MINIMAX DESIGNS IN TWO DIMENSIONAL REGRESSION!
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1. Summary. This paper studies the problem of how to space observations in
regression so as to minimize the variance of an estimate of the regression function
value at an arbitrary point in the domain of observations. Necessary and suffi-
cient conditions are obtained for such a design, called a minimax design, in two
dimensional polynomial regression of the type in which the regression function
possesses a product structure. Such conditions are also obtained for minimax
designs in one dimensional trigonometric and two dimensional spherical har-
monics regression. Particular designs of the latter type are constructed.

2. Introduction. Let f1(z), - - - , fu(x) be a set of linearly independent continuous
functions defined on a bounded compact domain X and let y, denote a random
variable associated with £ whose mean is given by the regression value

(1) E(y.) = Bifi(x) + - -+ + Bufi(2).

Let ;, -- -, xz, denote a set of points in X at which observations are to be taken
of the corresponding y’s. It will be assumed that the y’s are uncorrelated random
variables with a common unknown variance o>. When X is one dimensional and
the f’s are the proper polynomials, this is the classical polynomial regression
model.

A basic problem in regression theory is that of estimating in some optimum
manner the value of (1) at an arbitrary point z in X. For a fixed set of z’s this
is usually accomplished by replacing the 8’s in (1) by their Markov estimates to
yield an estimate, which will be denoted by g. , that possesses certain optimum
properties. If this estimate is used, the design problem then becomes one of
choosing the z’s in some optimum manner. One approach to a solution, known
as the minimax solution, consists in looking for a set of 2’s that will minimize the
quantity max,.x V(§.), where V denotes the variance function. This problem
of how to space observations in regression so as to yield a minimax solution has
been studied in a number of papers [1], [2], [3], [4]. If the problem is restricted to
polynomial regression, the optimum spacing is given by some surprisingly simple
and elegant formulas. For more general regression functions, Kiefer and
Wolfowitz [5] have obtained a general criterion for minimax optimality that
seems very promising for studying other particular types of regression functions.
This paper is concerned with applying this criterion to certain two dimensional
regression problems and also to trigonometric regression in both one and two
dimensions.
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The results obtained in this paper for two, and higher, dimensional polynomial
regression generalize corresponding results for one dimensional polynomial
regression. The two dimensional results should be of value, for example, in
deciding where to take observations on a rectangular piece of land in order to
estimate in an economical but efficient manner some physical property of it
which can be expressed by means of a polynomial in two variables. The minimax
criterion that is obtained for trigonometric regression is new and quite different.
The two dimensional results should be of value, for example, to geophysicists in
helping them to decide where to take observations on the surface of the earth
so as to estimate such physical quantities as the steady state heat flow, or the
elevation, at an arbitrary point on the surface of the earth. The classical regression
functions for such problems are expansions in terms of surface spherical har-
monics.

The design problems considered in this paper assume that the regression
model (1) is correct with the value of k given in advance. No consideration is
given to the problem of determining the errors that arise from choosing the wrong
value of k or choosing the incorrect regression model. A striking feature of the
trigonometric regression results, however, is that a design which is optimum for
any particular order regression is also optimum for all lower order regressions.
Thus, it is possible to take steps to guard against choosing too small a value of &k
for this type of regression.

3. Optimality criteria. A general method for discovering a minimax solution to
the design problem described in the preceding paragraph, as given in [5], can be
expressed as follows. Let {z.}, {w.} denote a set of points in X and a corresponding
set of weights which satisfy > .7 w; = 1. A design then consists in agreeing to
take the n available observations at the p points 2y, #3, - - - , z, in the proportions
Wy, Ws, +*+,Wp,. Even though these proportions of n may not yield integer
values for the corresponding frequencies, and hence not yield a realistic design,
they will be treated as proportions of a valid design. As a result, it may happen
that a design that is optimum can only be approximated in a real life situation.
Let gi(x), -+ -, gx(z) denote an orthonormal set of functions obtained from the
f’s by the standard orthogonalization procedure with respect to those points
and weights. Thus, the ¢’s satisfy

(2) D1 ga(@)gs(m)wi = bag .

Then it is shown in [5] that the sets {xJ, {wJ will minimize the quantity
max..x V(§.) if, and only if, they make

(3) maxzelei=l ga2(x) = k

Hereafter a minimax design of this type will be called an optimum design. It
should be noted that X need not be one dimensional; in the following sections it
will usually be two dimensional.

For certain problems it is possible to find designs that satisfy a more restrictive
criterion than that given in (3). This criterion is formulated as a theorem.
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TuEOREM 1. If the sets {x3}, {w} make D &y g2(x) independent of z, the design
8 oplimum.
Proor. Assume that D e—; go’(z) = c. It then follows that

Dot DB gl (@) ws = e Py ws .

But because of (2) this equality reduces to k = ¢, and therefore the design
satisfies (3).

4. Regression in two dimensions. Criterion (3) will now be applied to certain
two dimensional regression problems. Toward this end, let fas(z, ), @ = 1, - - -, 7,
B=1,---,s, denote the functions to be used for two dimensional regression.
If 2z denotes the basic regression random variable, the regression function value
to be estimated may be expressed as

Ele(z,9)] = 2lemt 2 Canfap(z, ).

Now suppose the basic regression functions f.s(, ) can be factored as follows:
(4) ‘ ‘ Jap(z,y) = ga(x)hg(y).

Let (z;,y5),¢=1,---,1,j = 1, - - -, m, denote a rectangular set of Im points to
be selected in the z, y plane and let w;; denote the weight assigned to the point
(%i, y;). Form an orthonormal set of functions, denoted by §uo(z), @ = 1, - -+, 7,
from the g’s with respect to the {z;} and the weights {£;}, where & = D_; w;; .
Simdlarly, let Ae(y), 8 = 1, - - -, ¢, denote an orthonormal st of W with TRIpRYY
to the points {y,} and the weights {7}, where n; = >_; w;; . Thus, these functions
satisfy

(5) Dict Gal@)Gelz)E: = dap
27 ha(y)hs(yi)n; = bas .

Next, without using the factorability of f.s(z, y), form an orthonormal set of
functions with respect to the points {z;,y,;} and the weights {w,;}. If these
functions are denoted by fas(z, y), they must satisfy

(6) b1 Dt fan(i, Yidfoa(®i s Yi)Wi; = Bapdpq -

Because of assumption (4), it is easy to obtain the following optimum two
dimensional design from one dimensional optimum designs.

THEOREM 2. For two dimensional regression based on functions satisfying (4),
an optimizing set of points and weights in the domain a £ x <b,c <y < d s
gwen by the points (x;,y;), ¢=1,---,1, j=1,---,m with corresponding
weights w;; = &m; that make the orthonormal functions §a(x) and he(y) satisfy,
respectwely,

MAXs<o<p D wmt o (T) = T, MaxX,<y<a D g1 he(y) = s.

Proor. The functions fus(z;,y;) = §a(z:)hs(y;) when substituted for
fas(zi, y;) in the left side of (6) are readily seen to satisfy (6) because of (5).
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Furthermore, because of the factorability of fas(z, y), it follows that
maxz,y Z:!=l Z§=1 ffﬁ(x’ y) = max, ZZ-I gaz(x) *Maxy ZE=1 Eﬁz(?/)-

But the points and weights were chosen to make the maxima on the right equal
to r and s, respectively; consequently the maximum on the left must equal rs.
Since there are rs functions in the regression formulation, criterion (3) is satisfied.

It is clear from this proof that Theorem 2 can be generalized to yield a corre-
sponding theorem for higher dimensions.

As an illustration, consider polynomial regression in two dimensions of the
type Elz(z,y)] = ¢1 + e + ¢y + cax” + sy + ey’ + e’y + csxy’ + cox’yl
If the domain is 0 £ 2 <1, 0 £ y < 1, an optimum solution is obtained by
choosing equal weights at the nine points (z;, y,;) given by z; = 0, 1, 1 and
y; = 0, 3, 1. This follows from the fact that this weighting and spacing is known
[4] to be optimum for each variable separately. More generally, an optimum
design for two dimensional polynomials of this type is given by choosing equal
weights and the Legendre points [2] for each variable. It should be noted that a
polynomial of the type being considered here is not the traditional two dimen-
sional polynomial of fixed degree.

6. Trigonometric regression in one dimension. Consider a regression function
that is the partial sum of a Fourier series, namely,

Elys) = Ao+ D i [A cos m6 + B, sin mé].

The domain here will be chosen to be 0 < § < 2r. Now suppose that sets of
points {6;} and weights {w;} have been chosen which make these trigonometric
functions orthogonal and that corresponding normalizing coefficients a., and b,,
have been determined. Then in terms of earlier notation

(7 2 92(0) = ag 4+ D et [am® cOS® MmO + by’ sin® m4).

For this type of regression Theorem 1 is readily applied to yield the following
theorem.

THEOREM 3. A necessary and sufficient condition that a design reduce (7) to a
constant value s that the normalizing coefficients possess the values ap = 1,
m =bn=2m=1,---,r. 4 design having these coefficients is optimum not
only for regression of order r but also for all lower order regressions.

Proor. Replace cos® m8 by 1 — sin’®m@ in (7). Then the reduction of (7) to
a constant value requires that . (—am +bn) sin’mf reduce to a constant
value. Since sin’ m6 can be expressed as a polynomial of degree m in = sin’ 0,
the coeflicients of the various powers of z must vanish in this sum. This requires
that a’= b, because sin’ 76 is the only term that contains z”". Next a’_; = b2,
because sin’(r — 1)6 and sin’ 76 are the only terms contributing to 2™, and
since a,”= b,’ the contribution from sin® 7§ cancels out. This argument can be
continued to yield the result that

(8) e =bny, m=1,---,r.
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These equalities are clearly both necessary and sufficient to reduce (7) to a
constant value.

From the proof of Theorem 1 it follows that this constant value must equal the
number of functions in the orthonormal set; hence it follows from (7) and (8)
that

9) 200 0a2(0) = Domo G’ = 2r + 1.

If these same points and weights are used for a regression of order r — 1, the
same orthonormal functions will be obtained except for the omission of the last
two functions; hence it follows that the first equality in (9) will hold when r is
replaced by r — 1. Because of Theorem 1, this proves that a design of this type
which is optimum for regression of order r is also optimum for regression of
order r — 1, and hence for all lower orders. Since the right side of (9) must equal
2r — 1 for regression of order r — 1, it follows that a,’= 2. The same type of
argument requires thata,.= 2,m = 1, - - - , 7. The value a, = 1 follows from the
normalization of the constant function.

As an illustration, orthogonality considerations suggest that an optimum
design for regression of order 3 will be obtained by choosing the points 8; = 7w /4,
1=0,1, ---, 7, and choosing equal weights. Calculations will show that this
design yields the normalizing coefficients required by Theorem 3 and hence that
the design is optimum.

6. Trigonometric regression in two dimensions. The generalization to two
dimensions of the preceding results will be accomplished by means of surface
spherical harmonics. These functions possess desirable orthogonality properties
and form a natural basis for expanding a function on the surface of a sphere.
The general expansion of a function «(#6, ¢) to order r is given by

(10)  u(b,0) = 2 =0 Xm0 [Aum c0S Mg + Bop sin m@)Prm(cos 6)

where P,n(cos 0) is the associated Legendre function defined by
P, n(cos 8) = sin™ 0(d™/d cos §™)P,(cos )

and where P,(cos 6) is the Legendre polynomial of degree n in cos 6. The angles
6 and ¢ are the co-latitude and azimuth, respectively, of a point on the surface
of a unit sphere.

Now suppose that a set of points {6;, ¢;} and a corresponding set of weights
{w;} have been found that make the functions of (10) orthogonal and that
normalizing constants a,. and b... have been determined with respect to those
points and weights. If the resulting orthonormal functions are denoted by
ga(6, ¢), then

(11) 25 ga’(8,0) = 2o 2omeo [ahm cos® me + b sin’ me]Ph m(cos 6).

As in the one dimensional situation, consider the possibility of finding a design
that reduces the right side of (11) to a constant value. By Theorem 1 such a
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design will be optimum. A first necessary condition for a design of this type is
given by the following lemma.

LEMMA 1. A design that reduces (11) to a constant value must yield normalizing
constants satisfying anm = bam,n =1, r,m =1, -+, n.

Proo¥. Let z = sin® § and y = sin’ . It is well known that P%,(cos 6) is a
polynomial of degree n in z and that cos® me and sin® me are polynomials of
degree m in y. Thus, the right side of (11) is a polynomial in z and y; hence if
(11) is to reduce to a constant, the coefficients of the nonconstant terms must
vanish. Consider the terms in 2y™ and rewrite (11) in the form

(12) Daga’(6,0) = G(6,0) + D meo [arm cos’ me + bl sin’ me] Py (cos 6).

G(0, ¢) will contain no terms in z'y™. A term in z"y" will be found only in the
terms involving cos’re, or sin’re, and PZ(cos §). If cos’re is replaced by
1 — sin’re, it follows that the coefficient of z"y" will vanish if, and only if,
al, = bl . Next, the coefficient of 2"y will involve terms in PZ(cos 6) and
P?._i(cos 6) only. Since a?, = b’, the contribution from terms involving PZ2,(cos 6)
will drop out. Replacing cos’(r — 1)¢ by 1 — sin’(r — 1), it follows that the
coefficient of 2y will vanish if, and only if, a,; = b%,_; . This argument can
be continued to yield the result

(13) an=b,, m=1---,r

The type of argument used to demonstrate (13) can be employed to demonstrate
the more general result of the lemma.

For a design that reduces (11) to a constant, it follows from this lemma that
(11) will reduce to

(14) DaGa(0,0) = D oned Dm0 GnmPan(cos 6).

Additional information concerning the nature of the coefficients a%, can be
obtained by studying the orthogonality properties of the functions P,o(cos 6),
n =0,1, ---,r, which are the Legendre polynomials of degree n in cos 6. The
following lemma is needed in this development.

LemMa 2. If a set of points {6; , ¢;} and weights {w;} orthogonalize the functions
in (10), then

(15) Siwicos 6.)™ =1/2m+1), m=1,---,r—1.

Proor. The proof will be by induction. The orthogonality of Pe(cos ) =1
and Py(cos 6) = (3 cos’ § — 1)/2 verifies the formula for m = 1. Now assuming
that the formula holds for m =1, - .-, s, it will be shown that it holds for
m=s-4 1.

Write Pno(cos 8) = P,(x) for the Legendre polynomial of degree n. The
orthogonality of these polynomials is given by

(16) L Pu(z)Ps(z) dz =0, o« =B
Let a and B8 be any two unequal integers satisfying « + 8 = 2(s + 1) and let
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P.(z) be written in the form

Po(z) = D 2t ca
where [«/2] denotes the largest integer in «/2. Then (16) yields
(17) L 2™ 3 idd? ™ dx = 0.

The corresponding equation for the orthogonality of P.,(cos ) = P.(x) and
Pg,(cos ) = Pg(z) with respect to the points {6} and weights {w} is

(18) 2w 2t 2 dwf T = 0.
But since (15) is assumed to hold form =1, --- , s,
(19) Siwaim=1/@m+1) =3[H2"dr, m=1---,s.

If the sums in (17) and the corresponding sums in (18) are multiplied out and
the individual terms integrated and summed, respectively, the corresponding
individual terms will be identical because of (19), except for the highest power
term in each, namely, the one with exponent a + 8. Equating (17) and (18)
then shows that these terms must also be equal; hence since & + 8 = 2(s + 1),

> wat™ = 1/[2(s + 1) + 1].

This completes the induction step. The upper limit of m = r — 1 in (15) arises
from the fact that » — 1 is the highest power of z that can be obtained from
orthogonality considerations.

These lemmas will now be used to prove the main theorem.

TureorEM 4. A necessary and sufficient condition that a design reduce (11) to a
constant value s that the normalizing coefficients possess the values

(20) do=2n+1, dn=bi.=22n+1)(n —m)!/(n+m)!, m=0.

A design having these coefficients is optimum not only for regression of order r but
also for all lvwer order regressions.

Proor. Consider the necessity; the sufficiency will be obvious in the course of
the necessity proof. For m # 0, it follows from Lemma 1 that

(21) 1/ahm = 3(1/dnm + 1/bam) = 32 ; wicos’ me; + sin’ me;1P5m(cos 6;)
= %Z, w,'Pf.,,.(cos 0,,)

For m = 0 the normalizing coefficient is obtained directly from definition. Let
z = cos 0 and let P%,,(x), which is a polynomial of degree n in %, be expressed as

(22) Pin(z) = 23 ha”

Then (21), (22) and (15) will yield ‘

(23) 1/dnm =32 5=h;2swad = §2 5= hi/(2i+ D)yn=1,--+,r = 1.
A stagdard formula for associated Legendre functions is
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L P(z)de = 2n+ 1) (n +m)!/(n —m)l.

If both sides of (22) are multiplied by % and integrated from —1 to 1, this
formula will yield the result

@2n+ D)7 (n4+m)l/(n —m)! = 37 [hi/ (25 + 1)].

Applying this result to (23) gives (20) for all values of n except n = r. Now
consider its verification for n = r.

There is an addition formula for associated Legendre functions [6] which when
properly applied yields the identity

(24) Pro(@) + 22 nal(n —m)l/(n + m)|Pin(z) = 1.

If formula (20) is applied to (14) for each value of n < r and then formula (24)
introduced, it will be observed that

20 GanPam(2) = 2(20 + 1) 3o [(n = m) Y/ (n + m) |Phn(2)
(25) + (2n + 1)Plo(z)
=2n+4+1, n <7,
Since this holds for all n < r, (14) will reduce to

(26) > e gl(8,0) = Donth (20 4+ 1) + Do auPra(cos 6).

But if the right side is to reduce to a constant it must reduce to the value (r + 1)*
because that is the number of functions, g.(8, ¢), in (11). Since the first sum on
the right of (26) is 7*, this requires that

(27) >0 @imPin(cos 6) = 2r + 1.

From (25) this equality will be satisfied if a’,, is given by formula (20). However,
because of the nature of the polynomials P2, (cos 6), it is easily shown that there
must be a unique set of constants a,, satisfying (27) and hence that they must
be given by (20). This completes the proof.

ol
3
-
:.O
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From (27) it follows that when r is replaced by r — 1, (11) will still reduce to
a constant because its value will be the original value, namely (r + 1)% minus
the value given by (27), namely 2r + 1. Thus, a design of this type which is
optimum for regression of order 7 is also optimum for all lower order regressions.

7. Particular optimum designs. The results of the preceding section will be
applied to construct optimum designs for regression of orders 1, 2, and 3. These
regressions, given by (10), will contain 4, 9, and 16 terms, respectively.

First, consider regression of order 1, namely

E[2(0,¢)] = &1 + czcos 0 + ¢z sin 0 cos ¢ + ¢4 sin 6 sin .

Considerations of symmetry and orthogonality suggest trying the design as
shown in Figure 1. Calculations will show that the four functions here are
orthogonal on this set of points if equal weights are used, regardless of the value
of X chosen. If A is chosen to satisfy cos’\ = 3, the normalizing constants will
satisfy (20) and hence the design will be optimum.

Next, consider regression of order 2. Symmetry and orthogonality suggest the
design as shown in Figure 2. Orthogonality requirements, together with formulas
(20), required that X satisfy cos’ A = 1 and that the weights be chosen as % for
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all points for which 6 = 0, /2, = and 2 for all other points. It is relatively easy
to construct other optimum designs using more points. For example, if two angles,
A and g, are introduced, a design based on 22 points with equal weights can be
constructed.

Finally, consider regression of order 3. The usual symmetry and orthogonality
considerations led to the design based on 22 points as shown in Figure 3. Here it
will be found that it is necessary to choose A and u to satisfy sin’\ = £ and
sin’ » = & and to choose weights that are proportional to 440 for § = 0 and =,
594 for 0 = m/2, and 539 for § = \, u, # — N\, and 7 — p.

Although Theorem 4 does not give a constructive method of finding optimum
solutions, it would appear that symmetry and orthogonality considerations,
together with Theorem 4, should enable one with the help of modern computing
techniques to find optimum designs for higher order regressions.

I wish to express my appreciation to my former colleague Professor Henrici for
suggesting where I might find a formula that would yield formula (24).
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