EFFECT OF NON-NORMALITY ON STEIN’S TWO SAMPLE TEST
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1. Introduction. Student’s ¢ test is used to test the hypothesis about the mean
of a normal population when the variance is not known; the power of this test
being dependent on the unknown variance. It is shown by Dantzig (1940) that
for a sample of fixed size there does not exist a test for Student’s hypothesis
whose power is independent of the variance. Stein (1945) gave a two sample
test for a linear hypothesis whose power is independent of the unknown variance.
He used it (i) to test the hypothesis about the mean of a normal population and
(i) to estimate the mean by a confidence interval of predetermined length with
a given confidence coefficient. As in other tests of significance the basic assump-
tions in Stein’s test is the normality of the parent population. This assumption
of normality may not hold good in practice, and hence the validity of normal
theory Stein’s test for non-normal populations should be examined.

The effect of non-normality on Student’s test has been investigated, among
others, by Pearson and Adyanthaya (1929), Bartlett (1935), Geary (1936),
Gayen (1949), Ghurye (1949) and Srivastava (1958). Pearson and Adyanthaya,
(1929) have shown by some experimental investigation that the effect of skew-
ness and kurtosis of the parent population on Student’s ¢ may be considerable.
Bartlett (1935) confirmed Pearson’s results theoretically by obtaining an approxi-
mate distribution of ¢ in non-normal samples. Assuming the parent population
to be represented by the first two terms of an Edgeworth series, Geary (1936)
obtained the approximate distribution of ¢{. Gayen (1949) considered the effect
of both skewness (A;) and kurtosis (\s) by using the first four terms of the Edge-
worth series as the frequency function of the population to derive the distribu-
tion of ¢. A theoretical study on the effect of non-normality on the power of the
¢ test was first made by Ghurye (1949) by considering the first two terms of
the Edgeworth series and later Srivastava (1958) extended this work by con-
sidering the effects of A, and As". In a recent paper, Bhattacharjee and Nagendra
(1964) have studied the effect of non-normality on the Wald sequential test for
mean. This will be of particular interest as Stein’s test can be considered as a
special case of sequential test.

In this paper, the effect of non-normality on Stein’s two sample scheme is
investigated by deriving the distribution of Stein’s ¢ for non-normal populations
represented by the first four terms of an Edgeworth series. The power function
of Stein’s test and the confidence level of the fixed length confidence interval
are also obtained.

2. Stein’s two sample scheme. Stein’s (1945) two sample procedure for (i)
testing the mean of a normal population with unknown variance and (ii) for
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estimating the mean by a fixed length confidence interval may be stated as fol-
lows:

Let 21, 22, -+, Zu, be a random sample of size n, from a normal population
with mean p and variance ¢, and the estimate of the variance be

s = (ng — 1)7 200" (20 — &)’

where
- -1
To = (o) 2™ .
Let Tngq1, Tngt2, - ** , Tn be & second sample of size n — ny (= n; say) from
the same population,
where

n = max {[s’/2] + 1, no}.

2 being a preassigned positive constant and [¢g] denoting the largest integer less
than ¢. Let

T = (nl)_l Zlnl Tng+i
(1) T = (nodo + M) /n,
t= (% — u)/(so/n)

The statistic ¢ follows Student’s ¢ distribution with ng — 1 (= » say) degrees
of freedom.

(i) An unbiased test for the hypothesis Ho(p = uo) can be obtained by re-
jecting Ho if [( — mo)/(s0/n*)| > t(a/2, v), where {(a, ») is the upper 100a
percentage point of Student’s ¢ distribution. The power function of this test is
given by

d(u) =1 — B(u),

where (i) = Prob {—t(a/2, ») + (wo — u)/2" < t, < t(a/2, v) + (uo — 1)/
#}; t, being a Student’s ¢ variate with » degrees of freedom. Similarly, H, can
be tested against one sided alternatives u > po.

(ii) A confidence interval for u of predetermined length d and confidence
coefficient 1 — « can be obtained by selecting z = d*/{4t*(a/2, »)} such that

1—a=Prob{z —d/2<u<i-+ d/2}.

3. Distribution of Stein’s ¢ in non-normal samples. If the parent population
is not normal the statistic ¢ defined in (1) will not follow Student’s ¢ distribution.
We propose here to derive the distribution’ of the statistic ¢ when the underlying
population is represented by the first four terms of an Edgeworth series, as

2) f(z) = o {o((x = u)/o) — (N\/3D® ((x — n)/0)
+ (\/40)0® ((x = w)/0) + (\'/72)07 (2 — w)/0)},

where A\; (= B) and A\ (=1 Bs o 3) are the.measures of skewness and kurtosis
respectively, ¢(z) = (2r) % ' and ¢ (z) is the rth derivative of ¢(z).
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In Stein’s procedure, the total sample size n is either equal to n, or greater
than ng according as s,” < or = ng (= ¢ say). To obtain the joint distribution
of & and s,°, we divide the sample space into two pieces say B and B according
as n = My or n > M.

In B;n = ny, & = % and the distribution of & and s,” is the same as that
obtained by Gayen (1949) for &, and s, (say, go(Zo, S°)).

InB;n =no+ n, % = (ndy + nd)/n and the joint distribution of # and
so’ is obtained by considering the distributions of % , # and s’ as follows:

Denoting density functions of random variables u; , uz, - - - by g(us, us, -+ ),
the joint density function of %, & and s,° can be written as

9(Ze, B, s0°) = g(s0")g(&o, T1/50"),

where g(s,’) is the density function of s’ and g(& , #/so’) is the conditional
density of &, % for given s;’. Since for given sy, &, and Z; are independently
distributed, )

(3) 9(Z, &1, ") = g(s0)g(Zo/50")g(T1/50°)
= g(Zo, s0)g(&1/s0),

where g(& , s°) is the joint density function of & and s’ and g(Z/s,’) is the
conditional density function of #; for given s;'.

Using Gayen’s (1949) results for the joint density function of the mean and
the variance and the density function of the mean of a random sample drawn
from the population (2), the joint distribution of & and s,” is obtained by sub-
stituting &; = (n¥ — ned) /7y in (3) and integrating over &, as

g(%, s) = (n/2m)'[v/a"2"" T (v/2)) exp [} (" + XN
[1+ (n\/3D{E" = 3(no/n)¢ + (3/n)x%)
+ (mA/4D{E* — 6(no/n)s” + 8[(no/n) + [(1 — 2no) /nen’In]
+ (6x°/n)[5* — 1 + (ny/nmo) + 3wx'/mno(ne + 1)}
(4) + (nn/72) (s — 3(2no + 3)¢* + 9(no(ne + 4)/n)i’
— [15(nd’/n*) + (6v(v — Dma/nen®)] + (6/n)x[ng* — 3(ne + 3)¢*
+ (6(no/n) + 3[(» — 1)/nenjn)] + [9x"/nno(ng + 1)]no(ne + 1)¢°
— 3(my — 1) + [(m + 1)/nlni]
+ 6(ne — 2)x°/nno(no + 1) (no + 3)}]
= (%, s°, n) (say),
where { = (Z — u)/o, X’ = vs'/o"

It may be noted that, ¢1(Z, so’, 7o) = go(Zo, so°). The joint density function
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of % and s,’ can therefore be written as,
9(z, ") = qu(Z, ', m) I s <,
= gl(.’i, 802, n) if 302 é C.

Since t = (2 — wu)/(so/n*) = ¢/x(vn)}, the joint density function of ¢ and
% is obtained by substituting ¢ = tx/(n»)? in (4); which after some rearrange-
ment of terms can be written as

Rt x) = (t, X, m) i X < xo,
=h(t,x,n) if X2 x),
where xo° = now(z/0°) = nova (say),
h(t, % n) = lexp (—=Tx*/2) )7/ (2m0)'2"°T (v/2)]
[+ u/3DEEC/) + 300’ — n0)l(tx/v)n ™
+ OW/ADILENY/Y) — 6no(£X/v) + 3(2n0 — 1)
(5) + 6’ (X' /v =1 + (3v/mo)lv — 2x" + x*/(no + 1]}
+ OSYTUEY) — 3(2n0 + 3)(E%/¥") + 9na(no + D (/)
— 3(3n0’ + 6mg — 4) + 6x[(£'x"/»") — 3(mo + 3)(£x’/v)
+ 3(n0 + 2)] + W' (%*/v — DIn™ — 6[(no — 2)/nally — 3"
+ Bx'/(mo + 1)] — x°/ (n0 + 1) (no + 3)1}]

and T = 1 + &/».
The frequency function of ¢ can now be obtained by integrating (5) over y°
as

p(t) = [¥ h(t, X)dx'.
Or p(8) = [0t 3, no)dx” + [oaha(t, X, noxd/xo") A
(6) = [oh(t, x', no)dy’
+ [oella(t, ), nox’/x’) — ha(t, 1, mo)}dy’

= py(t) + ps(t) (say),
where

Po(t) = Po(t) + Napry (1) — Aapr, (1) + Ns"Prg2 (1),

is Gayen’s expression for the density function of Student’s ¢ with » degrees of
freedom,

mi(t) = 1/80s/2, HATC",

() = Bt — (2v + 1)) /6v[2n (v + 1)PTC?

() = TGO + 3N + 2)t' — 6(v + 2)8 + 39} /{24(xv) (v + 1)
T(3(r + 4))T"™"
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Mz (1) = (35(2v + 13) — 9w(v + 4)(2v + 1)E
—3(r+2)(» + 4) (20 + 15)' + (v + 2) (v + 4) (2v + )}
T(3(v + 8))/{1445(v + 1) (m)'T 3 (» + 6)) T}
and
Ds(1) = Aapags(t) + Aabrgs(£) + Na"Pag2s(2)

is the corrective term due to Stein’s two sample procedure; pa,s(f), pr(f) and
r,2s(t) are directly obtainable from (5) in terms of incomplete gamma integral
of the type

Jarexp (—Tx'/2) ) 'dx’ = (2/T) T (r + {1 — I(Tx"/2, 1)},

where I(z,n) = [T'(n + 1)] [fe "2 dx; for example, pr,.(t) = (t/6v[2r(» +1)]*
220(5/2) [Zall(E/) + 3h¢ = 3na} (o — %) (D" exp [~ /2] dy.

It is interesting to note that for any given non-normal situation, as a = 2z/¢°
tends to infinity (ie. xo — ) the frequency function of Stein’s ¢ reduces to
Gayen’s (1949) p,(¢) for Student’s ¢.

4, Tail-area probabilities. We are often interested in the tail area of a prob-
ability distribution and hence consider, P(t)) = [—2p(t) dt and P'(t) =
[% p(t) dt. Integrating (6) P(t) is obtained as

(7) P(ty) = Py(to) + Pi(to),
where
P,(to) = Po(to) + NsPr,(t) — MPy(f) + Ns'Pag2(to),
Py(te) = [“2po(t)dt = [Tpo(t)dt = 31us(v/2, ),
Py () = [Zop(Ddt = — [T (DdE = (1 + (20 + Dt’/»)/62r(v + DI

2)/2
T2

Py () = [ZEpn(D)dt = [ipr,(D)dt
= (v/24) 1. (v/2, %) — [v(v + 3)/12(v + D)L, [(v + 2)/2, 3]
+ (v + 5)/24(v + D)1L,[(v + 4)/2, 3],
Py (to) = [Zepe(t)dt = [tpage (t)dt
= (20 + 7) /721 (v/2,3) — (20" + 9 + 15)/24(v + 1)]
Luol(v +2)/2, 31 + (2" + 9 + 19)/72(» + 1)]
ABLu,[(v + 4)/2, 3] — L l(v + 6)/2, 31},

where uo = (To)™ = (1 + t°/») ™" and L, (1/2, »/2) = [B(r/2, »/2)]" [3°
P71 — w)”®7dy is the incomplete B-function; and

Py(ts) = NPrs(to) + MPrs(t) + )\32P)\3%(t0);
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Pra(t)) = [Z2pas()dt = — [Tipa,s(t)dt
= {{(v + D'/ + 20To “™"/3(0 — 1) (» + 1)'8(»/2, 1)}
QT v = 1) — {[(2v + Dts’/v + 1T /62r (v + 1T
-Q(Toxo', v),
Pro(t) = [Zpas(t)dt = [7pr,.(8)dt
= [To"""/24(v 4+ 1)9'8(0/2, DI—[Toxs’/ (v — DI (5v + 4)t5'/»
CF UWQ(Texd, v — 1) + {(5y + 2)t'/v — 3 Q(Texd, » + 1)]
and
Prps(te) = [Zdprgeo()dt = [T,pne(t)dt
= [T *™"/18(» 4+ 1)48(»/2, HITw’/ (v — DI (* + 8 + 6)
/v 4 24y + 1)1 /v + 15 1 Q(Toxs’, » — 1) — {(* + 6v
+2)t’/0 + 2(v — 2Dt /v — 33 Q(Toxs’, v + 1) — to(t/v + 3)*
“lexp (—Toxo’/2)1(Toxo’/2) ™%/ T (3 (v + 1))]

where Q(xo, ») = [27°T(v/2)]™ [m2e™"2"* dz is the complement of the prob-
ability integral of chi-square with » degrees of freedom.
Similarly

(8) P'(t) = P/ () + P, (h),

where
P, (ty) = Po(ty) — NPx,(t) — MPx,(fo) + APz (h),
P/ (t) = =NPrs(to) + MPrs(t) + N'Prz(to).

If two tails are considered, then

(9) P,, = Prob. {|t| > t} = P(t) + P'(&).

For \s = £1.0, £0.6, £0.4 (\s = 0) and \s = —0.5, 1.0, 2.0, 2.5 (\; = 0),
the values of the lower tail area at the lower 2.5% and 0.5% points of the nor-
mal theory ¢, for » = 4, 9 and @ = 1.0, 0.1, 0.01, 0.001 are shown in Table 1(a)
and Table 1(b). The values of P;, at 5% and 1% points of the normal theory
t, can be obtained from the same table. It will be observed that the tail area
varies considerably with ¢ and hence with the unknown variance ¢°. Even for
near normal populations the variation is noticeable, e.g. when \; = 0.4, A, =
—0.5, v = 4; P(2.776) = 0.038 for ¢ = 0.1 and P(2.776) = 0.024 for ¢ =
0.001. For higher values of X\; and A, the tail area changes rapidly with a, e.g.
when A\; = 1.0, \s = —0.5, » = 9; P(2.262) = 0.0179 for ¢ = 0.1 and P(2.262)
= 0.0041 for a = 0.001.

The effect of A though small on Student’s ¢ (as observed by Geary (1935)
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Fia. 1(a). Power curves of Stein’s two-sided ¢ test with no = 5, @ = 0.05 in the case of
asymmetrical populations with Ay = 0

.............. )\3 = 10, a = 0001

and Gayen (1949)) may be somewhat more on Stein’s ¢, e.g. when \; = 0, A4
= 2.5, v = 4, a = 0.001 the estimate of the two-sided tail area at the 5% point
of the normal theory ¢ is 0.074 whereas the corresponding value for the Student’s
t 1s only 0.035.

The effect of A\; on Stein’s ¢ is considerable, as it is on Student’s ¢. The negative
values of A; tend to decrease the lower tail area but simultaneously increase the
area of the upper tail. The reverse is the case for positive values of A\; . If two
tails are considered, the corrective terms due to A\; will vanish but those due to
As> will not.

b. Stein’s two sample scheme for non-normal populations. If Stein’s two
sample ¢ test of Section 2 is used for testing the mean of a non-normal popula-
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F1c. 1(b). Power curves of Stein’s two-sided ¢ test with no = 5, & = 0.05 in the case of
symmetrical non-normal populations
Normal
———— A = 2.5, a = 0.001
........... MN=25a=10
-------------- A= —1.0, « = 0.001

tion, the preassigned value of « is not attained and the actual error of the first
kind is given by a; = P{t(a/2, »)} + P’'{t(a/2, v}.
The power of the test

¢i(p) =1 — Bi(w) = P{t(a/2,») — 8} + P'{t(a/2, v) + 3},

1 . . .
where & = (uo — u)/2" no longer remains independent of the unknown variance

2
g

For testing Ho(u = wo) against one sided alternatives u > o, the actual error
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F1a. 2(a). Relationship between a3(e = 0.05) and d/c in the case of asymmetrical popu-

—————— Normal,

—W—N— N = 5, A = +1
g = 10, Ay = 1
------------- No = 5, A3 = +.4
.......... no = 25, A3 = =1

Fic. 2(b) Relationship between az(a = 0.05) and d/s in the case of symmetrical non-

normal populations

Normal
—Ne—N— Ny = 5, N = 2.5
———— —no = 10, As = 2.5
------------- No = 5, N = —-1.0
.......... no = 25, A4 = 2.5
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of the first kind is s = P'{t(e, »)} and the power function is ¢y(n) =
P'{t(a, v) + &}.

For certain values of \;, A\, and a(=2/¢") the values of the power function
for the two-sided Stein’s test for an initial sample of size 5 at 5 percent level
of significance are shown in Table 2. The effect of skewness and kurtosis of the
parent population on the power function is illustrated in figures 1(a) and (b).
The power of Stein’s test though desired to be independent of ¢” is seen to de-
pend considerably on the unknown variance. For very small values of \; and A
the variation of the power curve with ¢° is not much. The asymmetry of the
parent population tend to increase the power in one side of u, but decrease it on
the other. For symmetrical non-normal populations, the power curve is sym-
metrical with respect to 4 = w, and the increase or the decrease of the power
function in the neighbourhood of w, depends largely on the unknown variance.

The departure from normality of the parent population also affects the pre-
assigned value of the confidence level «, of Stein’s fixed size confidence interval.
The actual value of the confidence level is

a; = Pl{t(a/2, v)} + P'{t(a/2, »)}.

The true confidence level s is seen to depend considerably on the ratio of the
size of the interval to the population standard deviation particularly when the
size no of the initial sample is small. The relationship between «; and d/o for
asymmetrical and symmetrical non-normal parent populations is illustrated in
figures 2(a) and 2(b) respectively. The effect of skewness on the confidence
level appears to be not much when the pre-assigned length is small, but as the
pre-assigned length is increased, «; increases and for highly skewed populations
(say N\ = 1) the effect may be serious. For extreme (very high or very low)
value of d/s the effect of kurtosis may be serious. Positive values of A\; tend to
increase a3 for low d/o and decrease it for high values of d/s. The reverse happens
when A, is negative.

6. Summary and conclusions. The distribution of Stein’s ¢ in non-normal
samples has been derived with reference to the parent population specified by
the first four terms of an Edgeworth series. It contains in addition to the fre-
quency function of Student’s ¢ for non-normal parent, the corrective terms due
to A, M and A" The validity of Stein’s two sample schemes in a non-normal
situation for testing the mean or for estimating it by a confidence interval of
pre-assigned length are then examined by obtaining the corrected power func-
tion and the confidence level respectively.

The study on the whole, shows that Stein’s ¢ is more sensitive to non-nor-
mality of the parent populations than Student’s ¢. If the parent population is
not normal, the power function of Stein’s test, though desired to be independent
of ¢°, is found to depend considerably on the unknown variance.
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