \boldsymbol{\mu}_1 \end{pmatrix} \begin{pmatrix} \boldsymbol{M}_1 \\ \boldsymbol{M}_2 \end{pmatrix},$

 $\Sigma_1: p \times p$ is a real symmetric positive definite (p.d.) matrix, $\Sigma_2: p \times p$ is a real skew-symmetric matrix, $\mathbf{u}_j: p \times q$ and $\mathbf{M}_j: q \times n(j=1,2)$. $\mathbf{M}_j: q \times n(j=1,2)$ are given matrices or their joint distribution does not contain Σ_1 , Σ_2 , \mathbf{u}_1 and \mathbf{u}_2 as parameters. Then it has been shown by Goodman [2] that the distribution of the complex matrix $\mathbf{Z} = \mathbf{X}_1 + i\mathbf{X}_2$, $(i=(-1)^{\frac{1}{2}})$, is complex Gaussian and its density function is given by

(2)
$$L = \pi^{-pn} |\mathbf{\Sigma}|^{-n} \exp\left[-\operatorname{tr} \mathbf{\Sigma}^{-1} (\mathbf{Z} - \mathbf{\mu} \mathbf{M}) (\overline{\mathbf{Z} - \mathbf{\mu} \mathbf{M}})'\right]$$

where $\Sigma = \Sigma_1 + i\Sigma_2$ is hermitian p.d., $\psi = \psi_1 + i\psi_2$ and $\mathbf{M} = \mathbf{M}_1 + i\mathbf{M}_2$. In this paper, we consider the problem of testing the independence of \mathbf{X}_1 and \mathbf{X}_2 sets of variates, i.e. testing the hypothesis of the reality of Σ as

$$(3) H_0(\mathbf{\Sigma}_2 = \mathbf{0}),$$

against the alternative that $H(\Sigma_2 \neq 0)$.

2. Solution. In this section, we shall derive the likelihood ratio criterion and propose two other test procedures.

Under the alternative hypothesis H, it has been shown [3] that

(4)
$$(\operatorname{Max}_{H} L) = \pi^{-pn} |\psi|^{-n} \exp(-np),$$

where if $\beta = Z\overline{M}'(M\overline{M}')^{-1}$

(5)
$$\psi = n^{-1}(\mathbf{Z} - \boldsymbol{\beta})(\overline{\mathbf{Z} - \boldsymbol{\beta}})' = n^{-1}\mathbf{Z}[\mathbf{I} - \overline{\mathbf{M}}'(\mathbf{M}\overline{\mathbf{M}}')^{-1}\mathbf{M}]\overline{\mathbf{Z}}'$$

$$= n^{-1}(\mathbf{S}_1 + i\mathbf{S}_2), \quad \text{say}.$$

Then $S_1: p \times p$ is real symmetric p.d. and $S_2: p \times p$ is real skew-symmetric. The maximum likelihood estimates of \mathbf{v} and $\mathbf{\Sigma}$ under H_0 are obtained by the same technique given in [3] and they are

115

estimate of
$$\boldsymbol{u}$$
 under $H_0 = \hat{\boldsymbol{u}}$,

Received 22 June 1963; revised 27 July 1964.

¹ Now at the University of North Carolina on leave from Gujarat University.

and

estimate of Σ under $H_0 = \text{Real part of } \psi = n^{-1} S_1$.

Hence, we get

(6)
$$(\operatorname{Max}_{H_0} L) = \pi^{-pn} |n^{-1} \mathbf{S}_1|^{-n} \exp(-np).$$

Using (4) and (6), we get the likelihood ratio statistic Λ given by

(7)
$$\Lambda = \left[(\text{Max}_{H_0} L) / (\text{Max}_H L) \right]^{1/n} = |S_1 + iS_2| / |S_1|.$$

Noting the following result given by Goodman [2],

(8)
$$\left| \begin{pmatrix} \mathbf{A} & -\mathbf{B} \\ \mathbf{B} & \mathbf{A} \end{pmatrix} \right| = |\mathbf{A} + i\mathbf{B}|^2,$$

we can write Λ as

(9)
$$\Lambda = |\mathbf{I} + i\mathbf{Q}| = |\mathbf{I} + \mathbf{Q}^2|^{\frac{1}{2}} = |I - \mathbf{QQ}'|^{\frac{1}{2}}$$

where

(10) $Q = S_1^{-\frac{1}{2}}S_2S_1^{-\frac{1}{2}}$ is a real skew-symmetric matrix and $S_1 = (S_1^{\frac{1}{2}})^2$.

Then, the likelihood ratio criterion is

(11) reject
$$H_0$$
 if $\Lambda < \lambda_1$

where λ_1 satisfies Pr $(\Lambda < \lambda_1 | H_0) = \alpha$.

We propose here two other test procedures whose critical regions are as follows

(12)
$$\operatorname{tr} = \operatorname{tr} \left[S_2 S_1^{-1} S_2' (S_1 - S_2 S_1^{-1} S_2')^{-1} \right] > \lambda_2$$

and

(13)
$$C_{max} = max.$$
 ch. root of $[S_2S_1^{-1}S_2'(S_1 - S_2S_1^{-1}S_2')^{-1}] > \lambda_3$ where $S_2' = -S_2$, and

(14)
$$\operatorname{Pr}\left(\operatorname{tr} > \lambda_{2} \mid H_{0}\right) = \operatorname{Pr}\left(C_{\max} > \lambda_{3} \mid H_{0}\right) = \alpha.$$

3. Distribution of Λ under H_0 . It has been shown by Khatri [3] that the distribution of $S = S_1 + iS_2$ is complex Wishart $(S; p, n - q, \Sigma)$. Hence under H_0 , we write the joint density function of S_1 and S_2 as

(15)
$$\{\Gamma_{p}(n-q)\}^{-1}|\mathbf{\Sigma}_{1}|^{-(n-q)}|\mathbf{S}_{1}+i\mathbf{S}_{2}|^{n-q-p}\exp[-\operatorname{tr}\mathbf{\Sigma}_{1}^{-1}\mathbf{S}_{1}],$$

where $\Gamma_p(n-q)=\pi^{\frac{1}{2}p(p-1)}[\prod_{j=1}^p\Gamma(n-q-j+1)]$ and $\mathbf{S}_1+i\mathbf{S}_2$ is hermitian p.d.

Now, in (15), we use the transformation $Q = S_1^{-\frac{1}{2}}S_2S_1^{-\frac{1}{2}}$. The Jacobian of the transformation is $J(S_2; Q) = |S_1|^{\frac{1}{2}(p-1)}$, (p > 1). Then, it is easy to verify that S_1 and Q are independently distributed under H_0 , the distribution of S_1 is real Wishart $(S_1; 2(n-q), p, \Sigma_1)$ and the density function of Q is

(16)
$$c|\mathbf{I} + i\mathbf{Q}|^{n-p-q} \text{ or } c|\mathbf{I} - \mathbf{Q}\mathbf{Q}'|^{\frac{1}{2}(n-p-q)},$$
 $(p > 1),$

where Q is real skew-symmetric, I - QQ' is p.d. and

(17)
$$c = \pi^{-\frac{1}{2}p(p-1)} \left[\prod_{j=1}^{p} \left\{ \Gamma(n-q-\frac{1}{2}j+\frac{1}{2}) / \Gamma(n-q-j+1) \right\} \right].$$

From (16) and (17), it is easy to see that

(18)
$$E(\Lambda^r) = \prod_{j=1}^p \left[\frac{\Gamma(n-q-\frac{1}{2}j+\frac{1}{2})\Gamma(n-q+r-j+1)}{\Gamma(n-q-j+1)\Gamma(n-q+r-\frac{1}{2}j+\frac{1}{2})} \right],$$

or (18) can be rewritten as

(19)
$$E(\Lambda^{r}) = \prod_{j=1}^{t'} \left[\frac{\Gamma(n-q-j+\frac{1}{2})\Gamma(n-q-t+r-j+1)}{\Gamma(n-q-t-j+1)\Gamma(n-q+r-j+\frac{1}{2})} \right]$$

where

(20)
$$t' = t = \frac{1}{2}p \text{ if } p \text{ is even, and } t' = t - 1 \text{ and}$$
$$t = \frac{1}{2}(p+1) \text{ if } p \text{ is odd } (>1).$$

Now let us consider t' independent real Beta variables $\omega_j(j=1, 2, \dots, t')$ given by

(21)
$$[\Gamma(n-q-j+\frac{1}{2})/\{\Gamma(t-\frac{1}{2})\Gamma(n-q-t-j+1)\}] \cdot \omega_j^{n-q-t-j} (1-\omega_j)^{t-\frac{3}{2}}, (0 \le \omega_i \le 1).$$

Then it is easy to verify that

(22)
$$E(\Lambda^r) = \prod_{j=1}^{t'} E(\omega_j^r) = E(\prod_{j=1}^{t'} \omega_j)^r.$$

Since the range of Λ is finite and it satisfies the moment relation (22), the distribution of Λ is the same as that of the product of t' independent real Beta variates ω_j given by (21).

Using the results of (5.3) of Khatri [3], it can be easily verified for large values of $2(n-q)-p-\frac{1}{2}=m$ that

(23)
$$\Pr(-m \log \Lambda \leq \xi) = \Pr(\chi_f^2 \leq \xi) + \gamma_2 m^{-2} [\Pr(\chi_{f+4}^2 \leq \xi) - \Pr(\chi_f^2 \leq \xi)] + O(m^{-3})$$

where

(24)
$$m = 2(n-q) - p - \frac{1}{2}, f = \frac{1}{2}p(p-1)$$
 and $\gamma_2 = p(p-1)\{p^2 + (p-1)^2 - 8\}/48.$

4. Distribution of ch. roots of QQ' or $S_1^{-1}S_2'S_1^{-1}S_2$ under H_0 .

Lemma 1. Let a random matrix $Q: p \times p$ be skew-symmetric. Then there exists a real orthogonal matrix $\Delta: p \times p = (\delta_{jj'})$ such that

where
$$\mathbf{W} = \operatorname{diag.}\begin{bmatrix} \begin{pmatrix} 0 & \omega_1 \\ -\omega_1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & \omega_2 \\ -\omega_2 & 0 \end{pmatrix}, \cdots, \begin{pmatrix} 0 & \omega_t \\ -\omega_t & 0 \end{pmatrix} \end{bmatrix}$$
 if $p = 2t$

$$= \operatorname{diag.}\begin{bmatrix} \begin{pmatrix} 0 & \omega_1 \\ -\omega_1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & \omega_2 \\ -\omega_2 & 0 \end{pmatrix}, \cdots, \begin{pmatrix} 0 & \omega_t \\ -\omega_t & 0 \end{pmatrix}, 0 \text{ if } p = 2t + 1$$

with $\omega_1^2 > \omega_2^2 > \cdots > \omega_t^2$. The nonzero ch. roots of Q are $i\omega_j$, $-i\omega_j(j=1,2,\cdots,t)$ and so $\omega_j^2(j=1,2,\cdots,t)$ (each repeated twice are the nonzero ch. roots of QQ' or Q'Q).

For proof, we may refer to [1] p. 3.

We note that in Q there are $\frac{1}{2}p(p-1)$ random variables, while the apparent number of variables on the right of (25) are $\frac{1}{2}p(p-1)$ in Δ and t in W. We may note that when p=2, Δ can be any real orthogonal matrix and so it can be taken as I. This shows that there must be $\{\frac{1}{2}p(p-1)-t\}$ only random variables in Δ . Hence in order to establish one to one relation between random variables of (25), we shall assume that $\{\frac{1}{2}p(p+1)+t\}$ elements in Δ will satisfy $\Delta'\Delta=I$ and t elements will not be random. We may take these fixed t elements as zero. With these remarks, we shall prove the following lemma.

Lemma 2. The Jacobian of the transformation given in (25) is

(26)
$$J(\mathbf{Q}; \mathbf{\Delta}, \mathbf{W}) = \left[\prod_{k=1}^{t-1} \prod_{j=k+1}^{t} (\omega_{j}^{2} - \omega_{k}^{2})^{2}\right] J(\mathbf{\Delta}) \text{ if } p = 2t$$

$$= \left(\prod_{j=1}^{t} \omega_{j}^{2}\right) \left[\prod_{k=1}^{t-1} \prod_{j=t+1}^{t} (\omega_{j}^{2} - \omega_{k}^{2})^{2}\right] J(\mathbf{\Delta})$$

$$\text{if } p = 2t + 1$$

where $J(\Delta)$ is a function of the elements of Δ .

Proof. Taking the differential of $Q = \Delta W \Delta'$ and writing R^* the differential of R, we get

(27)
$$\Delta' Q^* \Delta = \Delta' \Delta^* W + W \Delta'^* \Delta + W^*.$$

Let $\mathbf{B} = \mathbf{\Delta}' \mathbf{Q}^* \mathbf{\Delta}$ and $\mathbf{A} = \mathbf{\Delta}' \mathbf{\Delta}^*$. Then \mathbf{A} is a real skew-symmetric matrix in $\left[\frac{1}{2}p(p-1)-t\right]$ random elements, on account of $\mathbf{\Delta}^*$ having $\left[\frac{1}{2}p(p-1)-t\right]$ random elements. Hence, we shall assume that $a_{2j-1,2j}(j=1,2,\cdots,t)$ can be determined in terms of the remaining elements of \mathbf{A} . Then (27) can be written as

$$\mathbf{B} = \mathbf{A}\mathbf{W} - \mathbf{W}\mathbf{A} + \mathbf{W}^*.$$

That is, we have

$$b_{2j-1,2j} = \omega_j^*,$$

$$b_{2k-1,2j-1} = -\omega_j a_{2k-1,2j} - \omega_k a_{2k,2j-1},$$

$$(28')$$

$$b_{2k,2j-1} = \omega_j a_{2k,2j} + \omega_k a_{2k-1,2j-1},$$

$$b_{2k-1,2j} = \omega_j a_{2k-1,2j-1} - \omega_k a_{2k,2j},$$
and
$$b_{2k,2j} = \omega_j a_{2k,2j-1} + \omega_k a_{2k-1,2j},$$

for j > k; $j = 1, 2, \dots, t$; $k = 1, 2, \dots, t - 1$ if p = 2t, and if p = 2t + 1, j > k; $j = 1, 2, \dots, t + 1$; $k = 1, 2, \dots, t$ and $\omega_{t+1} = 0$. Note that (28') is free from $a_{2j-1,2j}(j = 1, 2, \dots, t)$ elements and so justifies the remarks made before Lemma 2.

Now using the Jacobian theorem on conditional transformation, we get

(29)
$$J(\mathbf{Q}; \mathbf{\Delta}, \mathbf{W}) = J(\mathbf{Q}^*; \mathbf{\Delta}^*, \mathbf{W}^*) = J(\mathbf{Q}^*; \mathbf{B}) J(\mathbf{B}; \mathbf{A}, \mathbf{W}^*) J(\mathbf{A}; \mathbf{\Delta}^*)$$
$$= J(\mathbf{B}; \mathbf{A}, \mathbf{W}^*) J(\mathbf{A}; \mathbf{\Delta}^*)$$

for $J(\mathbf{Q}^*; \mathbf{B}) = |\mathbf{\Delta}|^{p-1} = 1$. Let $J(\mathbf{A}; \mathbf{\Delta}^*) = J(\mathbf{\Delta})$, and from (28'), we can show that

(30)
$$J(\mathbf{B}; \mathbf{A}, \mathbf{W}^*) = \left[\prod_{k < j=1}^t (\omega_j^2 - \omega_k^2)^2\right] \quad \text{if } p = 2t$$
$$= \left(\prod_{k=1}^t \omega_k^2\right) \left[\prod_{k < j=1}^t (\omega_j^2 - \omega_k^2)^2\right] \quad \text{if } p = 2t + 1.$$

Using (30) in (29), we get Lemma 2.

Now, we shall derive the joint distribution of the ch. roots $S_1^{-1}S_2'S_1^{-1}S_2$ or QQ'. The density function of Q, (a skew-symmetric matrix) is given by (16). We apply the transformation given in Lemma 1 and its Jacobian is given by (26). Let $\lambda_j = \omega_j^2 (j = 1, 2, \dots, t)$, which are the nonzero ch. roots (each repeated twice) of QQ'. Then integrating over Δ , we get the joint density function of $1 \geq \lambda_1 \geq \dots \geq \lambda_t > 0$ as

(31)
$$c_1[\prod_{j=1}^t \{\lambda_j^{-\frac{1}{2}}(1-\lambda_j)^{n-p-q}\}][\prod_{k=1}^{t-1} \prod_{j=k+1}^t (\lambda_j-\lambda_k)^2]$$
 if $p=2t$,

and

(32)
$$c_2[\prod_{j=1}^t \{\lambda_j^{\frac{1}{2}} (1-\lambda_j)^{n-p-q}\}][\prod_{k=1}^{t-1} \prod_{j=k+1}^t (\lambda_j - \lambda_k)^2]$$
 if $p = 2t+1$,

where c_1 and c_2 are constants. Comparing (31) and (32) with the distribution of the ch. roots of a hermitian p.d. given in Section 7 of [3], we find the values of c_1 and c_2 as

(33)
$$c_1 = \prod_{j=1}^{t} \left[\Gamma(n-q-j+\frac{1}{2}) / \left\{ \Gamma(n-q-t-j+1) \right\} \right] \cdot \Gamma(t-j+\frac{1}{2}) \Gamma(t-j+1)$$

and

(34)
$$c_2 = \prod_{j=1}^{t} \left[\Gamma(n-q-j+\frac{1}{2}) / \left\{ \Gamma(n-q-t-j) \cdot \Gamma(t-j+\frac{1}{2}) \Gamma(t-j+1) \right\} \right].$$

The distribution of tr $QQ'(I - QQ')^{-1} = \sum_{j=1}^{t} [\lambda_j(1 - \lambda_j)]$ and λ_1 can also be obtained under H_0 with the help of (31) and (32).

REFERENCES

- Gantmacher, F. R. (1959). Applications of the Theory of Matrices. Interscience Publishers, Inc., New York. (Translated by J. L. Brenner with the assistance of D. W. Bushaw and S. Evanusa.)
- [2] GOODMAN, N. R. (1963). Statistical analysis based on a certain multivariate complex Gaussian distribution (An introduction). Ann. Math. Statist. 34 152-176.
- [3] Khatri, C. G. (1965). Classical statistical analysis based on a certain multivariate complex Gaussian distribution. Ann. Math. Statist. 36 98-114.