OPTIMUM CLASSIFICATION RULES FOR CLASSIFICATION INTO TWO
MULTIVARIATE NORMAL POPULATIONS!

By S. Das Gupra?

Columbia University and University of North Carolina

1. Introduction and summary. The problem of classifying an observation into
one of two multivariate normal populations with the same covariance matrix has
been thoroughly discussed by Anderson [1] when the populations are completely
known. Anderson and Bahadur [2] treated the case of different and known
covariance matrices and obtained the minimal complete class restricting to linear
classification rules. Wald [11], Anderson [1], and Rao [7] suggested some heuristic
classification rules based on the sample estimates of the unknown parameters of
the two normal distributions having the same covariance matrix. One of these
heuristic rules is the maximum likelihood rule (ML rule) which classifies the ob-
servation into the population II; if the maximum likelihood (likelihood maxi-
mized under the variation of the unknown parameters) obtained under the as-
sumption that the observation to be classified comes from II; is greater than the
corresponding maximum likelihood assuming that the observation comes from
I;(i # j; 4,7 = 1, 2). Sitgreaves [8], [9], and John [5] obtained the explicit forms
of the distributions of the classification statistics proposed by Anderson and Wald.
Many other papers in this line are included in the book cited in the reference [9].
Ellison [4] derived a class of admissible rules which includes the ML rule for the
problem of classification into more than two normal populations with different
and known covariance matrices. Cacoullos [3] obtained an invariant Bayes rule
and an admissible minimax rule for the problem of selecting one out of a finite
number of completely specified normal populations which is “closest” to a given
normal population whose covariance matrix is unknown.

It will be shown in this paper that the ML rule is an unbiased admissible
minimax rule when the common covariance matrix of the two normal popu-
lations is known; and, when the common covariance matrix is unknown, that the
corresponding ML rule is unbiased and is an admissible minimax rule in an in-
variant class. The loss function in each problem is assumed to be a function
(satisfying some mild restrictions) of the Mahalanobis distance between the two
populations.

2. Preliminaries. Let X be a random p X 1 vector which is distributed in the
population II; (¢ = 0, 1, 2) according to the p-variate nonsingular normal dis-
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CLASSIFICATION INTO NORMAL POPULATIONS 1175

tribution N(u;, E)(7 = 0, 1, 2). The u,’s are unknown and it is assumed that
either wp = w1, or wp = w2, and u; # u, . Let X, be an observation on X in ITp and
let %; be the sample mean vector based on a random sample of size n; from
II;(z = 1, 2); let S be the pooled unbiased estimator of . The problem is to
decide whether wo = w1, or wo = u. . It is assumed that the loss for correct
decision is zero, and the loss for deciding wy = u; incorrectly is

(2.1) Uk:A(wo, vl

where [ i8 a positive-valued bounded function defined on the positive-half of the
real line, and

(22) ki, = n.~/(n.- + 1), 1= 1, 2,
(2.3) A(wo, w) = (w0 — 8)' T (w — w);

the results proved in this paper will also hold if we assume k; = ks > 0 when
ny = Ng.

It will be enough to consider only the classification rules based on the sufficient
statistics X, X1, X2, and S (we drop S when X is known). When = is known, the
ML classification rule ([1], p. 142) is given as follows:

Decide wy = w;if d; = min (d;, d2), 7 = 1, 2, where

(2.4) d,’ = n.(l + n,-)"l(xo - i;)'E_l(xo b i,’).

When X is unknown, the corresponding ML rule is the same as above, except that
X has to be replaced by S.

3. Classification into one of two multivariate normal populations with known
and common covariance matrix. Without any loss of generality we can make a
1-1 transformation as follows:

z =7

(3.1) 2= [n/(1 4+ n)lv (% — %), i=1,2
zz3=(14m+ ’fl«z)—;‘ﬂ—l(xo + n%;, + noxe),

= being a p X p matrix which can be chosen to be a unique, triangular matrix,
and then we may consider only the rules based on z; , z,, z; .
Let

0;=EZ;, 7 = 1,2,3,
6 = (01,02)03)'

Letz = (z;, 22, Z3) and & be the class of classification rules ¢ = (¢, ¢2), where
¢:’s are measurable functions of z subject to the following restrictions:

(3.2) 0 < ¢i(z) =1, forall z(z=1,2),
$1(z) + ¢(z) =1, forall z
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¢.(z) is the probability of deciding wo = u., given z. The parameter space can be
written as
O = 06,u 06,
where
@)1 = [0 = (01, 0, 03)' 0, = 0]’
0, = [0 = (0, 0., 03)] 0, # 0]

Note that z;, z; are jointly normally distributed with mean vectors 6;, O, re-
spectively, when 6 ¢ ©, , and with mean vectors 0, 8; , respectively, when 0 ¢ O ;
the covariance matrix in each case is given by

@ 2= %]
where
(3.4) . k= [nme/(1 + n1)(1 + no)

Also z; is distributed according to N(8;, I,), and independent of z; and z, .
The risk for any rule ¢ is given by 7(0; ¢), where

(3.5) 7(0; ) = 1 (6,0:)Eglepi(2)],

when 0 0;, 7 = 1, 2.

For any A > 0, consider a prior distribution £, of 6 such that

(i) Prob (0e©;) = %,7=1,2, and

(ii) the conditional distribution of 0;, 0;, given 8¢ ©,, is G(0;; A)F(6;),
i = 1, 2, where @ is the distribution function corresponding to the uniform prob-
ability measure over the surface of the p-dimensional hypersphere with the origin
as the center and of radius A*. We shall first show that the ML rule given by ¢,
say, is the Bayes rule against £, for any A > 0. It can be shown readily that a
Bayes rule against £, is given by ¢*’, where

(3.6) 64 (z) =1, if Az, 2;A) < Ax(z1, 22 ; A)

' = 0, otherwise,
where
(3.7) Ai(z1,22;4) = [g,70,= €xp [20, (az1 — bz2)] dG(6; ; A)
(3.8) Ax(z1,22;A) = [g,70.= €xp [20;'(aze — bz1)] dG(6: ; A),
(3.9) a=31-F), b=k/2(1-F).

We shall require the following lemma in order to simplify (3.6). A proof of this
lemma can be obtained from [10].
LEmMA 3.1. Let X be a p X 1 vector and v be the uniform probability distribution
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function over the region [X: X'X = N|. Let a be a fized p X 1 vector. Then the integral
[xz exp («'X) dv(X)

is a monotonic increasing function of o « for fired X > 0.
From Lemma 3.1 it follows that the inequality in (3.6) is equivalent to

(azy — bz;) (azi — bzs) < (azz — bz1)’(aze — bz1),
or, equivalently to
(3.10) 2,7 < z7,, since a > b.

Thus the rule ¢**’ is independent of A and it can be seen that it is the same as the
ML rule ¢*. Since the relation z;'z; = 2,'z, holds in a set of Lebesgue measure
zero, it follows that ¢ is the unique (a.e.) Bayes rule against £, for any A > 0.

TeEOREM 3.1. (a) For the problem of classifying an observation into one of two
multivariate normal populations with known and common covariance matrix, the
maximum likelihood rule based on random samples of sizes ny and ns from the two
populations 1s minimax and admissible with respect to the loss function given in
Section 2.

(b) If the loss function 1 is continuous on its domain and satisfies the condition:

(3.11) limy.ol(y) =0

then the maxzimum likelihood rule is the unique minimax rule.
Proor. (a) For A > 0, let

(3.12) Q.a=100]10e0,,0/0,=4], =12
(313) @A = @LA U ®2.A .

We shall show that r(8; ¢*) takes the same value for any 6 £ ©, . To show this it
will be sufficient to prove that

(3.14) Prob [21’21 < 22’22 I 0¢ @1]
depends on 6 only through 6,6, , and observing the following relation:
Prob [2)'z1 < 252, | 0 £ ©1,4] = Prob [2:'z1 > 2,2, | 0 £ ©; 4].

To evaluate (3.14), note that there exists an orthogonal matrix C such that Cé,
has only one non-zero component which equals (8,°0;)*. Transforming z; and
z, to Cz; and Cz., respectively, it can be shown easily that (3.14) dependson 6
only through 6,6, .
The risk of a rule ¢ against the prior distribution £, of 8 is denoted by

(3.15) R(ta; ) = [or(0; ¢) dia(6).
Since ¢* is the Bayes rule against £, , we have

R(¢;¢%) = R(%a; ¢), for ¢e

< supeo 7(8;¢), for $ed.
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Since for any 0 £ Oa , R(%a ; ™) = 7(0; ™), we have
Supg.o 7(0; ¢*) = SupasoSUpe.e, 7(8; ¢*) < supg.e7(0; ¢), for any ¢ .

Hence ¢* is a minimax rule in ®. The admissibility of ¢”* follows from the fact
that ¢* is the unique (a.e.) Bayes rule.

(b) To prove this part we use the following lemma:

Lemma 3.2. Let u and v be two p X 1 random vectors with mean vectors $ and 0,
respectively, and having the identity matrix I, as the common covariance matriz.
Then, for any p X p positive definite matriz A, we have

Prob [u’Au < v'Av] < [4p-chy (A)]/[6'3- cha (A)],

where chy (A) and chy, (A) are the maximum and the minimum characteristic
roots of A.
Proor. First note that

u'Au — v'Av = 'A% — (u — §)’A(u — ) — V/Av.
Thus

[(u — 8)'A(u — 8) < 8'A8/2, v'Av < 5'A%/2] = [u’Au = v'Av].
Hence

Prob [u’Au < v'Av] < Prob [(u — 5)'A(u — 3) = §'A%/2]
+ Prob [v'Av = 3'A5/2].
Also note that
[v'Av = 5'A8/2] = [v'v = (8'5/2)(chn (A)/chy (A))],
and
[(u—38)A(u—38) = 5A5/2]=[(u —5)'(u—5) = 86 chy, (A)/2 chy (A)].

By applying the multivariate Chebyshev’s inequality we have the result.
It follows from Lemma 3.2 that

(3.16) Prob (z:'z; < 2:'2,| 0 £ ©,] — 0, as 6,0, — o,

For 6 ¢ O4 , let 7(0; ¢*) = g(A). Since ! is bounded, limae g(A) = 0. Also, by
Assumption (3.11), lima.or g(A) = 0. Since ! is continuous, it follows from above
that there exists A*, 0 < A* < o, such that

supase g(4) = g(a™¥).
Recalling that ¢* is the unique Bayes rule against £« , we have
supeco 7(0; ¢*) = supas g(4) = g(A*) = R(ka ; ¢¥),
R(tar ; $") < R(£ar ; $) < supgeo 7(0; ),

for any ¢ # ¢* (a.e.). Hence, under the additional assumption for [, the rule
¢* is the unique minimax rule in ®.
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DerFINITION. A classification rule is said to be unbiased if the probability of
correct classification is not less than % for any set of parameters.

CoROLLARY 3.1. The maximum likelthood rule is an unbiased rule for the classifi-
cation problem posed in Theorem 3.1.

Proor. Without loss of generality, we assume 6 ¢ @, , and prove the result only
for this case. Then the probability of misclassification is Eg[¢:1*(z)]. Let 6,0, = A.
Then

R(ts ;%) = UA)Bglgn*(2)].
Consider a rule ¢ such that ¢(z) = (%, 1) for all z. Since ¢* is the Bayes rule
against £5 , we have
R(ta;0") < R(ta;¢) = U(4)/2.

The result now follows.

REMARK. For n; = ng, Theorem 3.1 still holds when the loss function [ is the
same as in (2.1) except that k1 = k; = k. This can be seen easily after replacing
1(0,'0;) in (3.5) by I[(n + 1)k6,'0,/n], where n; = ns = n.

4. Classification into one of two multivariate normal populations when the
common covariance matrix is unknown. It will be enough to consider only the
class of rules based on sufficient statistics X, , %1 , X; and S. We define a class ®*
of invariant rules ¢ which satisfy the following:

(41)  ¢(x0, %1, %2, S) = ¢(Ax, + b, A%, + b, A%, + b, ASA"),

for any nonsingular matrix A and any vector b. It is clear that this classification
problem is invariant under the transformations

Xo— Ax + b,
(4.2) £, o> A% +b, =12
S — ASA'.

The following is a well-known result in matrix algebra and is stated without proof.
LemwMa 4.1. For the matrices A: 2 X p, A*: 2 X p, and positive definite matrices
B and B* of order p X p, we have

ABT'A’ = A*B* A"
if, and only if,
A = A*C, B=CB*C
for some nonsingular matriz C.
Using the above lemma and the usual technique for finding a set of maximal
invariant statistics, we have the following:

LemMma 4.2. A necessary and sufficient condition for ¢ to satisfy (4.1) s that ¢
depends on (X , %1 , X2 , S) only through

(4.3) : b= (x0— %)S7 (% — %), 4j=1,2.
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CoROLLARY 4.1. A set of maximal invariants in the parameter space, i.e., the
space of wo, w1, ¥z, X, under the transformations induced by the transformations
(4.2) 8 (Au y Au 5 Azz), wlwre

(44) A= (vo— w) T (wo—w), (5j5=12).
Since wo 18 either equal to w1, or to we , A1z = 0. Moreover,

(m—w)EZ (m—w) =4n, F wo=uwm

= Ags, ¥ w=wm
and etther Ay = 0, or A = 0. Let
(4.5) @ = (o= (Au, Ax)| An # 0, Ap = 0]

Q = [w = (Au, An)| Au = 0, Az # 0].

Then the reduced parameter space is 2 = QU Qs .
Next, we shall derive the distribution of by , by , bas . Define

zZ; = cildi(Xo — %1) — do(X0 — %2)],

z; = coldi(Xo — %1) + do(% — o)),
where
di = [n/Q +n)P, i=1,2
a = 1/2(1 — di &7,
& = 1/2(1 + did)]".
Define

Ny, = ZiIS_IZj y (1,,] = 1, 2)-

Without any loss of generality, we can consider the rules in ®* as functions of
mu , Myz , Mae only, since the transformation (by , biz , bs2) — (Mu , M1z , May) is
one-to-one. Note that z- and z» are independently normally distributed with the
same covariance matri. £. When uo = w,

82 = —c1 do(m — we),
82 = ¢ da(1 — w2),
and, when w = w2,
82, = —c di(m — w),
8z = —cydi(m — w).
The joint density of (mnu , M2, Ma2), when w £ Q; (7 = 1, 2), is given by([8]
pi(mu , Mz, Moz ; As) = B exp [—diAui(er” + ¢2')/2]
7=0 05(d"A:) [f(mar , may , mas) — (—1) 2cicma]’/ [T 4 M+
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where
B = T(J(N + 1))M[**?/
TGN — p + 2))TGWNV — p + DITG(p —1))T(3)],
g; = TG(N +2) +7)/TGp + )12/,
f(ma ,mi ,mas) = er’mas + ea’mar + (e + ') M,
M| = mumas — mis > 0,
N =mn+n, — 2.

For A > 0, consider a prior distribution £a of w as follows:

(i) Prob (w e ;) = Prob (we ) = 3.

(ii) Given weQ;, Prob (A = A/d,®) = 1, and given w £ Q;, Prob (A
= A/ds®) = 1. Note that d,* = k1, ds” = ks , where k; and k. are given in (2.2).
We shall show that the ML rule ¢* given by

é1"(mn , Mz, Ma2) =1, if m <0
= 0, otherwise,

is a Bayes rule in ®* against £, . The above form of the ML rule is obtained from
the following relations:

M = 2,'S7'z; .
= cyealna(1 + ny) " (Zo — %1)'S7(Zo — £1)
— na(1 + 72) (%0 — £:)'ST' (%0 — )],
and ¢;cz > 0. For any rule ¢ in ®*, we have
R(ta 5 ¢) = 3UA)[ [d1(mu , maz , ma)pr(may , Maz, mas 5 A/dr")
+ ¢2(may , Mag, Mag)Pa(Mar , Mas , Mag 3 A/ds")] dmay dmas dmss,
the range of integration being: M is positive definite. Thus
R(ta; ¢) = [ C Y70 hilr(mu , miz , man) (f + 2c10amaz)’
+ ¢a(mar , Mz , Mag) (f — 2crcam1z)’] dmay dmyg dmas
where
C = Bexp [-A'(er’ + ¢2)/2]U(A)/2,
hi = gi(A")/|L + M+,
f = f(mu, my, ma) > 0.

Note, that for @ > 0 and for any positive integer j, (¢ + z)° < (a — z)? if, and
only if, z < 0. Thus the minimum value of R(%s ; ¢), for ¢ in ®*, is attained at
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¢ = ¢, where
¢1(A)(mll y M1z, m22) = 1, if mi<O0
= 0, otherwise.

Thus, the ML rule ¢* is equivalent to the rule ¢*’ which is the unique(a.e.)
Bayes rule in " against £, for any A > 0. Hence ¢* is an admissible rule in
®*. For A > 0, let

Qa = [co l wed , A A/d12]
Qs =[w|we, A = A/dd).

Then
2= Unso [Q1,a0 Q4]
From the distribution of (m11 , M1z , ma2), it follows that
Prob (miz2 < 0| weRia) = Prob (mi2 > 0|weQea).

Turorem 4.1. (a) For the problem of classifying an observation into one of two
multiariate normal populations with unknown mean vectors and common covariance
matriz, the mazimum likelthood rule, based on random samples of sized n, and n.
from the two populations, respectively, is minimax and admissible rule in the class of

* rules invariant under the transformations (4.2), with respect to the loss function
gwen in Section 2.

(b) Moreover, if we assume that the loss function 1 is continuous on the positive-

half of the real line, and

limy., I(y) = 0,

then the ML rule is the unique minimax rule in that invariant class.
Proor. (a) Since ¢* is the Bayes rule in " against £, , we have

R(ts ;¢%) = R(ka5¢) < supuar(w; ¢),
for any ¢ in ®*, where r is the risk function at w for the rule ¢. Moreover,
R(ka : ¢") = r(w; 6™,
for any w in Q1,4 U Q2,4 . Thus
SuPua 7(w; %) = SuPua r(w, ¢),

for any ¢ in ®*. Thus, ¢* is a minimax rule in &*. Since ¢* is the unique Bayes
rule in ®* against £ , ¢” is also an admissible rule in o,
(b) First we shall prove that

(4.6) limaLw Prob (mis < 0 | weQ1,4) = 0.

The rest of the proof for the ‘unique minimax’ part is analogous to that given in
the proof of Part (b) of Theorem 3.1. In the following we shall assume that
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weQa. Let
=7 = 7'x,
Vi = dx(X — X,), 1=1,2
A = <St<'.
Then

Prob (mi» < 0) = Prob (y/'A7'y; < y2'A7'y,).
For fixed A, it follows from Lemma 3.2 that
Prob (yi’A7yi < y/A7'y:|A) = (4p/A)-[chy (A)/chn (A)].

Now (4.6) follows from above and Lebesgue bounded convergence theorem.

The following Corollary can be easily obtained following the method of proof of
Corollary 3.1 and from the proof of Theorem 4.1.

CoroLLARY 4.2. The ML rule for the classification problem posed in Theorem
4.1 is an unbiased rule.

REMARK 1. Theorem 4.1 also holds when n; = n, and we take k; = k, in the
definition of the loss function.

REMARK 2. The present author fails to show whether the ML rule would be a
minimax rule or not in the unrestricted class when the common covariance
matrix is unknown. A possible way to solve this problem is to find out whether
the ML rule is minimax or not in the class of rules invariant under the transforma-
tions:

X0 — TXo + b,
x; — Tx; + b, 1=1,2
S — TST/,

where b is any vector and T is a nonsingular lower-triangular matrix. One might
then appeal to the theorem of Hunt and Stein [6].

Acknowledgment. The author is thankful to Professor T. W. Anderson for
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