EXTREME VALUES IN UNIFORMLY MIXING STATIONARY
STOCHASTIC PROCESSES

By R. M. Loy~NEs
University of Manchester

1. Introduction and summary. Let X;, X;, - - - be a sequence of independent,
identically distributed random variables, and write Z, for the maximum of
X, X,, -++ X, . Then there are two well known theorems concerning the limit-
ing behaviour of the distribution of Z, . (See, for example, Gumbel [7].)

Firstly, if for some sequence of pairs of numbers a,, b,, the quantities
an *(Z, — b,) have a non-degenerate limiting distribution as n — oo, then this
limit must take one of three forms. Secondly, if ¢, = c,(£) is defined by
P[X > ¢,] < &/n £ P[X 2 ¢,), then P[Z, < ¢,] tends to ¢ fasn — o.

Suppose now that we drop the assumption of independence of the X, and re-
quire instead that the sequence {X,} be a stationary stochastic process: then it
might be expected that similar results will hold, at least if X; and X are nearly
independent when |7 — j| is large. In Section 2 it will be shown that, if the process
{X,} is uniformly mixing, then the only possible non-degenerate limit laws of
an"'(Z, — b,) are just those that occur in the case of independence, and that the
only possible limit laws of P[Z, < c.] are of the form e, k being some positive
constant not greater than one.

The uniform mixing property is rather strong at first sight. It is however clear
that some restriction is necessary, at least for example to ergodic processes, and
the parallel which exists to a certain extent with normed sums of random vari-
ables suggests that uniform mixing hypotheses may be appropriate. (Cf. Rosen-
blatt [9]).

In the independent case converse results hold, as we have already observed
for the second problem, giving necessary and sufficient conditions for the existence
of the limits. We give some results concerning this problem in Section 3, but
they are not altogether satisfactory.

Berman ([2] and especially [3]) has investigated the same problem, under
somewhat different conditions. His results for the Gaussian case in [3], however,
include those which can be obtained from Lemmas 1 and 2 of the present paper,
and in consequence we do not reproduce them here.

The second problem mentioned above was considered by Watson [10] for
m-dependent stationary processes, and his paper did in fact suggest the present
investigations. His results are contained in Section 3.

Certain results were announced without proof by Chibisov [4], but these
appear not to overlap our results.
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2. Possible limit laws. We recall the definition of a uniformly mixing stationary
stochastic process. The condition is that

|[P(A nB) — P(A)P(B)| < g(k)

ifAe®( Xy, X, - -, Xn) and B £ ®(Xnihs1, Xmirsa, - - - ) for some m, where
g(k) — 0 as k — o ; here ®(---) denotes the o-field generated by the random
variables indicated. We shall for convenience express the relationship between A
and B by saying that they are separated by k.

For completeness we record the possible limit laws of the normed maxima a, "
(Z, — by,) in the independent case, since it is these which arise in the present sit-
uation, although we do not in fact need the explicit forms. The limiting distri-
bution functions are

I &(z) = exp[—e ] ‘ —wo <z < ®
II ®(z) = 0 20
= exp [—a ] (where a>0) z>0
111 &(z) = exp[—(—7)*] (where a>0) z<0
=1 =0

TuaeoreM 1. If { X, : n = 1} is a uniformly mizing strictly stationary stochastic
process, and Z, = max (X1, Xz, -+ Xa), then the only possible non-degenerate
limit laws of an " (Zs — by), Where a, > 0, are Types I, II and III above.

The proof will be carried out by showing that asymptotically the lack of inde-
pendence does not affect the problem.

We consider values of » of the form n = rm, where r is fixed, and group the
variables X; into r consecutive sets of m. Let Z,; be the maximum of the sth

group of m:i.e.

(1) Zmi = M8X1<j<m X (imDymti 1=¢=r
Then we have

(2) Zy = MaX1<i<r Zmi s

and consequently

(3) P[Z, < anz + by] = Plmax; Zn; < a,x + byl

We show that we can ignore any fixed finite number of the X in calculating the
limiting distribution of the maxima. Specifically, if k is a fixed number, write

’
(4:) Zmy = MAX; <jsm X (r—1)m+j
and

4
(5) Zmr = maXi<i<k X —mti »

so that
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(6) Zme = 18X (Zmy , Zmy).

We denote by B,, the event {Zpm < Zmm}: it is easily shown by using the strong
law of large numbers for strictly stationary processes that lim, P(B,) = 0.
Then we have

(7) Plmax; Zmi < anz + by] = Plmax, Zni < @,z + b,) n By,
+ P[(max, Z,; £ a,x + b,) n By’].
The first term clearly tends to zero as m — «, and for the second term we have
(8) Pl(max;Zy: = a.x + b,) n By’]
= P[(maXig,1 Zmi < 0% + b2) 0 (Znm < au2 + ba) 0 B,
= Pl(maX;<r1 Zmi < 6@ + ba) 0 (Zom < 00 + ba)] — b,
where 0 = 6, < P(Bn). Furthermore,
(9) Pl(maXigr1Zmi S a2+ ba) 0 (Zym < @ + by)]
= PlmaXi<r1 Zmi < 0% + balP[Zmm < @n + by] + 1,
where |9.| < g(k), and finally
(10) PlZnm < 6 + b = PlZum < @u + by] + 0n,
where 0 < 6, < P(By), by (6). Hence, since k is arbitrary,
(11) limm {P[Zs < anz + ba]
— Plmaxi<,1Zni S 0% + ba]PlZnm = @z + ba]} = 0.
By induction it follows that
(12) limp, {P[Zn £ a% + ba] — P'lZm = auz + b} = 0.

But (12) gives rise at once to the functional equation which occurs in the inde-
pendent case, and the usual proof applies from this point on (Gnedenko [6]).
Obviously, each of the three limit types can actually occur for a suitable

sequence {X,}.
THEOREM 2. Let { X, : n = 1} be a uniformly mizxing strictly stationary stochastic

process, and let c,(£) satisfy
P[X: > cu(£)] S &/n < P[X: = ea($)]

Then if Z, = max (X1, X,, +--, X,), the only possible non-degenerate limit laws
of P[Z, < ca(£)] are €™, where k is a positive constant less than or equal to one.

We use the same approach as in the proof of Theorem 1, except that we can
confine ourselves to the case r = 2. Then we find immediately that

Now from the very definition of ¢,(£), it follows that ¢,(£) = cum(£) = cn(/2).
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Hence from (13)

(14) lim,, {P[Z, £ ca(£)] — P’[Zn < cn(£/2)]} =
Consequently, if P[Z, =< ¢,(£)] tends to a limit ¢(£), we have
(18) o(&) = ¢'(¢/2)

where we know that 0 < ¢(¢) = 1, and ¢(£¢) decreases monotonically. Under
these conditions the only solution of (15) is

(16) o(F) = %

where k& > 0. The proof that k¥ < 1 we defer to the next section.

The question of what values of k can actually arise suggests itself immediately;
the author does not know, having been unable to find any process for which the
limit exists with k& == 1.

3. Sufficient conditions for the existence of limiting distributions. We deal
first with the type of limit considered in Theorem 2, as the calculations are
somewhat simpler.

LemMa 1. If there are sequences of integers {pm}, {qn} satisfying mg(g.) — O,
Gn/Pm — 0 and Pmi/Pm — 1, with the property that (writing p = pm and
t=m(p+q))

(17) e — )/l P[X1 > ¢, Xipa > ¢f/PIX1 > ¢} =0,

asm — o, then'P[Z,‘ S el m et asn — o, where ¢, = c,(£) s as defined in

Theorem 2.
It is easily seen that Watson’s theorem follows from this; ¢, may be chosen in

this case to be a constant independent of m.
The similarity of the condition in the lemma to that in Lemma 1 of Berman

[1] is apparent.
The proof is in some respects similar to the proof of the central limit theorem

in the same circumstances (Rosenblatt [9]).
Let Wy, Vi, Wy, -+, Wa, V, be the maxima of successive groups of the X,

of size p. and ¢, alternately.
Then Z, = maxi<i<m (W3, V:), and it follows that

(18) PlZ, = ¢] = PN«(W: = ¢)Ni(Vs = c0)]
= PINA(W;: £ ¢)] — bm,
where
0 <6, = PIU(V: > ¢)]
mP[V1 > ¢
mgP[X: > ¢
mgé/t

A 1IA

1A
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Hence 6,, — 0.

Furthermore
(19) PIN(W: = ¢;)] — {PW1 = cd}” = m,
where |9,,] < mg(q), and consequently n, — 0.
We also have, since W, = max (X, -+, X,),
(20) Si— 8 = P[W1 >ecl 28
where
(21) S = 2P PIX:> ¢] < pt/t
and
(22) S, = Zlgz‘—agp PIX; > ¢, X; >‘ ct),

by the usual inequalities bounding the probability of the union of a number of
events (Feller [5], Chapter 4).

At this stage it is easy to complete the proof of Theorem 2, by showing that if
the limit exists, then £ < 1. From (18) and (19) in fact, the limit must also be
the limit of {P[W; < ¢,]}”, which by (20) and (21) is not less than the limit of
(1 — p&/t)™, which is e™.

To return to the proof of the lemma, we observe that we can restrict attention
to values of £ for which the inequalities defining c.(#) reduce to equalities,
these values forming an everywhere dense set. Then (21) is also an equality.

It now follows that P[Z; < c] tends to ¢* provided Sy/S; — 0, by using the

fact that B
(23) (1 - Sl)m = {P[Wl = Ct]}m = (1 -8 + Sz)m,

and this condition is just that given in the lemma.

We have therefore found that P[Z; < c;] converges as ¢ tends to « along the
sequence m(p + ¢). We can deal with values of » not belonging to this sequence
by using the fact that any n lies between two consecutive values of ¢, say s = i

and t = t,41, and then
(24) PlZ, < ¢) £ PlZ, = ¢ £ P[Z, £ ¢

It is not difficult to show that, since pn41/p» — 1, the outer members of this in-
equality both tend to the limit of P[Z, < ¢/, as n — .

For brevity in the statement of the next results we shall define the associated
independent process of the process {X,} to be any sequence of mutually inde-
pendent identically distributed random variables {X,} which has the same mar-
ginal distribution; i.e. , P[X, < z] = P[X, <] for all 2. Norming the maxima
by the constants a, , b means replacing Z, by a, " (Z, — by).

Lemma 2. Suppose that the distribution of the maxima of the associated inde-
pendent process, normed by the constants a, , b , converge to the distribution ®(z)
If for each & such that ®(x) > 0 there are sequences of integers {pn}, {¢n} satisfying
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MmG(gm) — 0, @n/Pm — 0 and Pry1/Pm — 1, with the property that
(25) 2275 [(p — 4) /]
AP[X: > aut + bny Xip1 > au + ba]/PIX1 > @z + ba)}— 0

as m — oo, then the distribution of the normed mazxima of {X,}, P[Z, < a.x + by)
also converges to ®(z).

Because of the monotonic character of ®(z) and P[Z, < a.xz -+ b,], we may
clearly confine our attention to values of = such that #(x) > 0. For these z it
follows from the hypothesis on the associated independent process that

P(Z, > a,x + b,] ~ —log ®(x)/n.

Then the proof of Lemma, 1 applies to the present lemma.

It follows from Lemma 2 that if an m-dependent ptocess satisfies Watson’s
condition, and the normed maxima of its associated independent process con-
verge in distribution, then the process itself has the same property.

In Lemmas 1 and 2 we have obtained sufficient conditions for convergence. In
view of Berman’s results it is obvious that these are not necessary, but to investi-
gate this aspect would equally obviously be very difficult.

We can give other conditions which ensure that Lemmas 1 and 2 are applicable.
They are, however, very strong.

It is in fact sufficient to suppose that

P[X;>c¢ X; > c]/P[X;:>c]—>0
as ¢ — 0 for each fixed 7 and j(¢ # j), and that
|P[A n B] — P(A)P(B)| < h(k)P(B)

whenever A and B are separated by k, where Y, h(k) < . This latter condition
is satisfied in the m-dependent situation. It is of course a mixing condition, of a
type considered by Ibragimov [8].

4. Acknowledgment. I am indebted to the referee for several helpful remarks,
and in particular for Reference [4].
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