MAIN-EFFECT ANALYSIS OF THE GENERAL NON-ORTHOGONAL
LAYOUT WITH ANY NUMBER OF FACTORS!

By Dan Brapu

Hebrew Unaversity, Rehovoth

1. Introduction. The analysis of variance of a non-orthogonal two-factor
layout is described in detail by Scheffé [6] under the heading ‘“T'wo-way layout
with unequal cell-numbers;” a matrix derivation of the same results was given
by Tocher [8]. A method of analysis for a non-orthogonal three-factor layout
was given by Freeman and Jeffers [3]. Particular cases of four factor layouts,
with some orthogonalities present, were treated e.g. by Pearce [4] and Clarke
[1]. Using a different approach, several authors, like Corsten [2] and Stevens [7],
have proposed iterative schemes for solving the normal equations.

No general practical method for analyzing a non-orthogonal p-factor layout
seems to have been found so far. A survey of the present state of the problem is
given by Pearce [5].

The main problem involved in the analysis is how to solve the normal equa-
tions i.e. how to project the vector of the observations on the linear hypothesis
subspace. For the general p-factor layout, that subspace is the direct sum of a
one-dimensional subspace, corresponding to the general mean, and of p sub-
spaces corresponding to the p main-effects vectors. A direct solution of the normal
equations requires the inversion of a matrix whose order is roughly equal to the
total number of single-factor levels in the layout. Aside from the length of the
calculations involved, this puts a definite limitation on the number of factors
which can be handled, even by an electronic computer.

In this paper, it is shown (in Sections 4-7) that the normal equations can be
solved by a stepwise transformation of the initial p 4 1 subspaces into a set of
p + 1 mutually orthogonal subspaces. The procedure, essentially analogous to
the Gram-Schmidt method for orthogonalizing a set of vectors, consists of p
steps. Each step requires the inversion of a matrix whose order is the number of
levels of one of the factors. Therefore, provided the number of levels of each
factor does not exceed the maximal order of the matrices which can be handled,
there is practically no limitation on the number of factors.

In Section 9, the main-effect analysis based on the normal equations solution
is described. In Section 10, it is shown that the analysis can be simplified in the
presence of orthogonalities, and some special situations are treated, generalizing
results already known for two, three and four factors.

It would, of course, be desirable to extend the method to the general non-
orthogonal layout with, say, main-effects and two-factor interactions only.
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Until such an extension is found, it may only be pointed out that for some
simple cases, such as the case where only a particular two-factor interaction is
suspected, one can treat the level combinations of those two factors as levels of
a single artificial factor, and apply the method accordingly.

2. Matrix notation. We consider a general nonorthogonal p-factor layout with
h. levels for the factor A:(1 < 7 < p), subject only to the restriction (3.3) which
will be explained later. The n observations of the layout are regarded as the
coordinates of a column vector y, which is an element of the n-dimensional space
V. We define the matrices X; , N;and N,; (4,7 = 1,2, --- , p) as follows.

X is a matrix with &, rows (corresponding to the h; levels of 4;) and n columns
(corresponding to the n observations). In each column, one of the entries (corre-
sponding to the level of A, for that observation) is 1; all the other entries are 0.

N is a column vector whose 4. elements are the numbers of observations at
the different levels of A.. N; can obviously be supposed to contain no zero
elements.

N;; is an h; X h; matrix, whose elements are the numbers of observations at
the A;h; combinations of levels of A; and 4; .

Denote by 1, the column vector consisting of s unit entries. The following
obvious relations hold:

(2.1) X, =1, X1, =N,;
(2.2) N.; = X.X/;

and

(2.3) N.;-1,, = N;;  1;,-N,; = N/.

3. Model and assumptions. In what follows, we shall stick as close as possible
to the approach and notation of Scheffé [6].

The n observations are assumed to be independently and normally distributed,
with the same variance o°, around their respective means. The fixed-effect
additive model (without interactions) is considered, i.e. the underlying hypothe-
sis is
(31) wE@y)=n,=Lp+ 22X e, Ne=0 (i=12--,p),

where u is the general mean, and «; is a column vector whose elements are the
main effects of the h; levels of 4, . )

The hypotheses to be tested will be w; = w n H;, where H; : a; = 0. Without
loss of generality, we shall deal only with H; .

Following the usual method, the analysis of variance will consist of the follow-
ing steps:

(a) We shall construct the Ls. estimate @, of n,, fi, = L& + D7 X/&,
i.e. the projection of y on the subspace V,, of V, where

(32) Vw = {"w = 1nl-'- + Zg;l Xi,ai 1 Ni,“l = Or 7= 17 2: Tty p}
The Ls. estimates u and &: will be found by solving the normal equations. In
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order to ensure the existence of the solution, we have to make a single restriction
on the generality of the layout. We assume that

(3.3) dimension (V,) = > 1 hi — p + 1.

Since

dimension (V,) = rank (1,:X, X’} --- :X,)),
the verification of (3.3) involves only the determination of the rank of a matrix
whose elements are all 0 or 1. Complicated considerations of estimability, which
are one of the main difficulties encountered in non-orthogonal experiments, are

thus avoided.
Once fi, has been found, we can calculate

(3.4) So = |y — full’ = ¥l — ¥'e.

(b) Analogously, we shall construct L.s. estimates of u and «:(7 = 2) under
the hypothesis w; , obtaining the projection #., of y on the subspace

Ve, = e, = Lip+ 27X e |[New =0, ¢=2,---,p}.

It follows immediately from (3.3) that the dimension of V', is S Pohi—p+2.
(¢) The sums of squares SS. and SSy, , for error and for A, respectively will
be computed, where

88, = 84 = o'xb(ve =n — 2P ki +p—1) under o,
and
S84, = 84y — 8w = o'xhy1  under w . )
The ratio§ = MS4,/MS. of the corresponding mean squares is distributed as a
central Fj,_;,,, variable under «; and can be used to test ;.

4. The first step. To solve the normal equations, we shall not use directly the
matrices X; but other matrices which will be constructed step by step. At each
stage new matrices X{*, and new parameters «{”, will be introduced. For the
sake of convenience, the “stage index” k will take on values in descending order;
the first step will correspond to k¥ = p, and the last to &k = 1.

At the first step, or, as we shall say, at the pth stage, we define
(4.1) XP =X, —N:-1,//n and o =i (1 =1,2,---,p).
Expressing (3.1) in terms of X and «{”, and remembering that N'e = 0,
we obtain

no = L+ L XPe”, Neo” =0 (i=1,2--,p);
and similarly
Vh-' = {ll‘,, = lnﬂ + Zg’=l xgp)’agp) I Ni,agm = 07 1= 17 27 Tty p}
(p)

where, again, «{” is a column vector. It may be seen easily that XP.1, = 0,
1,,-XP = 0.
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We define also the matrices
N = XPX" 4+ N.N, /n.

Since direct computation shows that N = N;, it follows that the matrices
N{? may trivially be substituted for N;; in (2.1-3), and that N{¥’ are nonsingular.

6. Description of the kth stage. Let us now suppose that we have, at the kth
stage, a set of matrices X{* and a set of parameter column vectors e (z =
1,2, ---, p) with the following properties.

(i) The mean n, , defined by (3.1), can be expressed as

(5.1) n, =L+ DL XPe®; N =0 (i=12-,p);
and the subspace V,,, defined by (3.2), as
(5.2) Vw = {ﬂw = lnﬂ + Zf=1 Xi(k)la,;(k) I N/aifk) = O’ 1: = 1’ 2’ ceey p}

(ii) The matrices X;* satisfy

(5.3) 1, X% = o;

(5.4) X%, = 0;

and

(5.5) XO%% =0 if ]

and at least one of the two subscripts is greater than £.
To complete the kth stage, we define the matrices N{¥ by means of

(56) } Nil;) = xi(k)xj(k), + NiNJ'//n (’L,] = 1; 2) Tty p)

These matrices, which are a generalization of the matrix @ of Tocher [8], are
easily seen to satisfy

(5.7) N = N3
(5.8) N® = NNN//n if ¢5j
and at least one of the two subscripts is greater than k; and
(5.9) L, N§ =N/; NP1, =N.
We now prove that
(5.10) rank N = (1=1,2,---,p),

i.e. the matrices N{y are nonsingular. The relation (5.3) implies that the rank

of X:® does not exceed h; — 1. But, by (5.2), 1, and the columns of X;* (z =
1,2, -+, p) generate the whole space V,, . If the rank of X, were smaller than
h: — 1 for some ¢ we would have dimension (V,) < > % h; — p + 1, con-
tradicting the assumption (3.3). Therefore, the rank of X;* is h; — 1 for all <.
It follows that no linear combination of the rows of X;*), except for multiples
of (5.3), can vanish. Hence, if a is any column vector with h; elements whose
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sum is not zero, the rank of the augmented matrix (X.* :a) is h. . In particular,
this is true for the matrix
U = (X,*:Ny/nb).
Since rank (UU’) = rank U, and N{;’ = UU’, it follows that N¥ is nonsingular.

6. The iteration procedure. In order to pass to the (k — 1)st stage, we define
the matrices X,*" by

(k—1) (k) (k) g (k=1 (R) : ;
Xi = XI - Nzk [Nkk] Xk if 1

6.1
(6.1) = X,® if 4

v A
=

and the parameters ;" by
ai(k—‘l) — (L'(k) if 1 = k
W = N S N
We now prove that the Properties (i) and (ii) of Section 5 hold when k is re-
placed by & — 1.
(i) The representation n, = Lu + 2.2 X,* &% follows immediately

from (5.1), and it remains to show that N/e;*™"” = 0 (: = 1,2, ---, p). This
is immediate for ¢ £ k. For ¢ = k and j < k& we have, by (5.9),

N/INWT'NG = 1, [NWINWT'NG = 1hLN“°’ = N/,

and hence, by (6.2), NSa:* ™" = N/, + >,cs N/o;* = 0.
(i) We have to prove that

LX*P =0, X*"1,=0 and XX =0

(6.2)

if 7 ¥ j and at least one of the subscripts is greater than k¥ — 1. This is imme-
diate except for the first two relations with ¢ < k, and for the last one with
{ < k and j = k. The proof for these remaining cases consists of expressing
X% in terms of X;* following (6.1), and using (5.3-5) and (5.9).

To complete the (& — 1)st stage, we proceed like in Section 5, defining the
matrices N5 by

N:‘l;ﬁl) — Xi(k—l)xj(lc—l)l + NiNj,/’ll (2’ 7 — 1’ 2’ e p)

The following two properties should be pomted out here.
(a) Forany 7,7 > k — 1,

(6.3) N§ = Ni7,

and in particular NV = N{? (¢ = k). This property is obvious.
(b) Fors,j £k — 1, we have the recurrence formula

(6.4) N&?P = N® — NPINPT'NY + NN/ /n.

This can be proved by expressing X;*" in terms of X;* and expanding
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XK % using (5.3-5) and (5.9), we get
XX = NG — NPINGT'NG,
and hence (6.4).

7. Solution of normal equations. After p steps, we obtain a set of matrices
XY NY (:=1,2,---, p) such that

(7.1) X1, =0 X% =0 for isj
and
(7.2) N{} is nonsingular (¢ = 1,2, --- , p).

The linear hypothesis (3.1) can be expressed as
(7.3) ne =L+ 24 XY, Na®=0 (i=12-,p),
and the corresponding subspace (3.2) as
(7.4) Vo=fne =L+ 25X N =0, i=1,2 ---,pl.
Owing to (7.1), the normal equations are now reduced to the simple form

ni =1y
XX, 0,0 = x Oy (G=1,2 -, p)
with the supplementary conditions
(7.6) No. =0 (=12 ---,p).
From (7.5) and (7.6) we obtain

XX + XX 8 = X% (1=1,2,---,p; b=0)

or, choosing for convenience the value 1/n for b,
(1.7) N7&” = Xy (i=12-",p)

Now, it follows from (6.1) and (6.3) that X, = X,/, N&¥ = N?, (+ = 1, 2,
.-+, p), and hence we obtain

(7.8) NiV&" = X,"y.

If we introduce the notations )

(79 Y=1"y; YY=X%; Y.=Xy; (=12--,p),
we obtain the formulae

(7.10) p=(Y/m), &Y =[NJTY (i=1,2-,p)
and

(7.11) o = L(Y/n) + 20 XV INGTY

for the Ls. estimates of the parameters x and o, and of the mean n, .
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8. Recapitulation. We now summarize the construction described above, and
outline the extent of the computations involved. Starting from the set of matrices
X.? YP NP (4,7 =1,2, -+, p), the construction consists of p successive
steps. The (k — 1)st stage, i.e. the (p — k + 2)nd step, requires the inversion of
a matrix N5 whose order is & , followed by the construction of (k¢ — 1) matrices
N&ED = NP — NPINPT'NG + NN/ /n, (4,7 =1,2,--- ,k —1),of k — 1

. =1 _ ¢ &) g -y &
matrices X; =X, — NNl X, (t=1,2,--- ,k —1),and of &k — 1
column vectors Y:*™ = Y,¥ — NPINFT'Y.Y, (41 =1,2, .-,k — 1). From
these elements, the estimates (7.10) and (7.11) can be computed.

The estimates obtained are expressed in terms of the parameters ;. Using
(6.2), we can relate these parameters to the initial parameters a; by

(8.1) o = a + NG 2 NiYe;  (B=1,2,---,p).

In particular &; = e . The relations (8.1) allow the a; to be expressed step-
p

wise in terms of «;, though general formulae do not seem to be too easy to
establish.

9. Analysis of variance. Substituting in (3.4) the expression (7.11) for #, , we
obtain 8, = |ly|® — (Y/n) — > 2 YLV IN{PT'Y.. We now introduce the
notations

(9.1) SSiotar = |[yF — (Y/n) and 88 = Y. [NPTTY.,

obtaining
(9.2) S0 = SSiotal — D i=1 SS:.

Considering the problem under the hypothesis vy = « n H;, the situation
corresponds to a modified layout, in which only the factors 4,, 45, ---, 4,

appear, while 4; is ignored. The same stepwise construction may be applied to
the modified layout, involving £ — 1 steps. However, as is readily seen, we ob-
tain at each stage (k = 2, 3, - - - , p) the same matrices X;*, Y., N, (4,5 =
2,3, -+, D), as in the case of the full layout, except of course the matrices with
either 7 = 1 orj = 1. It follows that 8., = SSietal — 2= SS: and hence

(9.3) 884, = So, — 80 = S8

Thus, SS; is the sum of squares due to the factor A;, calculated ‘“‘eliminating
Ay, ---, Ap”. As noted in Section 3, it can be used to test w; under the under-
lying hypothesis w.

To elucidate the meaning of SS; for 7 = 2, let H; be the hypothesis a; = 0,
and «;* the hypothesis w n H, n - -+ n H;. An argument similar to that used in
the derivation of 8., , gives SS; = 8,5 — S.t_, . Hence S8, is the sum of squares
due to A4; in the reduced layout in which the factors 4;, 4.y1, --- , A, are con-
sidered and A;, ---, A.; ignored, i.e. the sum of squares due to 4; calculated
“ignoring A;, - -, A:—1"’ and “eliminating Ay, -+, 4,”. It can be compared
with 8,:_,, obtaining a test of the hypothesis w;" under the assumption of
wi—; as underlying hypothesis. But under w as underlying hypothesis, the ex-
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pressions S8, (for ¢ = 2) are formal sums of squares, to be used only for com-
puting the error sum of squares.

Estimates for the variances of the components of the vector & , and of linear
contrasts in these components, may be obtained easily. Let V(&;) be the vari-

ance covariance matrix of & . Since, according to (7.10), & = [N{]"'X{"y,
a direct calculation, using (5.6) and (5.9), gives
(94) V(&) = oINIT™ — Ly 1i/nl,

Also, if ¢ = C'ey, 1;,-C = 0 is a contrast in the main effects of A;, and § =
C'4, its Ls. estimate, it follows from (9.4) that the variance of ¢ is

(9.5) V(§) = SCINT]C

Unbiased estimates V( &) and V() are, of course, obtained by substituting &*
for o°, where ¢* = 8./[n — > E, hi + p — 1]. The formulae (9.4) and (9.5) are
known for the particular cases treated in the literature; see Pearce [5].

10. Some layouts with orthogonalities present. Two factors 4, 4;, ¢ # j,
are said to be orthogonal if the subspaces {X;'e; | N/a; = 0} and {X;'a; | N;'e; =
0} are orthogonal. A necessary and sufficient condition for this is rank N;; = 1,
or, in the form given by Scheffé [6],

(10.1) N:; = N.N,/n,

i.e. “proportional frequencies”.
Two simple remarks will be useful.

((k;)L) If for some ¢ < k, N = N.N)'/n, then, by (5.9) and (6.1), X® =
X"

(b) If for some 7, j < k at least one of the relations Ny’ = N.N.'/n, N&¥ =
N,N.’/n holds, then, by (5.6) and (5.9), N&i ¥ = N{7.

We now consider two important cases of simplified analysis in the presence of
orthogonalities.

CasE 1. A;, A; are orthogonal for all 7, ; = 2, i.e.

ij = NiNf,/n (iyj = 27 ( ;é])'

This situation arises whenever a new classification A; is added to an orthogonal
layout with the factors A;, -+, 4,.
From the remarks (a) and (b) of this section it follows that X,;* and N{¥

(4,7 =2,k =1,2 ---, p) remain unchanged throughout our stepwise con-

struction, i.e.

(10.2 X P = X% NP =NP (4,722 k=2 --,p);
) ) ) p

and hence

X7 =X"=X,—N:-1,"/n
(10.3) - ) for 7 = 2.
N’ = Na
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The matrices N{} for 2 < j < k (and, of course, also N&¥ = N®' for2 <4 < k)
are also not affected, i.e.

(10.4) N = N{? (255 <k),
and hence
(10.5) N¥ =N, for 2=j<k+1=p.

As for X, and N{?, they are changed at each step; from (6.1) and (6.4), using
(10.3-5), we obtain

X% = X% — NuNwXe 4+ Ni-1,'/n,
17 = NiY — NuNw'Nu + NiNy'/n;
and iteration of (10.6) gives

(10.6)

(10.7) X% =X — 2L NuNaX + (p — 2)Ny-1,/n
and

(10.8) = Ny — 22NuNwNu + (p — 1) NN/ /n.
Finally, from (10.7) we obtain

(10.9) Y, Y =Y, — DA NuNwY + (p — 2) Ny-Y/n,

Since the layout obtained ignoring A, is orthogonal, the sums of squares S.S; are
88, = Y/NY, — (Y*/n) for ¢ = 2. Thus, the only matrix inversion in the
whole analysis is that of N{’, which is necessary in order to compute S, .

CASE 2. The set of factors consists of two classes, such that every factor in one
class 1s orthogonal to every factor of the other class, i.e. N;j = N.N;//nif1 £ 4 < m;
m+1=7=0p.

From the remarks (a) and (b) of this section, it follows that X;* = X,*” and
N¥ =N,; (4,7 =1,2,--- ,m;k =m +1, -, p), ie. they remain unchanged
as the stages from & = p through & = m + 1 of the stepwise construction are
carried out, while the analysis involving the factors 4,41, - -+ , 4, is completed.
The stages from & = m through £ = 1, on the other hand, are equivalent to a
complete analysis involving only the factors A4, , --- , A, . This means that we
may apply the stepwise construction separately to the class (A, ---, 4,,) and
to the class (An41, -+, 4,), obtaining the sums of squares SS;, ---, SSn;
S8ma1, - -+, 88, . As before, SS; is the sum of squares due to A;, and may be
used to test the hypothesis w; . But now also SS,,4; is the sum of squares due to
A 41, and may be used to test the hypothesis w4 .

This can, of course, be generalized to the case when the set of factors consists
of several classes such that any two factors belonging to different classes are
orthogonal.
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