OPTIMAL INVARIANT RANK TESTS FOR THE k-SAMPLE PROBLEM!
By T. K. Martues anp D. R. Truax

Unaversity of Oregon

0. Introduction. Suppose that we have k random samples of size n from popu-
lations with distribution functions Fy , F,, - - - , F; all belonging to the same class
Q of distribution functions. That is, X, Xj, - -+, X4, are independent random
variables, and X; has distribution function F, if (¢ — 1)n < ¢ < an. The
k-sample problem is to test the hypothesis that ¥y = F, = ... = F;. The
hypothesis, as well as the alternative that the distribution functions are not
identical, remains invariant under relabelling of the distribution functions, and it
is natural to ask that a test also be invariant under a relabelling of the samples.
In this paper we will consider only tests which are invariant under all permuta-
tions of the k samples.

In Section 1, one-parameter families of distributions are introduced, and the
‘locally most powerful invariant rank tests are found. These tests are all based on
a statistic of the form

(01) ,::1 J—l (Wu W)a’ii )

where the a;; are constants depending on the one-parameter family, and W;is a
random variable which is one if the 7th and the jth order statistic from the com-
bined sample both come from the same sample, and Wi = 0 otherwise. We
take Wi = 1and W = 1/k.

In Section 2 the limiting distribution of this statistic is found under the null
hypothesis, and under a sequence of alternatives in Section 3. In Section 4 the
locally best invariant rank test statistic is shown to be asymptotically equivalent
to a quadratic form in certain statistics which arise in the two-sample problem.
In Section 5 it is proved for many families of alternatives which include those of
the translation type, that the locally best invariant rank test is asymptotically
equlvalent to the test which maximizes, among all tests, the average power over
spheres in the parameter space. This optimality property is an asymptotlc
analogue of the well-known F test and seems not to have been previously  dis-
cussed. In Section 6 the general results are applied in a special case showing that
the Kruskal-Wallis test possesses the cited optimality properties.

The point of departure in the present paper is the investigation of invariant
rank tests. Previously, locally most powerful rank tests against one-sided para-
metric alternatives § > 0 have been obtained. For the two-sample problem such
tests reject the hypothesis 8 = 0 when L = Y b,Z; > constant, where {Z,} is
the rank order vector, Z; = 1, or 0, according as the 7th ordered observation is,
or is not, from the first sample, and where the b,’s are constants depending on the
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1208 T. K. MATTHES AND D. R. TRUAX

one-parameter family. Dwass [6] found the limiting distribution of certain ap-
proximating L statistics of polynomial type under a sequence of alternatives, and
conjectured the limiting distribution of the actual locally most powerful rank
statistic. Chernoff and Savage [4] derive asymptotic normality of L statistics
under alternatives as well as under the hypothesis, although their conditions
appear to be difficult to check except in special cases. In 1961 Héjek [7] obtains
asymptotic normality of L statistics under very weak conditions when the
hypothesis is true. In 1962 H4jek [8] uses elegant methods, based on the concept
of contiguity for probability distributions developed by LeCam, in order to find
the asymptotic distribution under local alternatives. Regarding the k-sample
problem, Andrews [1] investigated the asymptotic power of the Kruskal-Wallis
test and a few other non-parametric tests under local parametric alternatives,
and discussed asymptotic relative efficiency. More recently, Puri [10] has adopted
the approach of Chernoff and Savage in order to obtain the limiting distribution
of quadratic forms in L statistics involving k samples. For other papers in similar
areas, the reader is referred to [2], [3], [9], and [11].

1. Locally most powerful invariant rank tests. We suppose that X; is dis-
tributed according to a probability density f.(z; ), (&« — 1)n < % < an,where
0 is a real parameter whose range contains an open interval about the origin, and
when 6 = 0 all the densities are equal to fo(z). That is,

fi(z;0) = fo(z;0) = --- = fi(x;0) = fo(z).
In addition, 'it will be assumed that
ha(z) = (8/36) log fa(z; 6) s~
exists fora = 1,2, --- , k and that
(1.1) [RE(@)fo(z)dz < @, a=1,2,---,k.

A further regularity condition will be needed for the derivation of locally best
rank tests. We therefore will assume

(1.2) limg.o Eof |[fa(X; 0) — fo(X)1/6fo(X) — ha(X)]} = O
fora = 1,2, --- , k. Hereafter E, always denotes expectation when 8 = 0. Thus
we have the expansion
(1.3) fa(2; 0)/fo(z) = 1+ 6ha(z) + Ra(z; 0),
limgo Eof |[Ra(X; 6)/6]} = 0.

Let N = kn denote the total sample size, and let X1y, X(s), - - - , Xy denote
the order statistics of the combined sample. The main result of this section is the
following:

THEOREM 1. Assuming conditions (1.1) and (1.2), the locally most powerful
tnvariant rank test rejects the hypothesis @ = 0 when

(14) 8= (1/n) 2Vt (Wij — W)Ewp(X 5y , Xip) > constant,
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where
(1.5) o(u,0) = Do [ha(u) — A(w)]lha(v) — K(v)],
and

h(w) = (1/k) 2wt ha(u), W = 1/k.

Proor. Let Z,, be 1 or 0 according as the 4th ordered observation in the com-
bined sample is, or is not, from the ath sample. An equivalent random vector is,
of course, the vector of ranks. It is easily seen that the probability distribution of
Z = (Z,,) is given by

(1.6) p(2;0) = [(n))*/NNEITi: 2 ki 2iafu( X o) 5 0)/fo( X 0)].
Inserting (1.3) into (1.6) and expanding the product easily leads to
(1.7) p(2;0) = [(n)*/N1{1 4+ A:(2)6 + A2(2)6" + As(z;0) + o(6%)}

where

7 Ar(z) = 2700 D iz Biha(X (),
(1.8) Ag(2) = D ity Bo[ D51 2iaha( X)) 11 2obm 2i8hs( X i) ],

Ax(2;0) = D21 D imi 2iBo[Ra(X 5 5 0)].

The concept of invariance under relabelling of samples corresponds formally
to groups of transformations of the sample space and the space of distributions
onto themselves. In the present case let = be a permutation of {1, 2, --- , k}.
We are interested in the transformation of Z to Z. given by (Z+)ia = Zira . If ¢
is any invariant test we then have ¢(z) = ¢(2,) for all permutations =. The
power function of any invariant rank test is given by

(1.9) Bs(6) = 2. 6(2)p(2;0) = 2. 6(2)(1/k!) X2 p(2x;6).
In order to evaluate the power in a neighborhood of § = 0, observe that
(110) D eZwa=(k—1),5=1,2 - ,N;a=1,2, .-,k

and

(1.11) 2 i Bolha(X )] = Eo[> s ha(X:)] = 0
by (1.2). Also
(1.12) 2 i BolRa(X iy ;0)] = Bo[ > R.(X.:;0)]=0

by (1.3) and (1.11). (Here, and henceforth, we will suppress the ranges of sum-
mation, consistently letting 7 and j range from 1 to N, while «, 8, and v range from
1 to k.) It follows from (1.10) and (1.11) that

(113) Zr Al(zt) = 0;
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and for exactly the same reasons, and (1.12)

(1.14) D x As(ze 3 6) = 0 for all 6.
A little computation shows that
(1.15) (1/k1). Dox Zina2isg = Wis/ky o = B

=1 - Wy)/k(k — 1), a ## B.

For example, if X, and X (;; come from the agth sample and « = B, there are
exactly (k — 1)! permutations = such that r(a) = 7(8) = ao .
By means of (1.15) we obtain

(1.16)  (1/k1) 2ox As(ze) = i {(Wii/B) 2 Bolha( X)) ha( X )]
+ [(1 = W) /h(k — 1)] 2 axs Bolha( X )ha(X(5)]}
As in the case of (1.11)
(1.17) 2 ini Bolha(X ()ha(X ()] = 0.
Further algebraic manipulation and use of (1.17) simplifies (1.16) to
(1.18)  (1/K!1). D As(2y) =
[1/(k = 1)] Xows (Wi; = W)Ewp(X» , Xi») = In/(k — 1)ISY,

where the prime on S, will indicate that the summation in (1.4) is only for 7 5 j.
Together, (1.13), (1.14) and (1.18) show

(1/k1) 22ap(ze 50) = [(n)*/N1{1 + [n/(k — 1)IFS," + o(6)}.
Therefore, from (1.9)
(1.19)  B4(0) = [(n)*/N1] 22, ¢(2){L + [n/(k — 1)16°S." + o(6")}.

It follows from the Neyman-Pearson lemma that choosing a test which maxi-
mizes the second derivative of the power function at 8§ = 0 gives a test which is
uniformly most powerful for all  in some open interval about 8 = 0. It isclear
from (1.19) that the second derivative of the power function is maximized by
choosing ¢(z) = 1 or 0 according as S,,” is greater or less than some constant. The
proof is then completed by noting the constancy of

(1.20) 8y — 8" = [(k — 1)/kn] Xi Bole(X iy , Xo)]
= (k— 1)Eo[p(X1,X1)] < .

2. Limiting distribution under the hypothesis. In this section we show that
when 6 = 0 the limiting distribution of S, is that of a positive linear combination
of independent chi-square random variables. First we will need a lemma which isa
slight generalization of a result of Héjek ([7], Lemma 6.1).

Lemma 2.1, Let X, X,, -+, be a sequence of independent random variables,
each having the same continuous distribuion function, and let Ry; ,1 < i < N, be
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the rank of X; among X1, Xz, -+, Xy .Letl £ p < o« and ¢ be a Borel measur-
able function of k variables such that
(2'1) E{Iﬂo(Xl)X?,'.. 7Xk)'p} < 00;
Define
YN = E{‘P(Xl ,X'z; ,Xk) |RN1,RN2, yRNIc}, N = k.
Then
(2.2) limpaw E{|Yy — (X1, Xo, -+, Xo)|?} = 0.

Proor. Let Fy be the sigma-field generated by Ry: , Byz, - - -, Bywn . Clearly,
Fy C Fusi for each N. Let ., denote the smallest sigma-field containing Uy—_iFx .
Then (see [5], p. 293), {E{o(X1, X2, -+ , Xk) | Fa}, k SN £ o} isa martingale.
Also,

E{€0(X1,'X2y Tt X/c) lfflv} = E{‘P(Xl, Xz, Tty Xk) 'Rm, ,Rm}
with probability one since the conditional distribution of X, , X,, --- , X, given

the ranks of X;, X», -+ , Xy depends only on the ranks of X;, X, ,:--, X;.
Thus, {Yy; k £ N £ «} is a martingale, if we define Y, = E{p(X:, X,
<o+, X3) | Fo}. Jensen’s inequality for conditional expectations yields
E{|Y¥|"} £ E{le(X1, X2, -+, Xi)|?} which is finite by assumption. Doob’s
Theorem 4.1 (iii) applies to give limy.,. Yy= Y. exists with probability one,
andifp > 1

(2.3) limy.o E{|Yy — Y.'|?} = 0.

Also, by Theorem 4.3 of Doob, Y., = Y, with probability one. In the case p = 1,
(2.3) follows from the fact that {Y;, Y,, - -- , Y} is a martingale so that the Yy
are uniformly integrable. The proof is completed by showing ¢(X1, Xs, - -+, X&)
= Y, with probability one. That is, by showing ¢(X;, Xo, -+, X&) is Fe
measurable. Let F denote the common distribution function of the X;. Then

E{|F(X;) — Rxs/(N + 1)[}} = E{|F(X1) — Rw/(N + 1)[}}
= [D 1 E{|F(Xx) — /(N + D)[}I/N

where Xy, is the rth smallest X; among X3, X, , - -+, Xy . The right hand side
approaches zero as N — «, so that F(X,) is the mean square limit of ., measur-
able funections. It must then follow that X;, X, , - - - , X are equal almost every-
where to F. measurable functions, and hence ¢(X;, X», ---, X,) is equal
almost everywhere to an §. measurable function.

After making a change of variables in the index of summation in (1.4) by
letting ¢ — R; we can express S, as

(24) S, = (1/n)2i; (ai; — a)Eofe(X:, X;) | Rui, Rusl,

where a;; = 1, or 0 according as ¢ and j are indices corresponding to the same
sample or not. That is, if we let I(a) = {(a — 1)n + 1, - - - an}, then a;; = 1,
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or 0, according as 7 and j do or do not both belong to the same set I () for some
a. Of course, @ = 1/k. Now, define

(2.5) To = (1/n) 2 (ay; — a)e(X:, X;),
T, = (1/n) Zz‘;éj (ay — @)o(X:, X;).

Lemma 2.2. Under assumption (1.1), S, — T. approaches zero in probability
under the hypothesis as n — .
Proor. First, notice that

(2.6) Tn - Tn, = [(k - 1)/N]Zy=l ﬂo(Xi ) X%)

and this converges with probability one to (k — 1)Ew(X:, X1). Taking (1.20)
into account, it is clear that it is sufficient to prove

(2.7) limgaw Bof (S, — T.')% = 0.

It is convenient to put ¢;; = (a:; — @)/n. For the sake of notational simplicity,
the dependence of c;; on n will be suppressed. Note that

(2.8) >ici; = 2,6 =0.
Define
(2.9) Y = Eoflo(X:, X;) | Rwi, Byi} — o(Xi, Xj).
A simple calculation shows
(2.10) E{(S. — T.')%
= i€ Var (Vi) + Diwi 2wt Ciser Covo (Yiy, Yia).
By symmetry we see that Vary (Y;) is the same for all 7 # j, and
(2.11) Covo (Yij, Yu) = 4A,, p=201,2

depends only on the number of equal indices among i, j, k and I. It is easily shown
that D e O w21 €e = O(1), n — o, where the superseript (p) denotes summa-
tion over only those indices corresponding to p, and that A, = E( Yh) — 0,
p = 0,1, 2 by Lemma 2.1. Thus (2.7) holds and the lemma is established.

TrEOREM 2. Under assumption (1.1), the limiting distribution of S., when
0 = 0, is the distribution of D ee1 NaZa, Where Zy, Zs, -+ , Zy are independent
random variables each having the chi-square distribution with k — 1 degrees of free-
dom, and M, N\e, -+, N\ are the eigenvalues of T = (oap),

(2.12) oap = Covo [ha(X) — A(X), he(X) — R(X)].

Proor. By virtue of Lemma 2.2, it suffices to show that T, has the asserted
limit distribution.

We again denote by I(8) the gth block of n consecutive integers, {(8 — 1)n +
1, -+, Bn}. Then define the random variables
(2.13) UE = (1/nh) Larw ha(X:) — h(X0)),

U™ = (1/k) 251 UG
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Introduce the vector notation
(2.14) U = (U, U, -+, URY,
0% = (1/k) 25 Uﬁ(")-

The expression for 7', in (2.5) becomes
(215)  To = Zaca {[(k — 1)/k12 6 (UF)" — (1/k) Xopuy UH UL
= a5 (UR =T = 0 [T (G — T™) (U™ — T)'),

The multivariate central limit theorem asserts that US™ has a limiting mul-
tivariate normal distribution with mean vector 0, and covariance matrix =
given by (2.12). Moreover, U;™, U,™, - .., U™ are independent. As a trace of
a sample covariance matrix involving normally distributed vectors, the limiting
distribution in (2.15) is well known and easily derived. Indeed, choose an
orthogonal matrix P which diagonalizes X,

(2.16) A PP’ = A
and define
(2.17) v," = PU™, B=1,2 -,k

The ath component V%, of this vector has a limiting normal distribution with
mean zero and variance A\, under the hypothesis, and all {V'3'} are independent.
Expressed in terms of V’s, we can now represent

(2.18) Th= 2 a2 sl(Ves — Va™)?/Nd]

as the asserted linear combination of independent random variables which, in
the limit, are chi-square with k¥ — 1 degrees of freedom. This completes the proof
of Theorem 2.

3. Limiting distribution under local alternatives. In this section we investigate
the limiting distribution of S, as 6 tends to zero at a rate of n~*. Under an addi-
tional condition it will be shown that the limit distribution of S, is a weighted
sum of independent non-central chi-square random variables. The methods we
use depend crucially on the concept of contiguity for sequences of probability
distributions due to LeCam, and developed by LeCam and Hijek in [8]. In
particular, we apply LeCam’s important Lemma 4.2 of [8] to the problem at
hand. The application is somewhat along the lines of H4jek, although the al-
ternatives we consider are more general in one sense than the translation type
treated there (and less general in the sense that we do not allow the possibility
of a scale parameter). However, for the purposes of Section 5, we need a stronger
form of LeCam’s lemma, one entailing a uniformity with respect to a parameter.

We recall the definition of contiguity. Let {P, ; n = 1} and {@. ; » = 1} be
two sequences of probability measures defined on measurable spaces {X, , G, ;
n = 1}. The sequence {Q,} is said to be contiguous to {P,} if for any sets A, € G,
limpw Pr(As) = 0 implies limg.e @n(A4,) = 0. One important consequence is the
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following. Let X, and Y, be random variables in %, whose difference approaches
zero in P, probability, i.e., for each ¢ > 0,

litpaw Pu{|Xs — Yal > ¢ = 0.

Then their difference also approaches zero in @, probability.

As a preliminary we consider in Lemma 3.1 below the following situation, not
directly related to the k& sample problem. Suppose X;, X,, - - is a sequence of
independent, identically distributed random variables with density f(z; ).
Let us designate the distribution of X; , X, , --- , X, by P, when § = 0, and by
Q. when 8 = 6, = 6/n}. Put fo(z) = f(z;0), and as before,

h(z) = (8/6) log () | om0 -
Borrowing the terminology in [8], define
| Wa(00) = 220 [ (Xy 5 60)/f0H(X) — 1,
(3.1) La(60) = 2 iw1log [f( X5 6.)/fo( X0,
Ta(60) = 6a2 0= h(X.).

The reader is cautioned not to confuse W,(6,) and T,.(6) with W, and T,
previously defined. Here, the dependence of these statistics on 6, is made explicit
since 6, will not be fixed, but will vary in some finite interval which we may as well
take to be |6] < 1. It should also be kept in mind that 6, depends on 6, .

Letu(z) = (wm(x), us(x), -+, w(z)) be a vector of functions which satisfy
(3:2) Ey(ua(X)) = 0,
Vary (¢#.(X)) < =, a=12 .-,k
Denote the covariance matrix of (h(X); ui(X), -+, (X)), partitioned in the

indicated way, by

0’2 Y,
(33) i :
y X

.Of interest is the distribution of the vector

(3.4) U™ (60) = 6.2 t1u(Xy).

Lemma 3.1. Suppose o* = Eo(h(X)) < = and
(3.5) limg. oBof [fA(X5 0) — foH(X))/6/H(X) — h(X)/2)" = 0.
Then,

(i) for each 8y, {Q.(80)} s contiguous to {Pn};
(i) (U™ (6) | Q.) — N(boy, 6°'E);
(iii) Ln(60) — Ta(80) — —06'6°/2, Pu-uniformly in 6y, i.., for each ¢ > 0,
liMpaw Pa{|Ln(8) — Ta(f0) + 60°0°/2| > ¢ = 0 uniformly in [6o] < 1.

o’, 1. T are as defined by (3.3).
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Proor. In order to apply the aforementioned lemma of LeCam it is necessary
to find the limiting distribution of W,(6,), under P, . Under assumption (3.5) we
evaluate

2B (X; 0)/fd(x) — 1] = 2[f ff(2)f*(x; 0) dz — 1]
= —E{[f(X;8) — AXOVfH X))

N —60" /4.
Hence,
(3.6) EW,(6)] & —nb,’6* /4 = —b56°/4.
Furthermore,

(38.7) Varg [W.(60) — Tw(6s)]
< 48, Bl [fA(X; 6.) — fH(X)/06H(X) — h(X)/2)

and the right hand side approaches zero uniformly in 6, as n tends to infinity,
again by (3.5). The limiting distribution of T.(6) is, of course, normal with
mean zero and variance 8;¢”. From (3.6) and (3.7) we can then conclude that
the limiting distribution of W,(6,), under P, , is normal with mean —,¢°/4
and variance 8,°¢°. In addition to this result, LeCam’s lemma requires that

limy e max; <; <n Pallf(X:;60,)/fo(X:) — 1] > ] =0

for every ¢ > 0. Since f(X; ; 0,)/fo(X:),7= 1,2, --- , n are identically distrib-
uted, we need only show that f(X:; 6.)/fo(X1) — 1 in P, probability. How-
ever, (3.5) clearly shows f*(X; ; 6,)/f*(X1) — 1 in P, probability which implies
the desired result. The basic conditions of LeCam’s lemma are now met. This
lemma states, first of all, that for each 6, , {@.(8)} is contiguous to {P,} proving
part (i) of our lemma.

LeCam’s lemma states, moreover, that under these circumstances

(3.8) Woa(6s) — La.(6) — 6.°6°/4, in P,-probability.

In fact, this convergence is P,-uniform in 6, , although this stronger fact is not
required at the moment. Let ¢ be an arbitrary k-vector. It follows from the multi-
dimensional central limit theorem that £(c'U™(6,) | P,) — N(0, b°), where
b = 6,c’=c, and that L,(6) and c'U™(6,) have a limiting bivariate normal
distribution under P, . The correlation coefficient is then seen to be the same as
the correlation coefficient between T.(6) and ¢'U™(6,), namely,

p = 0/7002/ (0'20021)2)*.
In this situation, LeCam’s lemma asserts, finally
£(c'TU™(6) | Qu(80)) — N(pab, b*) = N(6:C'y, b°c’'=c).

This proves part (ii) of our lemma in view of the arbitrariness of c.
Turning to assertion (iii), note that W,(6,) — T.(6) — 0, P,-uniformly in
6 as a consequence of (3.7). The proof will be completed by establishing the
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uniformity assertion made following (3.8). This, however, follows by a closer
examination of the proof of LeCam’s lemma given in [8]. The only essential
modification needed in that proof is the easily shown result that

(3.9) 1iMnae Po{maxi < <n [FH(Xi; 0.)/fH(X:) — 1] > ¢ = 0

uniformly in |6] < 1 for each ¢ > 0.

Let us return now to the context of the k-sample problem. With a slight change
in notation we now designate the distribution of {X;; 1 I(8)} by P.s when
9 = 0, and by Q.s(6) when 6§ = 6,/n'. Since we consider only a single value of
6y in the remainder of this section, it is unnecessary to always indicate how
quantities like @.s depend on 8, . Finally, denote the distribution of the entire
sample by P, = []b-1 Pnsand Q, = J]b-1 @ns under the hypothesis and alterna-
tive respectively.

Lemma 3.2. Let {Qng} be contiguous to {Pag} for 8 = 1,2, -+, k. Then {Qn} s
contiguous to {P,}.

This lemma can be proved quite generally. For the distributions at hand, how-
ever, it suffices to define a statistic for the whole sample like W, in (3.1) and show
that it is asymptotically normal under P, with mean equal to minus one-fourth
its variance. LeCam’s lemma applies as above and yields the contiguity. We
omit the details.

Proceeding to the limiting distribution of S, under local alternatives § = 8o/n},
put ue(z) = ho(zx) — h(z),a = 1,2, -+ -, k. Lemma 3.1 will be applied to each
of the samples where in each case the vector u(z) has these components. In (2.13)
and (2.14) we may write Us™ = n> .1 u(X:). The covariance matrix of
u(X) is X given in (2.12). In addition, the vector of covariances between
u(X) and hs(X) is denoted by

(3.10) vs = Edhs(X)u(X)] = ¢® + ¢,

where 8% is the Bth column of = and ¢ = Covo(A(X) , u(X)). The main theorem
pertaining to the asymptotic distribution of S, under local alternatives (including,
of course, 6, = 0) follows.

TueoreM 3. Suppose, in addition to the assumptions of Theorem 2, that

(3.11)  limp.o Eof[f}(X; ) — £H(X)V/60fH(X) — ha(X)/2)* = O,
a=12 -,k
Then S, — T, — 0 in Q,-probability, and both have the limiting distribution of
W/
a=] Nalia

where the N\, are the eigenvalues of =, and Z,, Z», -+, Z are independent non-
central chi-square random variables with k — 1 degrees of freedom in which 8o\, is
the non-centrality parameter associated with Z, .

Proor. Lemma 3.1 (ii) shows that

(3.12) £(Us™ | @u) = N(boys, 6°F).
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Employing the same transformation P as in (2.17), it is clear from (2.18) that
the limiting distribution is the asserted linear combination of non-central chi-
square random variables. It remains only to identify the non-centrality param-
eters. Let Uy, U,, -+, Ui be independent multivariate normal vectors with
common covariance matrix 6" and mean vectors fyy: , foy2, - - , Oovi . If We
let P be as in (2.17) and define Vg as Vs = PUg, then the non-centrality param-
eter for Z, is

wa2 = Zi’;=l Ego(Vaﬂ - Va)/)‘a ’

whefe Vs is the ath component of Vs, and V. = (1/k) D f—1 Vas. But, if we
let V = (1/k) D =1 Vs,

Eoy(Vs — V) = Eo[P(Ts — 0)] = 6P[6? — (1/k) 2051671 = 6Pe®.

The last equality follows because Y s [he(z) — h(z)] = 0. If P, denotes the
ath row of P = (pas),

E”o(VaB - Va) = 00P(a)d(ﬂ) = 00)\apap
taking (2.16) into account. Finally
War = 00NaD g Do = O0Na -

It has been shown in Lemma 2.2 that S, — T, approaches zero in P,-proba-
bility. Now, Lemmas 3.1 (i) and 3.2 show that {Q.} is contiguous to {P,}.
It follows from the remark made at the beginning of this section that in this
situation S, — T, approaches zero in @, probability as well. The limiting dis-
tribution of S, under @, is therefore the same as that just found for T, . This
proves the theorem.

It should be remarked, perhaps, that although only the asymptotic equivalence
of S, and T, has been established, the asymptotic power of the tests defined in
terms of them is the same.

4. Special cases and quadratic forms in L-statistics. Until now our problem
has been phrased in quite general terms, and consideration of special cases
would be of interest at this point.

For the special case of the two-sample problem (k = 2), the covariance matrix
X is of rank one. The locally most powerful invariant rank statistic reduces to

(4.1) (1/n) 20 (Wi — W)Edh(Xw)R(X )],
where,
(4.2) h(z) = (9/36) log [fi(x; 8)/fa(x; 0)] | o=0 -

The limit distribution of (4.1) under local alternatives is that of a constant
times a non-central chi-square variable with one degree of freedom. In consider-
ing locally most powerful rank tests against one sided alternatives 6 > 0 certain
statistics, known as L-statistics, arise. These are linear combinations of Z;,
i=1,2, -+, N, where Z; is one or zero according as the 7th ordered observation
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in the combined sample is from the first or the second sample. For the two sample
problems at hand the locally best test rejects when L = n > Y Eyh(X(»)]Z:
is large [4]. It seems plausible, then, that a test based on L? would have good
power for two sided alternatives. Although, L’ and the statistic given by (4.1)
are not the same, the result stated later in this section shows that they are asymp-
totically equivalent.

In the k-sample problem for k = 2, if we set f.(x; 0) = f(x; caf), where f(x; 9)
is a given family of densities, then h.(z) = c.h(x), where h(z) is the derivative,
with respect to 8, of the logarithm of f(x; 8) at 8 = 0. Thus, h.(z) — A(z) =
(ca — €)h(x), and the covariance matrix X is again of rank one. The locally best
invariant rank test statistic S, then becomes,

(43)  Sa= (1/n) 200 (ca = €)* 2005 (W — W)Eoh(Xo)h(X )]
so that the locally best invariant test is equivalent to rejecting for large values of
(4.4) 8.* = (1/n)20; Wi — W)Eh(X»)h(X»))-

This statistic has a limiting distribution under {Q,} of a constant times a non-
central chi-square variable with ¥ — 1 degrees of freedom. Notice that this test
does not depend on ¢; , ¢z, - - -, ¢ . Again, Theorem 4 shows that (4.4) is asymp-
totically equivalent to a quadratic form in L-statistics.

Let us again put u.(z) = ha(x) — h(z). Define the L-statistics

(4.5) L = 07 Y ure Eofua(X:) | Rud, l<a,B=<k
TueoREM 4. Under the conditions of Theorem 3,
S, — 2 e s (L) — 0 in Q-probability.

We include here the case 6, = 0 so that, in particular, we have convergence to zero
in P, probability.

This theorem is a consequence of Lemma 2.1 and the contiguity of {@.} to
{P,} and its proof will be omitted.

5. Best average power. In this section we specialize the densities to be of
the form f,(z:8) = f(x; c.9), where ¢;, ¢z, - - - , ¢ are parameters. Of particular
interest is the translation case f.(z; 8) = f(x — c.8). We have seen in Section
4 that the locally best invariant rank test rejects when S., given by (4.3),
or S,*, given by (4.4), is large. According to Theorem 3, S, has the limiting dis-
tribution of \iZ where i = _, (ca — &)’¢” and Z has the non-central chi-square
distribution with & — 1 degrees of freedom and non-centrality parameter 5\ so
that the limiting power depends only on 60 (ca — €)°. This shows that as far
as power is concerned we may as well take 6, = 1 and suppose that the hypoth-
esis to be tested is ¢; = ¢; = --- = ¢ = é. In fact, there is no loss in supposing,
as we shall, that

(61) 2 ata=0.
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Suppose for the moment that = is fixed. Set X, = (X;, X;, ---, Xy) and
Y = (¢, &2, -++, ). We shall designate the joint density of the sample by
P.(X,) depending on v and 8, = n~*. Also, let T' = {v: |ly|| = r, D ca = 0}
be the r-sphere in the & — 1 space determined by (5.1). Finally, put Haar measure
onT.

The average power over I' of any test ¢ is given by

By(r) = const. [v [xcy ¢(Xn)Pry(Xa) dX, dy.

Of course, we must assume that P,,(X,) is measurable in (X,, v). According
to the generalized Neyman-Pearson lemma, 8,(r) is maximized within the class
of all tests of the same size by the test which rejects when

(5.2) Yo = [r[Pny(X.)/Puo(Xs)] dy > const.
THEOREM 5. Suppose
(5.3) lim.o Eo{[f'(X; 0) — £HX))/60H(X) — h(X)/2)* = 0.

Then the test given by (5.2) which maximizes the average power is asymptotically
equivalent to the best invariant rank test given in (1.4).

Proor. Let us put Us™ = n—*z.mﬁ) h(X;). This is not quite ULy defined
in (2.13), but U = c,Us™. An evaluation of (2.15) gives

(5.4) T, =Y (U™ — T2

- In order to prove the theorem, it suffices to show that the test in (5.2) is asymp-
totically equivalent to the test which rejects when T, is large.
Denote the logarithm of the liklihood ratio for the Sth sample by Lns(cs)
and apply Lemma 3.1 (iii) where now ¢s takes the place of 6, . One concludes

(5.5) Lag(cs) — csUs™ — —c'a’/2
P,-uniformly in [¢s| < r. Adding (5.5) over samples yields
(5.6) La(1) = 28 6Us™ — —1"a"/2
P,-uniformly in ||y|| = r, where we have set

L.(y) = Zﬂ Lng(cs) = log [Pry(Xn)/Puo(Xn)].

Since D s¢s = 0 and each U™ has a limiting distribution, (5.6) is, moreover,
equivalent to

(5.7) Zn(x) = lexp [La(v)] — cexp (y'&)| — 0

P,,-uniformly in ”T” =T, where Eﬂﬂ = Uﬂ(n) - U(n)’ & = (EM ’ $n2, ] Enk)’
and ¢ = exp (—r¢"/2).

We will prove below that it is permissible to integrate (5.7) over I'. Granting
the possibility of this for the moment, we would obtain

(5.8) I. = [vrZ.(y) dy = 0 in P,-probability.
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As a consequence,
Jrexp (La(v)]ldy — cfrexp (v'E) dy — 0 in P,-probability.

The contiguity condition (5.3) would then guarantee that the difference ap-

proaches zero in Q,-probability as well. It is well known that ¢t exp (y'&,) dvy is

an increasing function of ||&,||, and from (5.4), T, = 7’||£.|°. These observations

show that the test defined by (5.2) is asymptotically equivalent to the test which

rejects when T, is large. The theorem will be proved by establishing (5.8).
Let An,n = 1,2, --- be any sequence of sets with 4, C Xy and

lim, P,(A,) = 0.
It is claimed that
(59)  Ja,exp [La(y)] dPn = [4, Pay(Xa) dXu = 6,(4n;y) =0

uniformly in ||y|| = 1. Suppose to the contrary that there exist sequences 4,
and ¥n = (Ca1, Cn2, **+ , Cm) for which P,(A4,) — 0, ||v.]| = 1, but
(5.10) Qu(An;ya) Z €> 0.

We may suppose without loss that vy, — vo . Define W.s(c,s) for the Bth sample as
in (3.1). The evaluations (3.6) and (3.7) show that W,s(c.s) has a limiting
normal distribution under P, whose mean is equal to minus one-fourth its
variance. This being true for each sample then shows that the particular sequence
{@n(yn)} considered is contiguous to {P,}, thereby contradicting (5.10).

Fix ¢ > 0. Since &, has a limiting distribution, one can choose K so that, putting
M, = {X.: ||&] < K}, Pu(Mn) > 1 — efor all n. Then P,(A4,) — 0 implies

(5.11) Ju,na, exp (Y'E,) dP, < € Po(A4,) — 0.
Together, (5.9) and (5.11) show that
(5.12) S04, Za(x) AP, —0

uniformly in vy and {A4,} whenever P,(4,) — 0.
Let 6 > 0 be arbitrary and define the sets A.(y) = {X. : Z.(y) > 8}. Now
(5.7) states that P,(A.(y)) — 0 uniformly in y. Consequently, in view of (5.12)

ot Za() APw = [se0a000 Zn(¥) AP + [0, 000 Za(y) dPa < 28
uniformly in v, provided only = is sufficiently large. Integrating this over T gives
(5.13) Jan IndP, = v [, Za(x) dP, dy < (const.) d.

One concludes from (5.13) since & was arbitrary lim, P.{M,n (I,.> €)} = 0.
This shows that lim, P,(I, > ¢) < ebecause P,(M,) > 1 — ¢, and the fact that
e was arbitrary establishes (5.8). The proof of the theorem is now complete.
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6. Some classical tests for the k-sample problem. Here we relate the general
theory to the important Kruskal-Wallis and Mood-Brown k-sample tests. Of
course, the sample sizes are assumed to be equal in this discussion.

From Theorem 4 and remarks made in Section 4, it follows for ‘translation
type alternatives fo(x;9) = f(x — c.0) that the locally most powerful invariant
rank test is asymptotically equivalent to a test which rejects when
8. = D (Lg™)?is large, where

L™ = 07 3 iue Bolh(X:)| R}

The limiting distribution of this test statistic was shown to be ¢’xi_1(w’) where
o = EoR*(X)] and the non-certrality parameter o® = D, (ca — €)%

In the case of the logistic density f(z) = ¢ *(1 + ¢ )7, it is easily checked
that our basic assumptions (1.2) and (3.12) hold. As a matter of fact, in order to
verify (3.12) in the translation parameter case it suffices to show that (d/dz)f*(z)
is square integrable ([8], Lemma 4.3). Now, L, = 2n}[R; — (N + 1)/2)/
(N 4+ 1), where R is the average of the ranks of the observations in the Sth
sample. The test statistic S, is seen to be asymptotically equivalent to the
Kruskal-Wallis test statistic H = [12n/N(N + 1)] D_s[Bs — (N + 1)/2]° up
to a factor of o = 4. (See [1]). Therefore, it can be stated that the Kruskal-
Wallis test is asymptotically equivalent to the locally most powerful invariant
rank test, and also to the test which maximizes, among all tests, the average
power over spheres Y .(ca — €)% = 1

A similar argument can be applied to the double exponential density f(x) =
exp (—4% |z|) to prove the analogous optimal properties for the Mood-Brown
test which is based on the statistic (4/n) D_s (Ms — (n/2))% where Mg is the
number of observations from the Sth sample which exceed the median of the
combined sample.

Finally, we state that the k-sample analogue of the Fisher-Yates test is also
asymptotically equivalent to the locally best invariant rank test as well as the
test which maximizes the average power over spheres, when the alternatives are
normal. It might be remarked, however, that none of the three tests considered
is actually locally best, but only equivalent in the limit to the locally best test
specified by (1.4).
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