ABSTRACTS OF PAPERS

(Abstracts of papers ﬁresented at the Western Regional meeting, Berkeley, California, July
19-21, 1965. Additional abstracts appeared in earlier issues.)

15, The estimation of the parameters of a mixture of distributions. Mir M. ALI
and A. B. M. Lurrur KaBIR, University of Western Ontario.

In this paper a general method of constructing estimators for the parameters of a mixture
of a finite number of distributions has been developed. The method is applicable to a finite
mixture of each of the following distributions: binomial, Poisson, negative binomial,
logarithmic series, geometric, exponential, normal and Weibull. The special case of a
mixture of two binomial distributions has been studied at length. To this end, two different
sets of estimators for the three parameters have been constructed. The estimators are
shown to be consistent and asymptotically normally distributed. The expressions for the
asymptotic covariance matrices are also derived explicitly. Finally, tables are prepared
furnishing the asymptotic efficiencies of the estimators.

16. Inadmissibility of the classical estimator of the multiple regression function.
A. J. BarancHik, Columbia University. (By title)

Let Z;, -+-, Z» be a sample of size n from Z = (¥, X1, -+, X,)’, a (p + 1)-dimensional
multivariate normal random variable. Writing the regression function as E(Y | X) =
a + b’X it is shown that, for p = 3, the classical estimator d 4 5’X has everywhere greater
risk (for the loss function given by C. Stein in Multiple Regression. Contributions to Prob.
and Stat., Stanford Univ. Press, 1960) than  + b’X where. (4, 6) is the maximum likelihood
estimator of (a, ), & = ¥ — [1 — ¢(l — R?)/RUP'E, 6 = [1 — c(1 — B2)/R2b, R is the
sample correlation coeﬂiclent, and0 <c<2(p —2)/(n—p+2).

17. An optimization problem in quality control. EBERHARD BAUR, Aerojet-
General Corporation.

In industry management often faces the problem to optimize quality control procedures
with respect to test expenses, discrepencies, and fixed obligations to the customer. This
paper discusses the case where the customer requires the mean values of production runs to
exceed not a given value with given significance. The producer controls with samples drawn
from the runs, and he may use fixed sample size procedures or sequential testing. Intro-
ducing the distribution function of the true means as a parameter, mathematical formu-
lations are discussed which relate sample size of the quality control procedure and dis-
crepancy. The variance of the distribution under test is assumed to be known. For the
application by sequential testing, Wald’s test for the mean of a normal population with
known variance is used. Some considerations are given to a comparison between the fixed
samiple size and the sequential procedure; this will involve several parameters as the error
of the first kind and the average sample size of the sequential test, and the fraction to accept
the null hypothesis. Knowing all the relations between sample size and discrepancy the
producer can balance the involved costs for a maximum profit.
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18. Application of the statistical decision theory to signal waveform extraction.
M. Benara and N. K. LoH, University of Waterloo.

The theory of statistical decisions is used in the extraction of the waveform of a signal
in the presence of Gaussian white noises. The manner (i.e. additive or multiplicative) in
which the noises mix with the signal is assumed to be known. An optimal computer which
makes decision according to the decision rule 3, is used to produce the optimum output of
the extraction system, thereby the average risk of extraction is minimized. Two cases are
considered: (a) For the case in which the receiver of the extraction system has memory,
the minimum risk has been found to be R*(3) = fo*(z),uy1 cli, X, v* @) ]p @) [T151 2 (s | 2:)]
T2 s |y T30 (0s* (2) | wi)1dv* (2) dudy dx, (b) when the receiver is memoryless, the
minimum risk is R*(3) = [opr@,uyx cli, X, v*(2)p @)1 p (i | 2115 2 (us | 93]
-[IIi-1p (vi* (2) | ui)1dv* (2) du dy dx, where x, y, u, z and v are defined as vector spaces of
transmitted signal, noise obscured input signal into receiver, output signal of receiver,
noise obscured input signal into computer and output (estimated) signal of computer,
respectively. As expected both R*(8) and R’*(3) decrease as the number of performance
steps n increases. For the case of the receiver having no memory, the minimum risk R'*(5)
has been found to be 2.83 and 0.353 for » = 0 and the standard deviation o of the signals
equals to 1 and 0.5 respectively. These risks fall down to approximately 6.3% for n = 30
of those for n = 0.

19. The limit of the nth power of a density. RoBERT J. BUEHLER, University of

Minnesota.
If f(-) is a bounded density of a variate 2, then the powers f2, f3, - - -, can be normalized
to define new variates z; , 23 , - - -. Typically, z, will converge to the mode (say m) of f(-),

and it is shown that if f is unimodal, f/(m) = 0, f”(m) = 0, then nt(z, — m) will tend in
distribution to a normal variate with zero mean and variance equal to —f(m)/f" (m).
Known results for gamma, beta, ¢ and F variates are examples. A more general result is
given wherein the density’ of z, has the form c.{f(z)} "k (z) where k(z) is continuous at
z = m and bounded for all z, and where the above conditions on f are weakened. A limiting
density is obtained having the form c-exp{—|y|*} where v is the order of the first non-
vanishing term in the Taylor expansion of f(z) — f(m). As an example, the (known) result
is obtained that the (an + 1)th order statistic from a sample of size (@ + 8)n + 1is asymp-
totically normal as n tends to infinity. The proofs differ from those known for special cases
in that explicit evaluation of the normalization constants ¢, is avoided by appealing to the
dominated convergence theorem. Scheffe’s theorem is then applicable.

20. Identification of state-calculable functions of finite Markov chains (pre-
liminary report). J. W. CARLYLE, University of California, Los Angeles.

If {Y.,n 2 1} is a function of a finite-state Markov chain, then (Blackwell and Koop-
mans, Ann. Math. Statist. 28 1011-1015; Gilbert, Ann. Math. Statist. 30 688-697) the proba-

bility law of {¥,} is uniquely determined by the joint distribution of ¥, , Yz, -+, Y%,
where & can be taken to be a function only of the number of states of the chain; problems
of identification (i.e., explicit construction, based only on the distribution of Y1, Y2, ---,

Y, of the class of possible underlying chains and functions) have been solved in certain
special cases (previous ref’s., and Dharmadhikari, Ann. Math. Statist. 34 1022-1041) in
which {Y,} is subject to additional hypotheses having no simple structural interpretation.
We have previously (J. Math. Anal. Appl. T 167-175; Information and Control T 385-397)
extended these results to stochastic automata; in the present paper, we study a rather
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natural structural restriction on {Y.} (suggested by analogies in automata theory) under
which unique minimal-state identifications are immediately obtained and related structural
questions are resolved.

21. Regenerative methods in systems reliability. BENjamiN EpsTEIN. Private
Consultant, Palo Alto. (By title)

A class of stochastic processes known as regenerative processes occur in diverse fields of
application. It is our purpose, in this paper, to show how a variety of systems reliability
problems can be treated simply and elegantly, when considered as appropriate regenerative
processes.

22. On certain properties of the exponential-type families. G. P. PaTiL and
RicuArD SHORROCK, Pennsylvania State University and McGill Uni-
versity.

Certain structural properties of the exponential-type families are studied under three
headings: (1) mean value function and the exponential-type families, (2) a characterization
of the gamma family, and (3) the equality of the first two Bhattacharya bounds and the
exponential-type families. Theorems that are proved include: THEOREM. Let S be a sequence
with a limit point in Q, . If p(w) is given on S, the family is determined among all exponential-
type families. THEOREM.. Let { X, : w € Q,} be an exponential-type family and let { Y, : w £ Q,}
be the family arising from the change of variable Y,, = exp[X.]. Let S be an infinite sequence
of points in arithmetic progression with common difference unity. Assume E[Y,)] exists for
somewe S N Q;and for w e S N R, assume that if E[Y,] exists, then Var(Y,) exists and
Var (Y,) = E[Y.]. Then @, = (—c, ) for some ¢ = 0 and the family {Y, : v > —c} is gamma
with mean o + c. THREOREM. If in an exponential-type family a parametric function is given
for which the first two Bhattacharya bounds are equal on some open interval in the parameter
space, the linear orbit to which the family belongs is uniquely determined.

23. Bayes risk efficiency. HErman RuBIN and J. SETHURAMAN, Michigan State
and Stanford Universities and Indian Statistical Institute and Stanford
University.

Let the statistic T'» satisfy log Pe{n}|T» — 6| > c(log n)}} ~ —3}c72(6)log n uniformly in
0, with 72(0) = o2, 72(8) < A. Consider the problem of testing 6 = 0 against 6 0. Let the
a priors distribution of 6 have a positive mass at 0 and a density function in a neighborhood
of 6 excluding 0. Let the loss function behave like |6, A > —1 in a neighborhood of 6.
Then the minimum Bayes risk test is of the form, reject if |7 > a ¢2(log n/n)}; and the
risk is of the order b(s? log n/n)*+1)/2 where a, b do not depend on n and o. Let T* be an-
other statistic satisfying the above theorem with ¢* instead of ¢. Then the Bayes risk
efficiency of T, wrt T,.* is ¢*2/c%. This efficiency is independent of the actual parameters
in the a priori distribution and the loss function provided that they are of the general
form described. This efficiency compares the overall power. Note that the significance
level corresponds to a deviation of order (log n/n)t. Probabilities of such deviations are
estimated in Rubin and Sethuraman, ‘‘Probabilities of moderate deviations.” The above
concept of Bayes risk efficiency lends itself easily to multivariate and composite hypothesis
and leads to similar conclusions. Furthermore, the initial conditions can be considerably
weakened.
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24. Probabilities of moderate deviations. HERMAN RUBIN and J. SETHURAMAN,
Michigan State and Stanford Universities and Indian Statistical Institute
and Stanford University.

Let X,, X, , - -+ be independently and identically distributed with means 0 and vanance

and E(IXIQ)< w for some ¢ > 2 + c%/o%. Then P{|X; + -+ + X.|/n > cQog n/n) } ~
2¢ n~¢'12%" (2rc2log n)~4. Itis alsoshown that the condition E’(IXl‘l) < o forall ¢ <2+ ¢?/o?
is necessary for the above result. We propose to call a deviation of the order of (log n/n)?,
as in the above as a moderate deviation. Similar moderate deviation results have been
obtained for U-statistics and the Kolmogorov-Smirnov statistic. The latter result may be
stated as (1/log n)P{sup,|F.(z) — F(z)| > c(log n/n)}} — —2c2. Finally, a transformation
theorem is valid for the calculus of the probability of moderate deviations: Let f(a, 8)
have continuous second order derivatives at (0, 0). Let P{|aX, + bY.| > c(og n/n)}} ~
0 = 20 (2rc? log n)~tn—<"2" for a = (3f/de) (0,0), b = (3f/38) (0, 0). Then P{|f(Xn, ¥n) —
7(0,0)| > c(log n/n)}} ~ 6, . In fact the above transformation result is valid for deviations
of all orders that are o(n~1/3). Probabilities of moderate deviations find immediate appli-
cations in Bayesian risk efficiencies for parametric and non-parametric problems. See
Rubin and Sethuraman, ‘‘Bayes risk efficiency.”

2b6. A characterization of the multivariate normal distribution. V. SESHADRI,
McGill University.

The following theorem is established: Let X and Y be two (n X 1) independent random
vectors with continuous probability density functions f(z) and g(y) with the functions non-
vanishing at the origin. If the conditional distribution of X given (X + Y) is multivariate
normal with mean C(X + Y) and covariance matriz V, where V-1C is symmeiric and the
characteristic roots of C lie in the open interval (0, 1), then both X and Y are multivariate
normal.

A0
Conversely if (X, Y') has a multivariate normal distribution with covariance matriz( 0 B)

then the matriz of partial regression coefficients A(A + B)~! in the conditional distribution
of X given (X + Y), has its characteristic roots in the open unit interval.

26. Minimax prediction of random probabilities. MoRrRls SkIBINsKY, Brook-
haven National Laboratory.

The conditional distributions of a random variable given another random variable
(independent of the underlying probability measure) are known. Only the first random
variable is observable. The second, while not observable, is a priori known to have a distri-
bution which is a member of some specified class. It is desired to predict the second random
variable from an observation on the corresponding value of the first. A structure is defined
to provide a general framework for the problem and a foundation for more explicit develop-
ment of the prediction of random probabilities. Under what conditions will a predictor of
the second random variable, which is optimal in a minimax sense when the specified class
of distributions is unrestricted, continue to be optimal in the same way relative to a re-
stricted class of distributions? Game theoretic results yield sufficient conditions for an
answer to this question. These are applied to prediction of random probabilities (distributed
so that they have at least 1 — a chance to fall in an interval [a, b]), from an observable
which, given the probability, is conditionally equal to 1 with this probability and otherwise
0. Minimax predictors are classified under conditions of negative answer to the above
question. Application of results to empirical Bayes situations is considered.
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27. On an asymptotic approximation to the non-central {-distribution. WiLLiam
M. Stone and Bonita Prura, Oregon State University and University
of California, San Diego.

The non-central ¢-distribution continues to be of interest. The Locks, Alexander, Byars
table (Rocketdyne, Canoga Park, Calif.) affords broader coverage of the three parameters,
plus other advantages. Amos [Biometrika 61 (1964) 451-458] has achieved a representation
in terms of classical hypergeometric functions which is also well-adapted for computation.
Resnikoff [Ann. Math. Statist. 33 (1962) 580-586] has published tables to facilitate the use
of the well-known Johnson-Welch tables to obtain percentage points. The present paper is
concerned with the development of an asymptotic relationship between Pr(t > ¢ | f, 8)
and the error function, after the procedure introduced by Hotelling-Fraenkel [Ann. Math.
Statist. 9 (1938) 87-96] and placed on a firm foundation by Wasow (Proc. Sym. Appl. Math.,
7 (1956), McGraw-Hill]. The method seems to be well adapted for the unusually large values
of f, the number of degrees of freedom, which appear in various branches of information
theory.

(Abstracts of papers to be presented at the Annual meeting, Philadelphia, Pennsylvania,
September 8-11, 1965. Additional abstracts appeared in the June and August issues.)

9. Probability distributions for subgraphs of random graphs. C. T. ABRAHAM
and S. P. GuosH, Thomas J. Watson Research Center, IBM.

Directed and undirected random graphs with n vertices and N edges have been defined.
The probabilities that a random graph will have various types of component subgraphs
with and without the deletion of edges have been computed. These probabilities have been
used to develop tests of hypotheses concerning the extent of agreement between schemes of
associations for the same word list.

10. Bayes and minimax procedures for estimating mean of a population with
two-stage sampling. Om P. AcGarwAL, Iowa State University.

Simple random sampling and stratified sampling procedures were considered from Bayes
and minimax point of view by the author [Om P. Aggarwal. Bayes and minimax procedures
in sampling from finite and infinite populations—I. Ann. Math. Statist. 30 (1959) 206-218],
taking the loss in estimating the mean as a linear function of the squared error of the esti-
mator and the cost of observations. Two-stage sampling procedure is discussed in this paper
using the same approach. It is shown that in the case of equal-sized clusters (first-stage
units) and equal subsampling from each cluster, the simple mean of the cluster means
(i.e., the overall sample mean) is a minimax estimator. The results are obtained in the case
of both infinite and finite populations. Extension is made to the case of unequal-sized
clusters when the clusters are chosen with equal probability. It is shown that the overall
sample mean is not ordinarily a minimax estimator. However, if the cost of sampling a
cluster is inversely proportional to the variance within an infinite-sized cluster, it is proved
that the simple mean of the cluster means (not the overall mean) is a minimax estimator.

11. Correlation between ranks and variate-values in a singly truncated bi-
variate normal distribution. M. A. Aitrin and M. W. Humg, Virginia
Polytechnic Institute.

The correlation between ranks and variate-values is found for the two marginal distri-
butions of the truncated bivariate normal distribution. This correlation is quite insensitive
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to both the underlying correlation p and the severity of truncation, and in practice does
not fall below 0.96, suggesting that variate-values can be replaced by ranks in computations
with little loss of efficiency.

12. The exact evaluation of the operating characteristic function and the average
sample number of truncated sequential tests. LEo A. Aroian, TRW, Inc.

Methods are given for the exact evaluation of the operating characteristics function,
OC, and the average sample number, ASN, for any truncated sequential test, once the
test region is known. The sequential test is interpreted as a random walk, which is a Markov
chain. The probability of remaining in the test region is determined by the test statistic
and its statistical distribution. The exact evaluation of the OC and ASN follows, based on
these principles. The method is basic for the exact determinations of the OC and ASN,
replacing difficult mathematical techniques by a simple procedure combined with high
speed computing equipment. It is general and may be used iteratively, over changing test
regions, to establish an optimum region, depending on the definition of optimality. As
examples, the truncated sequential for p; vs. po in the binomial case, and the mean with
known variance in the normal case are discussed.

13. Admissible minimax estimation of the mean of a multivariate normal
random variable. A. J. BArancuik, Columbia University.

Let X be a p-variate (p = 3) normal random variable with unknown mean vector 6 and
known covariance matrix 7, the p X p identity matrix. With sum-of-squares loss X, al-
though minimax, is not an admissible estimator of 6. In this paper a family of formal Bayes
estimators (estimators which minimize the Bayes risk with respect toinfinite prior measures)
is obtained, each member of which is minimax. X, for example, is formal Bayes with respect
to the prior measure which distributes 6 uniformly over p-dimensional space. For the prior
measure with differential element (D_76:2)@»/2]Jfd6;, the resulting formal Bayes esti-
mator is shown to be both admissible and minimax.

14. Some distribution-free statistics and their application to the selection
problem. NoeL S. BARTLETT and ZAKKULA GOVINDARAJULU, Standard
Oil Company and Case Institute of Technology.

Let X;; j=1,---,n;;7 =1, ---, k) be independent random samples drawn from
populations m; having continuous cumulative distribution functions (cdfs) F(z — 6.),
(i=1,---, k). Alsolet R (X;,;) denote the rank of X, ;in the pooled D n; = N observations.
Let H be any cdf, and let Z(j), (j = 1, ---,N) denote the jth order statistic of a random
sample of size N from H. Define the non- randomlzed rank-sum statistics by SN J(H) =
ni l}:E(Z(R (X;,;)) | H) and the randomized rank-sum statistics by TN i(H) =

ni' 2 Z(R(X:,;)), G=1,---, k). It isshown that when 6; = 6, = --- = 6, Tya(H), -,
CIN (H) are jointly dlstrlbuted as the means of independent sa,mples of sizes ny, «--, N
drawn from populations having a common cdf H, which generalizes a result of Bell and
Doksum [Ann. Math. Statist. 36 (1965) 203-214]. It is also shown that, under very general
conditions, the S;’v,,-(H ) and the T.:(H) have the same asymptotic joint distribution,
namely a k-variate normal distribution, which broadens the results of several authors.
Let 6(1) < 057 < --- < 6 denote the ordered values of the location parameter, and define
that population as best which has 6 . Gupta [Ph.D. Thesis (1956) Mimeo Series 150,
Univ. of N. Carolina] and others have discussed a procedure, based on sample means, for
selecting a subset containing the best population. It is shown, in the present paper, that
two similar procedures for the subset selection problem, based on the SN :(H) and the
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T;'v,; (H), are asymptotically equally efficient, and the asymptotic efficiency of either relative
to the means procedure is equal to that of the same statistics in the hypothesis testing
problem, which is known to be good. The procedure based on the Ty.: (H) has an advantage
for finite sample sizes.

16. A secondarily Bayes approach to the two-means problem. Morron B.
BrowN, Princeton University.

The problem considered is that of discriminating between the means of two Gaussian
populations with unknown variances on the basis of two independent samples. Previous
solutions have been obtained by fiducial, Bayesian, and asymptotic confidence techniques;
none has received widespread acceptance. The approach used here is a secondarily Bayes
technique in which a prior distribution is assumed for the ratio of the variances and the
distribution of the test statistic is taken conditionally on the ratio of the observed sample
variances; it is not necessary to assume a prior distribution for the unknown means in this
approach, hence the term, secondarily Bayes. Several different priors, reflecting different
amounts of prior information, are used and their effect shown.

16. Maximum likelihood estimation of two stochastically ordered distributions.
H. D. Brunk, W. E. Franck, D. L. Hanson, and R. V. Hoga, University
of Missouri, University of Missouri, University of Missouri, and University
of Iowa.

The maximum likelihood estimates ¥ and @ of two independent distribution functions
F and G are found, subject to the restrictions that F(z) = G(z) for all z and that F and
@ are of the discrete type. Random samples z,, «-+, Zn and g1, -+, Yo are taken from
the respective distributions and these m + n values are ordered according to magnitude,
with z’s before y’s in cases of equality. These n + m values are divided into a number of
blocks as follows. The first block ends after the y value that is determined so that the
ratio of the number #n; of y values in that block to the number m; of z values there is a
maximum. If this block does not include all n + m values, then (excluding the first block)
the second block and the numbers 7, and m; are determined in a similar manner. This can
be continued to construct a (possible) third block, and so on. Let h; (2;) and ks (y;) be the
respective frequencies of z; and y; . If z; and y; are in the kth block, say, then the maximum
likelihood estimates assign the following probabilities to z; and y; : Fx:) = hy(m:) (mi 4+ nz)/
me(m + n) and §(y;) = ha(y;) (me + ni)/ni(m + n). These assignments provide consistent
estimators of F and G.

17. On a class of admissible partitions. TurorHILOS CacouLLos, University of
Minnesota and New York University.

Consider a k-variate (k = 2) spherical normal distribution (unit variance in any di-
rection) centered at the origin. Let w denote an arbitrary but fixed system of ¥ + 1 convex
polyhedral k-dimensional cones w; , - -+, wi1 With the same vertex which form a partition
of the k-space. It is shown that given a probability vector o = (a1, -, &k41), there exists
a unique translation 7(w) = (r(w), -+, 7 (wk41)) of the system « such that the probability
content of 7(w;) under the normal distribution is equal toa; ,% = 1, - -+, k + 1. Also, given
a probability vector @ and a translation 7 () of w there exists a unique normal distribution
under which the probability of 7 (w;) is @; . It is noted that the family of all translations
of w looked upon as partitions of the sample space corresponding to an observation X from
a spherical normal distribution with mean p defines a class of admissible partitions in the
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k + 1-decision problem of locating p into one of the k + 1 cones w, ,- - -, w41 [see the author’s
paper, ‘“‘Comparing Mahalanobis Distances,” Sankhyad ser. A 2T, (to appear)].

18. On the moments of some one-sided stopping rules. Y. S. CHow, Purdue
University.

Let z, be a sequence of random variables with E|z.| < « for n = 1, and F. be the Borel
field generated by z,, « -+, . and Fo = {p, @}. Put S, = Stxi, 80=0,m = E@n| Fnu
and T, = Z{' m; . Assume that lim.. T»/n = p uniformly for some 0 < u < . For 0 <
¢ < »vand0 = p < 1, define s = first n = 1 such that S, = cn?. TaeEorEM 1. If E([(zs —
M) *]% | Faoa) S K < » for somea > 1, then Es < « andlim... Es/(cEs?) = 1/u. THEOREM
2.If Ex2 < o and E((xn — My)? | Fuor) £ K < o, then Es? <  and lim... Es?/(c?Es??) =
1/u?. When p = 0, Theorems 1 and 2 reduce to the elementary renewal theorem for the first and
second moments respectively.

19. Estimation of non-unique quantiles. DoriaN FeErpmanNn and Howarp G.
TuckER, Michigan State University and University of California, River-
side.

If F is a distribution function and 0 < p < 1, then a pth quantile z, is defined to be a
number such that F(z, — 0) < p < F(z, + 0). The general problem under consideration
is to estimate particular pth quantiles when z, is not unique (i.e., F (z) = p over an interval
of positive length), and in particular the smallest pth quantile. If {X.} is a sequence of
independent observations on F, the following results are obtained. The sample pth quantile
crosses over the pth quantile interval infinitely often with probability one. If p = % and
if F is continuous and symmetric about a median, then the sample median of the n(n + 1)/2
random variables {(X; + X;)/2,1 £ i £ j £ n} converges not only in probability but
with probability one to the center median. If the symmetry condition is relaxed, it is shown
that the sample median of this set of averages of pairs need not converge, and even if it
did converge it is possible for it to converge to a number which is not a median of F. For
the problem of estimating the smallest pth quantile in the general case of arbitrary p and
arbitrary continuous F, conditions are obtained for weak and strong consistency of suitably
chosen order statistics.

20. The application of functions of finite-state Markov chains to communication
channels with memory (preliminary report). BRucE D. FRITCHMAN,
Philco Corporation.

A function of a finite-state Markov Chain is considered as a binary communication
channel. Several useful distributions are derived including the error-free and error cluster
distributions. It is shown that for a stationary N-state chain, with k-error free states and
(N — k) error states, the error free run distribution is the sum of at most k-exponentials,
and the error cluster distribution is the sum of at most (N — %)-exponentials. The problem
of estimating transition probabilities is considered and experimental results presented.
Moreover, block coding and interlacing techniques are evaluated on the functional Markov
channel. Here it is shown that for stationary, recurrent, aperiodic chains the effect of inter-
lacing, in the limit, is to cause the channel to appear as binary symmetric channel (BSC)
to the decoder.
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21. Estimation of the Cauchy location and gamma scale. J. K. GHosH and
RasnDER SinegH, University of Illinois.

We consider two separate problems. In the first we look for an unbiased estimate of 8 in
f#(x) = =71 4 (& — 60)2]72. We show (Theorem 1) that there exists no unbiased estimate
with finite variance. The proof uses the Hilbert space representation of estimators, first
used by Barankin and Stein. We are not able to settle the existence of an unbiased estimate
with infinite variance but we show (Theorem 2) that completeness is incompatible with
the existence of an unbiased estimator. Partial results about completeness are given
(Theorem 3). In the second problem we consider estimation of A (not A~! as is usually done)
in f2(x) = \*/T'(n)] exp =71, We show (Theorem 4) for n < 1 there does not exist an
unbiased estimate and for n = 2 there does not exist one with finite variance; the proof is
similar to that of Theorem 2. For n > 2, (n — 1)/X is the best unbiased estimate. However,
it is inadmissible compared with (n — 2)/z with squared error loss. We show that the latter
estimate is admissible (Theorem 5).

22. Pseudo-estimates versus pseudo-inverses for singular sample covariance
matrices. THomAs J. HARLEY, JR., Philco Corporation.

In applying statistical classification procedures to populations with multivariate normal
probability density functions it is necessary to compute the inverse of the covariance
matrix for each class. When the population parameters are not known, it is usual to estimate
them for each class from the distribution of a sample of finite size. However, in many circum-
stances, because of the nature of the specific problem, the size of the sample available is
not greater than the number of random variables) Under these conditions the sample
covariance matrix will be singular. A geometrical interpretation of the singularity leads
to the conclusion that the Moore Penrose pseudo-inverse should not be applied in these

" circumstances. A novel procedure is presented for computing a nonsingular pseudoestimate,
V, of the covariance matrix by diluting the sample matrix, S: V(f) = fS + 1 — f) (Trace
S/n) I. The dilution procedure reduces the eccentricity of the equiprobability contours of
the estimated distribution. The pseudoestimate has worked effectively for the author in
dealing with singular conditions.

23. Non-preemptive priorities in machine interference. VincEnT Hobpason,
Florida State University.

We consider a machine interference model which is the analog of the priority queueing
model of Kesten and Runnenburg [Proc. Akad. Wet. Amst. A, 60 (1957), 312-336]. We suppose
that one repairman is assigned to maintain % batteries of machines with m; machines in the
ith battery. The repairman can only repair one machine at a time and the sequence of
repair is governed by a non-preemptive priority discipline such that the repair of a machine
is never interrupted by the breakdown of a machine of higher priority but on the completion
of each repair, the repairman will next repair a machine from the highest priority battery
not having all machines working. All working times and all repair times are mutually
independent. For the ¢th battery, working times are exponentially distributed with mean
1/X; and repair times have a general distribution S;(¢). Multivariate binomial moments of
the number of machines working in each battery in the steady state immediately after a
repair is completed, are found to satisfy a system of difference equations. This system of
equations is solved. We note that there is an inversion formula for deriving probabilities
from binomial moments.
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24. A statistical design with a bounded statistic. Epmunp H. INSELMANN,
Pitman-Dunn Research Laboratories.

A statistical design is suggested for solving the life testing problem of computers. The
test consists of choosing a statistic for terminating the test. This statistic is the total
accumulation run time of the computer. The assumption is made that the distribution
between times between breakdowns is exponential and the test statistic for this design is
the number of breakdowns of the computer. It is shown that this test has the property that
it is the uniformly most powerful test for null hypotheses and their respective alternatives
given in Lehmann’s book, Testing Statistical Hypotheses (page 125).

25. On one-sample nonparametric test for the location parameter (preliminary
report). M. V. JosHI and Z. GOVINDARAJULU RAMACHANDRAMURTY, Case
Institute of Technology.

For a random variable X the lower limit 6 is defined by the relation: 6 =
lub{6; : P[X = 6;] = 0}. On the basis of the smallest order statistic X; y of the random
sample X, , -+, Xy, one-sample nonparametric tests of the location hypothesis Ho : 6 = 0
against Hy : 6 > 0 are derived. The class F)¢ of the distribution functions is defined by:
Fy={F:F(x) =0whenz < 0and F (z)/2* — c as z — 0}. It is shown that for distribution
functions of this class the asymptotic size —a critical regions for testing the above men-
tioned location hypothesis are given by: N z; y > (— (1/¢)ln a)/>. Asymptotic approxi-
mations to the powers of these critical regions are derived. Some distributions of the class
F,¢ are discussed. The chi-distribution (1 degree of freedom), defined by the density (2/7)}
exp (—z?/2) when z > 0 and zero otherwise, belongs to the class 3:(12/:) . For chi-distribution
(1 df) the asymptotic powers obtained from the general theory are compared with the
exact powers. Approximation is found to be reasonably good. For this distribution, exact
size —a critical regions are derived when N = 2(1)10(5)20 and whena = .01, .025, .05 and .1.

26. A test for goodness-'of~ﬁt based on discriminatory information. B. K. KaLg,
Towa State University.

Let ui , u2 , -+, ua be the order statistic of a random sample of size n from a continuous
cdf F. Let F, be the empirical df. Define I (F, F.) = (n + 1)‘12?:1’ log{[F (u;) — F (u;_1)]
(n + 1)} with up = — %, unyy = +. Then I (F, F.) is the discriminatory information (in

the sense of Kullback) provided by F. against F. Obtaining moment generating function
of I(F, F.) and exploiting the distribution theory of the U statistic, it is shown that the
asymptotic distribution of I(F, F,) is normal with mean r — }(n + 1) and vari-
ance [2/(n + 1)](#2/6 — 1) — (n + 1)~2 where 7 is Euler’s constant. For testing Hy : F = F, ,
a test is proposed on the basis of the statistic I (Fo, F.). The performance of this test is
compared with x2-test, Kolmogorov’s test and its modifications, by considering 15 random
samples of size 50 each, five being from normal, five exponential and five from Laplace.

27. The log-0-Poisson distribution. S. K. Karri1, Florida State University.

A number of discrete distributions have been proposed to describe populations that
are labelled as being ““contagious.”” In his M.S. Thesis, Some Families of Contagious Distri-
butions, Iowa State University (1958), the author generated a number of distributions,
approximately 40 in number, following the compounding and generalizing processes under-
lying the proposed distributions and compared them using skewness and kurtosis. It was
observed that one distribution, which is referred to here as Log-0-Poisson, has more flexi-
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bility than all of these distributions. Martin, D. C. and Katti, S. K. collected 35 sets of
empirical distributions from the journals such as Biometrics, Biometrika and Journal of
Entomology and published maximum likelihood fits of Poisson, Poisson with Zeros, Neyman
Type A, Negative Binomial and Poisson Binomial in Biometrics, March (1965). The Log-0-
Poisson has now been fitted to these sets and it is observed that the fits of Log-0-Poisson
are comparable with the best of these fits. The Log-0-Poisson distribution is obtained by
adding zeros to the logarithmic distribution and then generalizing with Poisson. Its proba-
bility generating function is given by g(z) = 1 — p1log(ge — p2 exp[A (z — 1)]) where = 0,
p2 = 0, ¢ = 1 + p; and p; is such that the probability of the zero count lies in [0, 1].

28. Replicated (or interpenetrating) samples of unequal sizes. J. C. Koop,
North Carolina State University.

We consider k sets of independent replicated or interpenetrating samples each containing
m; (i = 1,2, ---, k) first stage units which are selected with equal probabilities and without
replacement after each draw from a finite universe of N. For the sake of generality, the
sample design beyond this stage is not defined, except that in each unit the structure of
the sample thereafter is the same. In all, there are ki = > %m; first stage units, where
i is an integer. Let ¥, be the variance of the estimator based on the & unbiased estimates
of the universe total for a given characteristic, each weighted by the reciprocal of its true
variance. Alternatively consider k sets of independent replicated samples each of size
drawn in a similar way, and let V., be the variance of the estimator for the same character-
istic based on the mean of the k estimates, each based on equal sized first stage samples.
Then it is shown that V./V, = (1/km) (1 — fa)zlf[mi/(l — fia)] > 1, where f = m/N,
fi=miy/N @G=1,2, -+, k) and a = 82/(8% 4+ E(u)) in which 8? is the true between first
stage unit variance for the total value of the characteristic in a unit, and E (u) is the vari-
ance beyond the first stage. Thus surprisingly, replicated samples of unequal sizes are
more efficient than those with equal sizes. The practical implications of this result in sample
survey work are far reaching.

29. Split subsamples vs. independent replicated samples of equivalent size.
J. C. Koop, North Carolina State University. (By title).

The paper examines the precision of the mean of %k subsample means, each based on
samples of size m, obtained by randomly splitting a sample of size mk = n < N, drawn
without replacement and with equal probabilities at each draw from a finite universe of
N elements. If S is the universe variance of the characteristic of interest, it is demon-
strated that the variance of the mean based on split samples is augmented by (S2/m)
1 = m/n)[1 — (k — 1)/ (Cw" — 1)]. This extra variance is due to splitting the initial sample.
Further it is shown that the variance of the mean of k means, based on independent repli-
cated samples, each of size m drawn in a similar way, is always less than that of the mean
based on split samples, excepting cases where n = N — land k = (N — 1)/2is an integer,
when the two variances will be equal. For infinite populations the relative efficiency of split
samples is always lower. Clearly the practice of splitting samples, often resorted to for
various purposes, suffers from these theoretical disadvantages.

30. Some parametric empirical Bayes techniques. R. G. Krutcukorr and J. R.
RuTHERFORD, Virginia Polytechnic Institute.

In the parametric empirical Bayes situation there is a random variable A with unknown
distribution G(A), and a random variable X with a known family of conditional distribution
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functions F (X | A). We assume that X is a vector of £ = 1 iid random variables with a
known sufficient statistic 7(X). For the class of exponential and range dependent con-
tinuous density functions f(¢ | A), we find general formulations of the Bayes decision fune-
tion which are amenable to empirical Bayes techniques. We then demonstrate that these
techniques provide asymptotically optimal decision functions in both hypothesis testing
and estimation problems. .

31. On a generalized goal in fixed-sample ranking and selection problems
(preliminary report). DEsu M. MAHAMUNULU, University of Minnesota.

Consider ¥ = 2 populations =; on the real line with ¢df F(x | 6;) (: = 1, ---, k), where
0, ¢ ©. Let 63; < --+- < 0 be the unknown ordered 6-values and suppose 6k—¢) < Ox—¢41) -
An experimenter’s goal is to select a subset of size s(< k) which contains at least ¢ of the
t best populations (those with largest 6-values). The experimenter specifies two positive
constants d* and P* where { (’:)“E;g; G (¢H) < P* < 1 and he desires to have a pro-
cedure R such that P(CS | R) = P* whenever d(0(k—¢41], Ox—¢;) = d*; here CS denotes
correct selection and d-function is an appropriate distance measure. A procedure R, based
on real-valued statistics 7'; , computed from a random sample of sizen (Z =1, ---, k), is
proposed; it states that the subset of populations, which gave the s largest T-values, is to
be selected. The problem is the determination of the common sample size n, so as meet the
above probability requirement. It has been solved by assuming that the resulting distri-
butions G.(- | ) of T is an absolutely continuous and stochastically increasing family,
when indexed by 6. Some properties of the procedure R, are considered. These results
generalize the earlier results of the author [Ann. Math. Statist. 36 (1965) 728, abstract %7].
Some related problems are considered.

32. The integral of an invariant unimodal function over an invariant convex set
—an inequality and applications. Govinp S. MubpHOLKAR, University of
Rochester.

In this paper we have obtained an extension of an inequality due to T. W. Anderson
[Proc. Amer. Math. Soc. 6 170-176]. Anderson proved that, for0 £ k < 1, [sf (z + ky)dz =
Jef(x + y)dz, if E is a convex set in n-space, symmetric about origin, and f(z) = 0 is a
function satisfying (i) symmetry condition: f(z) = f(—z), (ii) unimodality condition, i.e.
convexity of K, = {z | f(z) = u} for each u, and (iii) [gf(z)dz < . Now let @ = {g;} be
a group of N linear transformations of n-space onto itself preserving measure of Lebesgue
measurable sets. Let E be a convex set invariant under G, i.e. satisfying: xr e E= g; ¢ E
for each g; ¢ G. Let f(z) = 0 be a function which, in addition to Anderson’s conditions
(ii) and (iii) above, satisfies the invariance condition: f(g:z) = f(z) for each g; ¢ G. For a
set @ = {a;} of N nonnegative reals, ) a; = 1, and an n-vector y let @(y) = > a.g:y. Then
the extension of Anderson’s inequality i8 [g.iaq) f(Z)dx = [g.f (x)dz. Probabilistic appli-
cations and the problems of extending the result to infinite groups have been discussed.

33. An extension of Ferguson’s characterization of the geometric distribution.
V. K. MurtrY and V. R. Rao UppuLuri, Douglas Aircraft Company, Inc.
and Oak Ridge National Laboratory.

Ferguson has shown that if X, and X, are independent, nondegenerate and discrete
random variables, then min (X, , X,) and X; — X, are independent if, and only if, X, and
X, both have geometric distributions. We will extend this result as follows, when we have
more than two variables: DEFINITION. A random variable X is said to be degenerate at
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2 if P(X = o) = 1. Let X, , X2, ---, X, be n nondegenerate, independent, and identically
distributed discrete random variables, with P(X; = z) = f(z) # 0,2 = 0,1,2, ---. Let
Y = min(X;, X2, +--Xa) and Z = Y 1 (X; — Y). THEOREM. f(z) = (1 — 6)6%, z = 0,
1,2, ---,0 < 8 < 1ifand only if, Y and Z are independent.

34. On confidence limits for the reliability of systems. J. M. MyHRE and S. C.
SAUNDERs, Claremont Men’s College and Boeing Scientific Research Labora-
tories.

An application of the asymptotic chi-square distribution of the log-likelihood ratio is
made to obtain approximate confidence intervals for the reliability of any structure of the
class of structures which can be represented by a monotone Boolean function of Bernoulli
variates. This is whenever we have available only a number of Bernoulli trials of the ade-
quate performance or inadequate performance of the components. Some special methods
are obtained for the subclass of structures which fail if and only if a certain prescribed
number of their components fail. This generalizes the results of A. Madansky (Rand P-2401)
for series and parallel systems. Computational procedures are given and some Monte-Carlo
studies are reported to assess how accurate the confidence intervals are as a function of
the sample size. Some comparisons are made with exact results in the cases where they are

known.

35. Central confidence intervals for the minor means in large samples. NiLaN
Norris, Hunter College.

Let z; = @, , %2, - - -, Za be a set of random, positive, and independent variables with the
same distribution function, where the expectations E (z;) and E (z:?) exist and where ¢? =
E{{z; — E(z:)]?} > 0. In random samples of n the estimate of the population geometric
mean, 0, , is the sample geometric mean G = (z:%;- - -2.)'/*, and the estimate of the popu-
lation harmonic mean, 0, , is the sample harmonic mean H = [(1/n) > (1/z;)]"t. By one of
the forms of the central limit theorem (Laplace-Lyapunov theorem), under certain simple
conditions, the limiting distribution of n#(G — 6:) is normal with an arithmetic mean of 0
and a variance of 0clog ; and the limiting distribution of nt(H — 6,) is normal with an
arithmetic mean of 0 and a variance of 8,'0}.; . Let the normal deviate z = (G — 61)/o¢,
where g = (01010g5) /1t is the standard error of G; and let the normal deviatez = (H — 0:)/
oy , where g = (6s%1/,)/nt is the standard error of H. A confidence of (1 — &) is associated
with a central interval established with a given value of z, where a denotes the probability
of a Type I error. For 6; the central confidence interval is given by: G — 2[(01010g:) /0] <
8, < G + 2[ (0:1010gz) /nt], and for 8; the central confidence interval is given by : H — z[(8701/2)/

n*] < 0 < H + Z[(0220'1/x)/n§]~

36. Maxima of stationary Gaussian processes. James Pickanps IIII, Virginia
Polytechnic Institute.

Let {Xv,N = 0, £1, 2, ---} be a stationary Gaussian stochastic process, with means
zero, variances one, and covariance sequence {ry}. Let Zy = max;<r<yX . Limit properties
are obtained for Zy , as N approaches infinity. A double exponential limit law is known
to hold if the random variables X; are mutually independent, that is rv = 0, N' » 0. Berman
has shown that the same law holds in the case of dependence, provided 7y approaches zero
“‘sufficiently fast.”” Specifically sufficient conditions are that either limpy.. 7x log N = 0, or
E;’_erz < «. In the present work, it is shown however, that limy..ry = 0 is not sufficient.
A corresponding law is obtained for a separable measurable version of a continuous pa-
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rameter process. Sufficient conditions are obtained for the ‘“strong laws of large numbers,”
Zy — [2log N}t — 0, a.s., and Zy/[2 log N]t — 1, a.s. in both discrete, and continuous time.

37. A note on estimation of ratios by Quenouille’s method. J. N. IX. Rao,
Texas A & M University. (Invited)

Quenouille (Biometrika 43 353-60) has proposed a simple method of reducing bias from
O (n1) to O(n~?). Suppose R denotes an estimator based on n observations whose bias is
en~! 4+ O(n~?) where ¢ is a constant. Let the sample be divided at random into g groups
each of size m, where n = mg and let R; denote the estimator caleulated from the sample
after omitting the jth group. Then the estimator Rq = gR — [(g — 1)/g] >_R; has a bias
of order n~? at most. Durbin (Biometrika 46 477-80) has shown that, if the estimators are
ratio estimators of the form r = y/x and the regression of y on z is linear and z is normally
distributed, Ro with ¢ = 2 has asymptotically a smaller variance than R. However, the
advantages of one choice of g over another have not been investigated. In this note the
bias and the variance of Rq , for general g, to O (n=3) is derived assuming that the regression
of y on z is linear and z is normally distributed. It is shown that both the bias and the vari-
ance of Rq are in fact monotonically decreasing functions of g so that ¢ = n would be the
optimum choice.

38. The effect of truncation on the F-test for a class of PBIB designs. P. V.
Rao, University of Florida.

In an earlier paper [Ann. Inst. Statist. Math. 16 25-36] the author studied the effect of
departures from assumptions on the F-test for two associate PBIB designs with A, = 0
and A» = 1. It was found that as in the case of randomized blocks, latin squares and PBIB
designs, the F-test works reasonably well as an approximation to the randomization test.
In this paper, the behaviour of F-test is studied for the same class of PBIB designs when
the observations are assumed to have arisen from a truncated normal population. The
conclusion of this investigation is as follows: Truncation of the population alters the situ-
ation in the sense that F-test will be over-estimating the true treatment differences. Further-
more, symmetric truncation may often help improve the standard F-test as an approxi-
mation to the randomization test.

39. Regression analysis when the least-squares estimate is not asymptotically
efficient (preliminary report). HENRY R. RicHARDSON, Daniel H. Wagner,
Associates.

Consider a real, discrete parameter, vector valued process {y:} = {z. + m.}, where
Ey: = m. and the residual process {z.} is weakly stationary with a continuous positive-
definite spectral density. Suppose m;,, = 2 5u1 CodS ) , where the regression sequences are
given in analytic form by ¢{3) = 49 [T ek, @ (A), (d(s) an integer) and the vector ¢ is
to be estimated. It is well known that there are situations where the least-squares estimate
of ¢ isnot asymptotically efficient as compared with the minimal covariance Markov estimate.
The usefulness of the Markov estimate in these cases is limited, however, because it requires
detailed knowledge of the covariance structure of the residual process and is difficult to
handle numerically. We obtain an estimate, called the almost-best-linear-unbiased (ABLU)
estimate of ¢, which is asymptotically efficient when the least-squares estimate is not but,
in contrast to the Markov estimate, requires only limited knowledge of the spectral density
and is easy to compute. Further, under more stringent assumptions on {z;} (including a
strong mixing condition), it is shown that the ABLU estimate is asymptotically normal
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even in the case where the relevant values of the spectral density are not assumed to be
known but are replaced by their estimates.

40. Some further results in Bayes risk efficiency. HErMaN RuBIN and J.
SETHURAMAN, Michigan State University and Stanford University, and
Indian Statistical Institute and Stanford University. (Invited)

Let T’ be a sequence of statistics such that log P(T, — 6 > ¢, (log n/n)? | 8,0) ~ c?log
n/20%(6, ¢), and similarly for the other tail. Consider the testing of 6 < 0 against 6 > 0
where (6, ¢) is assumed to have an a priori distribution with a non-zero continuous density.
Let the loss function for deciding < 0 be A6=if ¢ > 0, and if the other decision is made,
B(—6)#if 6 = 0, and that conditions similar to those of Rubin and Sethuraman, ‘“Bayes
risk efficiency,” are satisfied. If « = g, the asymptotic Bayes procedure based upon T, is a
fixed level test of ¢ = 0 and the Bayes risk is proportional to E,n~[(e+Di2lgat1(Q, @); if
@ > B, the critical point is on the order of ¢ (0,¢)[(« — 8)log n/n] and the risk is proportional
to (¢%(0, ¢)log n/n)*1. The proportionality constants depend only on the problem, and
hence the efficiency is inversely proportional to ¢2(0, ¢).

41. Empirical Bayes estimation of prior and posterior distribution. J. R. RUTHER-
roRrD and R. G. KrurcHKOFF, Virginia Polytechnic Institute.

We assume that there is a random variable A distributed according to a specific but
unknown prior distribution G from a class G, . G, is the class of distributions which have
finite first p moments; and have density functions with respect to Lebesque measure which
are completely specified by a continuous function of its first p moments. A (=\) is un-
observable but another random variable T (=t), distributed with known conditional
distribution function F (¢ | \), is observable. {F (¢ | A): for all A} is any class of distributions
for which we know measurable functions hx(t), k = 1,2, - - -, p, such that E[hg(T)| \] = A*.
We construct estimators G.(A) of G(A) such that lim E[(G.(\) — G(A))?] = 0, a.e. \. We
use G(A) to estimate the posterior distribution G(\|#) and hence to construct consistent
estimators of posterior confidence intervals.

42. Tests of linear hypotheses using a generalized inverse matrix. S. R. SEARLE,
Cornell University.

A generalized inverse of the matrix X’X can be defined as any matrix G for
which X’XGX'X = X'X. One such matrix can be developed from reducing X’X to diagonal
form; in so doing, G is'symmetric and satisfies GX'XG = G. Solutions to normal equations
X'Xb = X'y derived for the linear model E(y) = Xb can then be expressed as b=o06x y.
If H = GX’X the hypothesis Q’b = m can be tested provided Q’H = Q’. On the basis of
normality assumptions the F-value for testing the hypothesis is F = (Q’b — m)’ (Q'GQ)~*-
(Q'b — m)/sa?, where s is the rank and order of Q' and 6t = (y'y — b'X'y)/(n — r), n being
the number of observations and r the rank of X.

43. On a class of c-sample weighted rank-sum tests for location and scale.
P. K. SEN and Z. GoviNDARAJULU, University of California, Berkeley.

A class of c-sample non-parametric tests (c 2 2) for the homogeneity of either location
or scale parameters is proposed and its various properties studied. These tests are based
on a family of congruent interquantile numbers, and may be regarded as a c-sample ex-
tension of a similar class of two sample tests proposed and'studied by Sen [Ann. Inst..
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Statist. Math. 16 (1963), 117-135]. Sufficient conditions for the joint asymptotic normality
of the class of statistics proposed are obtained. With the aid of these, the asymptotic power-
efficiency of the class of tests is studied, and comparison is made with other test procedures.
Testing for equality of scale parameters when the locations are unknown and unequal is
- also considered.

44. Optimal balanced fractional plans for main effects in the presence of odd
ordered interactions. J. N. Srivastava and DoNALp A. ANDERSON,
University of Nebraska. (By title)

It has been pointed out by Srivastava [North Carolina Institute of Statistics Mimeo
Series No. 301] and Bose and Srivastava [Analysis of irregular fractions. Sankhya 26] that
(1, 0) symmetry of a 2¢ factorial fraction implies that all effects involving an odd number
of factors can be estimated clear of those with an even number of factors. If A is a set of
b assemblies, and A is obtained from A by interchanging the symbols 0 and 1, then the
set of 2b assemblies 4 + 4 is (1, 0) symmetric. Plans for main effects are thus constructed
by taking the set of assemblies A + A, where A is the incidence matrix of a BIB, with
equal or unequal block sizes, having parameters (v, b, r, ). This choice of 4 makes the
plan balanced in the sense that M, the covariance matrix of the estimates, is symmetric
wrt the factors. It is shown next that if A corresponds to a BIB with parameters (v, b, r, \)
withd = 4t + 9, and 0 < ¢ < 3; then tr M ! is a minimum among the class of balanced
designs if 8 = 0,1,2andr — XN = t;or 6 = 3andr — X =tort 4 laccording as¢ =< or
> 3[v/4 — 1]. Plans optimal in the above sense have been obtained for a large set of values
of the pair (v, b) including in particular most of the pairs with 7 < » < 10and 7 < b < 20.
Also certain series of designs with an infinite number of pairs (v, b), including cases with
v = b, are obtained.

45. Tests for the dispersion, and the modal vector, of a unimodal distribution
on a sphere. MicHAEL A. STEPHENS, MecGill University.

A point P on the circumference of a unit sphere, center 0, has polar coordinates 6, ¢
Suppose the density function of 6, ¢ is ¢(X) exp (X cos ) sin 6 d6 de; the parameter X is
then a measure of the dispersion of the vectors OP. The paper gives tests and significance

"points to test hypotheses of two types: (1) concerning X, whether the modal vector § = 0
is known or unknown, and (2) concerning the polar vector, when X is known.

46. A non-linear optimum stochastic control problem (preliminary report).
CHARLOTTE STRIEBEL, University of Minnesota. (By title)

The problem considered is that of optimum control of a vector-valued dynamic system
with white noise driving functions. Observations are taken to be linear in the system vector
and in the observation error process which is also a white noise. The covariance matrices
of the white noise processes and the coefficients (time varying) of the dynamic system and
of the observation equation are all assumed to be known. The loss function is a linear
combination of the square of a one-dimensional final miss distance and the integral (or
sum) over time of the absolute value of the control vector. The optimum control is to be
determined as a function of all available observations. By attacking the discrete control
problem (control is restricted to a finite number of previously specified times) it is shown
that the optimum control is a function only of the ‘‘best’’ estimate of the final miss and
that control is to be applied in such a way that this estimate remains within a certain
boundary. Thus, the optimum control problem is reduced to that of determining this
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boundary. For the discrete case, recursion equations are given by which the boundary can
be computed. By formally passing to the continuous case, under certain regularity con-
ditions it is shown that this boundary is the solution to a free boundary problem for the
heat equation.

47. Bounds and rates of convergence for the extended compound estimation
problem in the sequence case. DonaLp D. Swain, U. S. Naval Academy.

Let F = {ps: —o < a < 0 =B < »} bea family of probability density functions;
8= (6,62, -,0;, ) bean arbitrary unknown vector with « = §; < 8; X1 be an obser-
vation with density ps, and ¢:(X1) be an estimate of 0, . In general let X; be an independent
observation with density ps; and ¢; (X1, X2, - - -, X;) be an estimate of 8; . After n estimates
are made, the average risk for an estimating procedure ¢ == (o1, 02, ***, @i, ***)is R.(o,0)
= ZL, El(p: — 6:)%/n]. A sequence of standards #4:(0,), £ = 1,2, ---, based on the Bayes
envelope [unction evaluated at the & dimensional “empirical distribution function’ gener-
ated by 0, , is considered. It is shown that lim inf,,.[Re(8,) — Rro1(6,)] Z 0, with strict in-
equality holding whenever 6 has ‘“‘patterns’” of length & + 1 or greater. For many families
F, including the Poisson, negative binomial, binomial, normal, and gamma, estimating
procedures ©F are given for which upper bounds for the difference R.(o*, 6) — R (6.) are
found for all n. These bounds are independent of 6 and approach zero as n approaches «.
For the Poisson and negative binomial families it is shown that these bounds are of the
order log*n/n'/4 uniformly in 6. For the binomial family the order is log n/n".

48. Sufficient statistic and the complete class of decision functions. IKE1
TakevucHI and Hirokicar Kupd, University of Tokyo and Osaka City
University.

Let (X, ®) be a sample space and € a o-subfield of 3. A decision function (for abbrevi-
ation, df) & is called to be C-measurable, if 5(4:x) is C-measurable in = when 4 is a fixed
measurable subset of the action space. In some cases, e.g. estimation problems of a pa-
rameter under the absence of nuisance parameter [Bahadur, R. R., dmer. Math. Soc. 26
(1955)] and problems of testing hypothesis [Kudo, H., Sci. Rep. Ochanomizu Univ. 4 (1954)],
it is proved that if the class of the C-measurable df’s is a complete class then € is sufficient
in B. An attempt of extending these results was made, but unfortunately it contains a
wrong description in condition [Sugaku 8 (1957), in Japanese; Math. Rev. 20 p. 461]. A
corrected condition for the above implication will be given. The main part of the condition
is: for any n sample distributions there is a partition 6 = U, such that the loss function
is irreducible. :

49. Higher moments of randomly stopped sums. Henry TEicHER, Purdue
University.

Let t be a stopping variable of the stochastic process {z. , n = 1} so that S; = >oiawis
a randomly stopped sum. If the z, are independent and for some positive integer m, Ex,/ =
¢; < » (independent of n), 1 < j < 2m and further Et™ < «, an identity for ES#™ (neces-
sarily finite) is given, thus generalizing results of Chow, Robbins and Teicher [Ann. Math.
Statist. 36 789-799] which, in turn, generalized the theorem on cumulative sums of Wald
[Ann. Math. Statist. 16 283-296]. An analogous expression for ES?" is rendered in the case
where the z, are the summands of a martingale.
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50. Asymptotic normality of binomial sequential stopping rules. M. T. Wasan,
Queen’s University, Kingston. (By title)

Let X,, X», --+, Xy--- be a sequence of independent random variables each with the
same family of possible probability functions p(X; =1) = p,p(X; =0)=1—-p,0<p < |
sadi = 1,2, ---. The observations are denoted by z; , 2> , - -+ and cumulative sum of first

m observations by w. . Sampling continues until a certain inequality is satisfied, of the
form um = k(m) or un = k(m), where k(m) is a function of m determined in advance. The
value of m for which the inequality is first satisfied is denoted by n. p is estimated by
# = k(n)/n. It is proved that p is normally distributed for the stopping rule u = 3n[l =+
(1 — 4an)}] when a — 0. It is also shown that for the boundary v = §n[l £ (1 — 4cn?)}], P
1s normally distributed when ¢ — 0.

51. The moments of uniform order statistics. Joun S. WuritE, General Motors
Research Laboratories.

Let U (¢, n), U(j, n) be the th and jth order statistics of a sample of size n from a uniform
(0, 1) distribution. Simple recursion relations for the moments of U (i, n) and the cross
moments of U (¢, n) and U(j, n) are derived. For example, if m(k) = E(U(@, n) — p)*
where p=1/(n+1) = E(U(@i,n)) thenm(k+1) = k((1 —2p)m k) + pd — p)m(k — 1))/
(n + 1 + k). These results may be used to obtain approximations to the moments of order
statisties X (¢, n) for any population with analytic distribution function F (z) by expanding
X (¢, n) as a Taylor series in powers of U (i, n) [e.g., David and Johnson, Biometrika 41
(1954) 228-240].

52. Asymptotic theory of tests based on bivariate admissible points. GEORGE G.
WoopwortH, University of Minnesota.

Let {X;, -+, X.) be a sample from a continuous bivariate population. The point X ; is
kth layer admissible iff exactly ¥ — 1 points of the sample have both coordinates smaller
than the corresponding coordinates of X; . Let A (k) denote the number of kth layer ad-
missible points. The distribution of {4 (1), - - -, 4 (n)} under independence of the components
of X was derived by Sobel and Barndorff-Nielsen [accepted for publication in Teor. Veroyat-
nost. i Primenin., (1965)]. In this paper, statistics of the form T (¢,) = 1Y eeren (k/n)A (k)
are investigated, where ¢, has a derivative ¢.’ on (0, 1). It is shown for a certain class of
distributions of X that if ¢.’ approaches in qm some ¢’ whose integral is bounded on (0, 1),
then T (¢.) approaches normality uniformly. For any family {Fs} of bivariate distributions,
where 6 = 0 corresponds to independent marginals, an expression for the asymptotically
locally most powerful ¢ is given. The efficacy of the optimal ¢, from which one can compute
relative efficiency and approximate large sample power, is also derived. For a certain class
of families {Fy} including the correlated bivariate normal ¢ is given explicitly and for the
hivariate normal the numerical value of the efficacy is computed.

53. On a sequential nonparametric estimation procedure (preliminary report).
Erizasera H. YeN, The Catholic University of America.

Consider the problem of using a Wilcoxon two-sample statistic Unse,nr2 , in a sample of
total N (even number) observations, to estimate the parameter Pr(X > Y) = p. When
G = F®that is, p = (1 + 6)7!, the variance of this statistic is a function of N and of the
unknown parameter 6. The author obtained some asymptotic optional properties for the
two-stage estimation in a more general set-up. [Ann. Math. Statist. 33 (1964) 1099-1114].
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This motivates the study of a sequential procedure for the present special case. The pro-
cedure utilizes the information about 6 at each stage and allocates the N observations be-
tween the two populations. The resulting statistic Um,» (m + n = N) have smaller variance
than that of Uy/2,n/2 under the conditions that 6 is a large integer (or by symmetry, 67! is
a larger integer) and that N > 4. Furthermore, the magnitude of the squared bias of this
estimate is negligible compared to its variance. Exact distribution is computed on N =
6, 8, 10, 12, etc., and 6 = 5, 10, 20, 50, 100 and 200, etc. In general, when § > N and N is
not too small, Var(Uy/2,n/2)/Var(Um,.) is greater than 1. When ¢ is near 2N?, the ratio
can be shown to be near 2. Possible application is also indicated.

b64. Maximum likelihood estimation for the mixed analysis variance model.
H. O. HarTLEY and J. N. K. Rao, Texas A & M University.

In this paper we develop a procedure for maximum likelihood estimation for the general
mixed model in analysis of variance involving any number of fixed and/or random factors
and/or interactions of any order. No experimental balance is required. The system of
equations reached for the maximum likelihood estimators of all constants and variances
(of variables) occurring in the model is, however, involved and must, in general, be solved
by iterative methods. We also derive the asymptotic variances and co-variances of the
estimators and approximate test procedures for (a) variance component and (b) subsets
of effect constants arising in the model. A general proof for the convergence of the iterative
procedure is given. A feature of particular interest is that the maximum likelihood esti-
mators of all variance components can be made to be positive. By contrast the unbiased
type of estimators which are customarily used for balanced analysis of variance data may
attain negative values. Comparisons are made with the customary least square estimation
procedures which are appropriate only if the model is a fixed one. It can be shown that the
estimators of a variance components obtained by this method will in general not be efficient.

(Abstracts of papers not connected with any meeting of the Institute.)

1. Stochastic approximation and nonlinear regression—IV. A ALBERT, N.
BARNERT, and L. A. GARDNER, JR., ARCON Inc. and Lincoln Laboratory,

M.IT.

Let y1, y2, --- be an observable scalar-valued time series with uniformly bounded
variances where 8y, = F,.(8) is known up to the (column) p-vector §. We investigate esti-
mation schemes of the form f,,1 = tn + @n(ti, -+ +, ta) (Yn — Fa(ts)) where t; is arbitrary
and a.(-, <--, -) is a vector-valued function of n vector arguments. Letting
gn(x) = grad F.(z),v. = inf, ||g (z)|| and T'x? = v:2 + -+ + 7,2, we consider (in particular)
gain vectors for whichinf,, ...z, [|@n (1, -+ -, T2)|| = @y2/Tw? and sUpzy,---,zq |@n (21, -, 24)||
< bya/Ta? for some 0 < @ < b < #0. We assume (1) limsup, sup: |iga.(@)[|/v» £ K < =,
(2) T2 = ® and (3) v+2/Tx2 — 0. Let ho(x) = ga(x)/]lg=(x)|| and assume (4) there exist
integers 1 = n; < ny < --- with pr = ngy1 — nesatisfyingp S pr < ¢ < o (k=1,2,---)
such that lim infz A\e/px = 7 > 0 where A\, = infx, Amin{Hr(Xe)Hr(Xx)'}, Hp(Xz) is the
P X pr MatTix [hag (€1), Bog1 (®2), -+, Bngyq (Tp;)], and Xy denotes the set of pi vector argu-
ments. Let Ji be the index set {nx , nx + 1, - -, nxy1 — 1} and suppose lim infz minjes;, v;2/
maXjes, v;2 = ¢ > 0. Finally, set ba(z1, +++, Tn) = @n(@1, +++, Ta)/l@a (@1, ++-. za)] and
on = infay, - zpang1 02’ (@1, *++, Ta)ha(®ag), and assume lim infx minjese; > {1 — 7)/
[1 — (1 — p%)7]}* where p = ac/Kb. Then, if {y.} is a process of independent random vari-
ables, t, — 6 with probability one and in mean square. If (2) is strengthened to-
(2') >°(1/Ta2) < «, then the conclusion holds true without the assumption of independ-
ence.
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2. Over estimation of binomial probabilities by Poisson probabilities. T. W.
ANDERSON, Columbia University.

Let ba(z) = ()(\/n)*(1 — A/n)*=, p(z) = e=/z!, Ba(y) = D % bu(x), and P(y) =
> Y op(z). TaEOREM 1. P(y) > B.(y),0 S y < c,and1 — P(y — 1) > 1 — B.(y — 1),
¢ < y for some c. THEOREM 2. b, (z) is monotonically increasing inn for 0 < 2 S N+ —
N+ randforn+ 3+ (N + 1) < z. THEOREM 3. P(y) — Ba(y) 18 positive and monoton:-
cally decreasinginnfor0 S y s A +4%— QA+ 3Hhandl — P(y—1) — [1 — Ba(y — 1)]
18 positive and monotonically decreasing in n for A + % + (A + 1) = v.

3. On the F-test in the intrablock analysis of two associate partially balanced
incomplete block designs (preliminary report). RoBerT CLEROUX, Uni-
versité de Montréal.

The distribution of the statistic U = (treatment sum of squares)/(treatment + error-
sums of squares) is considered over all possible random assignments of the treatments on
the experimental plots for two associate PBIB designs under the null hypothesis of absence
of treatment effects. The first two moments of U are computed and the distribution of U
is approximated by a beta distribution with degrees of freedom chosen in such a way that
the means and the variances of the two distributions are equal respectively. A similar
work has been carried out for two associate PBIB designs with\; = 0 and A, = 1 by P. V.
Rao [Ann. Tokio Inst. Math. Statist. 16 (1963) 25-36] and for two associate PBIB designs
with \; = 0 and A\ > 1 by N. C. Giri [J. Amer. Statist. Assoc. 60 (1965) 285-293]. In this
paper, results are obtained for the two associate PBIB designs in general and it is found
that a reasonable approximation of the randomization test of the null hypothesis of absence
of treatment effects, when the normal theory assumptions are in doubt, is obtained by
modifying the degrees of freedom of the actual normal theory F-test.

4. Integrals of products of multivariate-t densities (preliminary report). J. M.
DickEy, Yale University.

The complete integral, over p-dimensional Euclidean space, of f(x)g(x) is considered,
where f(x) is a product of K t-like factors, {1 + (x — y:)'M (X — yx)]™%, ar > 0, My 2 0,
and where g (x) is a polynomial in the coordinates of x. If K = 2 and g(x) = 1, the integral
is proportional to a multivariate generalization of the Behrens-Fisher density. These
integrals give the normalizing constants and moments of some Bayesian posterior distri-
butions [Tiao and Zellner, Biometrika 61 (1964)]. Results are limited to cases in which the
M, are simultaneously diagonalizable (not necessarily orthogonally). With each factor of
J(x) expressed as a gamma mixture of normal densities, the p-dimensional integrals reduce
to (K — 1)-dimensional integrals. A special-function (Appell’s F,) representation is given
for the usual Behrens-Fisher density. Arguments are given favoring a general class of joint
prior distributions for the parameters of a multivariate normal distribution such that the
marginal posterior density for the mean vector (or regression vector) is proportional to

Jx).

5. On the interpolation of the renewal function. S. ErrerELD, New York Uni-
versity.

Some useful conditions are explored for determining a renewal process from knowledge
of the renewal function H (¢) at values H(h), H(2h), --- for some h > 0. Furthermore,
these conditions are used for expressing H (t) as an infinite interpolation series involving
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H(h), H@2h), - -- and is useful in estimation problems involving attribute observations of
renewal processes. One condition making H (t) sufficiently smooth is when the Laplace
transform of the probability density function of the inter-event random variable is analytic
at infinity. The class of renewal processes where this is the case is fairly wide and includes
many of those used in practice.

6. Estimation of parameters for a mixture of normal distributions. Vicror
HasseELBLAD, University of Washington.

n observations are taken from a mixture of K (known) normal subpopulations. It is
assumed that these n observations are given as N frequencies from equally spaced intervals.
Initial guesses of the K means, K variances, and K — 1 proportions are made using the
truncated maximum likelihood estimates for a single normal population as derived by
Hald. Then an approximation to the likelihood function of the entire sample is used, and
attempts to maximize this yield two iteration formulas. The method of steepest descent is
shown to always converge very fast when it converged at all. Special cases of equal vari-
ances and variances proportional to the square of the mean are also considered.

7. A problem in minimax variance polynomial extrapolation. ARNOLD LEVINE,
University of Buenos Aires.

When the variables y¢ , ¥y, - -*, ¥s, in the regression of a £th degree polynomial are
uncorrelated, Hoel and Levine [Ann. Math. Stat. 36 (1964)] have found the observation
points and respective proportion of observations at each point in the observation interval
[—1, 1] in order to obtain the minimax variance over the interval [—1, ¢] forall t > #, > 1;
t, is the point outside the interval [—1, 1] at which the Chebyshev polynomial of degree &
is equal to the maximum value of the variance of the least squares estimate inside [—1, 1].
Using the same observation points and corresponding proportions, it is found here that the
maximum of the variance of the least squares estimate in [—1, 1] is found at —1 for all
t > 1. As a consequence, an equation is developed which permits the computation of ¢,
for all k. Moreover, it is shown that ¢, — 1 as k — « so that, for large k, these observation
points and proportions yield an approximation to the minimax variance over the interval
[—1, t], all £ > 1. The same techniques yield the exact determination of the minimax vari-
ance for linear regression.

8. A k-sample analogue of Watson’s U’-statistic. Urs R. Maaag, Université de
Montréal.

In this paper, extensions are given of the goodness-of-fit tests on the circle, Ux? and
U¥%.u , introduced by Watson [Biometrika 48 (1961) 109-114 and 49 (1962) 57-63]. Let X;; ,
i=1,++,n;,7 =1, ---, k be k independent samples of independent random variables
where theset Xi; ,2 =1, ---,n;,jfixed, stems from the continuous cumulative distribution
function F,(z). Let S;(x) stand for the corresponding sample e¢df, Sy(z) for the sample
cdf of the & pooled sets. To test the goodness-of-fit hypothesis Fi(z) = --- = Fi(z) = G(z)
(assumed to be known and continuous) the statistic Ury = [*%{ Sk in,(Si(x) — Gz) —
fj:[Sj (y) — G(¥))dG (y)]?}dG (x) is proposed. To test the homogeneity hypothesis F,(z) =

- = Fi(z) the statistic Urny = [T2{ 2 51 ni[S;(x) — Sw(z) — [22(S;(y) — Sw(y)]-
dSx (¥)]12}dSw (x) is proposed. It is shown that under the null hypotheses the limiting distri-
butions (all n; — ») of the homogeneity test for £ samples and of the goodness-of-fit test
for k — 1 samples are identical. This limiting distribution is derived and the result is tabu-
lated for k =1, ---, 5.
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9. Minimum bias designs for the use of polynomial approximations to uni-
variate exponential models (preliminary report). ArnisoN R. MANsoN,
Virginia Polytechnic Institute and Oak Ridge Institute of Nuclear Studies.

For the model y. = a« + Br.” + €, or alternately y. = o + Be™« + €, (u = 1,2, ---, n)
where (a, 8) lie on the real line (—«, =), is a positive integer, and the e, are distributed
independently as N (0, ¢2); the sets of z, which minimize the bias due to the inherent in-
ability of polynomial approximations to fit such models are given. These designs are de-
termined for specific values of n, resulting in a maximum protection level for the parameter
v. For example for n = 13 the set of z, is given which will minimize the bias which occurs
from using the approximation polynomial §. = by + bz, for all values of v in the model
from one to ten, inclusively. These same designs will minimize the bias due to the use of
higher degree polynomial approximations; although for given n, the maximum value of v
for which the protection holds decreases gradually as the degree of the approximation
polynomial increases. The criteria for obtaining the minimum bias designs follow along
lines similar to those given by Box and Draper [J. Amer. Statist. Assoc. 54 (1959) 622].
Further work is in progress to obtain minimum ‘‘variance plus bias’’ designs and to extend
the same to models containing two independent variables.

10. Some Bayesian decision problems in a Markov chain. JamEs J. MARTIN,
United States Navy.

Some Bayesian decision models which involve a finite Markov chain with rewards in
which the transition probabilities are uncertain are studied in this thesis. The principal
theoretical features of these models are derived and various questions of numerical compu-
tation are considered. It is assumed throughout that the family of prior distributions of
the matrix of transition probabilities is closed under the operation of Bayes’ theorem.
Some properties of such closed families of distributions are derived and used to find ex-
pressions for the prior means, variances, and covariances of the n-step transition proba-
bilities, the steady-state probabilities, the total discounted reward vector, and the process
gain. Two sequential sampling models of a Markov chain with alternative transition proba-
bilities and rewards are formulated as sets of functional equations; one model includes an
explicit sampling cost, while the other does not. In both cases a unique bounded solution
is shown to exist and methods of successive approximations are considered. The prior-
posterior and preposterior analysis of a finite Markov chain with uncertain transition
probabilities is also developed for a fixed sample size. This analysis leads to the intro-
duction of the Whittle, the matrix beta, and the beta-Whittle probability distributions.

11. Rank order probabilities; two-sample normal shift alternatives. Roy C.
Mivron, Florida State University.

Assume that random variables X, , -+, X, (Y1, - -+, Y4) are normally and independently
distributed with mean O (D) and variancel.Let U = (Uy, -+, Untx), Ur < «++ < Unyu,
denote the order statistics of the random variables (X;, -+, Xm, Y1, .-+, ¥,), and let
Z = (Zy, -+, Zmsn) denote a random vector of zeros and ones where the ¢th component
Z;is0(1)if U;isan X (Y). Denote by f(z | D) the normal density with mean D and variance
1.Ifz2 = (21, ***, 2m4n) is a fixed vector of m zeros and n ones, then the probability of the
rank order z, Pr(Z = z), is given by Pn..(z | D) = m!n!f-- [ r [TH"f (¢ | Dzy)dt; , where
the integration is over the region R = —w < #; £ -+ = tn4n < . Amethod for computing
Pn.n(z | D) is described which involves a form of indefinite integration augmented by
extrapolation to the limit. This method is used to caleulate Pi:(z | D) and Pi1(z | D);
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values for smaller sample sizes are obtained by Savage’s back-recursive scheme-[Ann.
Math. Statist. 81 (1960) 519-520]. Values of P, »(z | D) to nine decimal places are presented
in tabular form forall zfor1 S n <m < 7and n = 1, m = 8(1)12; D = 0(.2)1,1.5,2,3.
This table enlarges and generalizes in several respects the unpublished tables of Teichroew
[working paper of the National Bureau of Standards, Los Angeles, (1954)] and Klotz [doc-
toral dissertation, Univ. of California, Berkeley, 1961].

12. Power of two-sample nonparametric tests against the normal shift al-
ternative. Roy C. Mivron, Florida State University.

The tables described in the above abstract are used to find the exact power of the Wil-
coxon, ¢;, median and Kolmogorov-Smirnov two-sample tests for location against the
normal shift alternative for sample sizes 1 < n < m =< 7 and for one-sided and two-sided
tests at nominal levels of significance a = .25, .10, .05, .025, .01, .005. Selected power and
efficiency comparisons are made among these tests and with the two-sample Student’s
t-test. The most powerful rank test is also considered.

13. Sequential two-sample rank tests of the normal shift hypothesis. Roy C.
Mivron, Florida State University.

Sequential two-sample rank tests based on the likelihood ratios of the probabilities of
the vector z and of the rank sum »_i1"iz; are described, for notation see second abstract
above. This extends the work of Wilcoxon, Rhodes and Bradley [Biometrics 19 (1963)
58-84] to the important case of the normal shift hypothesis. Tables are presented which
facilitate the use of these tests, and values of the operating characteristic functions and
average sample number functions are given.

14. A generalized selection procedure for normal populations. Roy C. MiLron,
Florida State University.

M. Sobel has suggested a multiple decision or ranking procedure for selecting a subset
of r populations from among k normal populations with common variance o such that at
least &, of the ¢ populations with largest means are among the r populations selected. This
generalizes the work of Bechhofer [Ann. Math. Statist. 25 (1954) 16-39]. The populations
corresponding to the r largest sample means are selected. The probability of a correct
selection in the so-called least favorable configuration (i.e., when &* is the difference be-
tween the 7th and jth largest population means, ¢ < ¢,j = t+ 1) isgivenby P(¢ ; v, &k — ¢,
t, d) where d = 6*N*/o and N is the common sample size. From the tables described in the
third abstract above, values of P(ni ; r, m, n, D) are givenforl1 <= n =m =< 7Tandn =1,
m = 81)12; r = 1(1)[m/2]; na = 1(1)n; and D = 0(.2)1,1.5,2,3.

15. A nonparametric population selection procedure. D. W. ParrErson, Bell
Telephone Laboratories, Inc. and Rutgers University.

Given k populations with CPFs Fi(z — a1) = Fa(z — a2) = - = Fi(z — ax),
define F;(z) as “best” if max (a1, az, --- , @) = @; . A nonparametric procedure is given
for selecting a subset S which contains the best population with probability not less than a
specified P*. The procedure is based on a novel idea introduced by Bell and Doksum [Ann.
Math. Statist. (1965)]. Let X:;, 6 =1,2,--+ ,k;5=1,2, --- , n;) be independent random
variables from F;(z) and let R[X,;] denote the rank of X;; in the combined observations.
TletZ(1),Z@2),---,Z(N)beN = > n; order statisties from a CPF G (z). The procedure
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consists of replacing X;; by Z (R[X;;]) and computing Z;. = [D_; Z (R[X;])]/n: . Population
jisincluded in S if Z;. = max [Z1., Z,., --- , Z:.] — b, where b > 0 is chosen to achieve
the desired probability of a correct selection P (CS). It is shown that the infimum of P(CS)
occurs when a; = a; = --- = a; . Furthermore the expected size of S is shown to be maxi-
mum when all a; are equal. An attractive feature of the procedure is that standard tables
may be employed in its application.

16. Multi-sample scale problem: unknown location parameters. Mapanx L.
Puri, Courant Institute of Mathematical Sciences, New York University.

In this paper, a class of tests proposed by the author (abstract, Ann. Math. Statist.
June, 1965) for the problem of testing the equality of scale parameters of ¢ continuous proba-
bility distribution functions are modified for the case when the location parameters are
unknown. The modified test statistics are shown to retain their original asymptotic distri-
butions (cf. the abstract cited above) under certain regularity conditions. The modification
is done by expressing the sample observations as deviations from the respective consistent
estimators of the unknown location parameters and basing the tests on these centered
observations.

17. Large-sample sign tests for trend in dispersion. Hans K. Ury, California
State Department of Public Health and University of California, Berkeley.

For quickly testing trend in dispersion, Cox and Stuart [Biometrika 42 (1955), 80-95]
have investigated several sign tests applied to the ranges of subsets of k observations. For
a particular trend model, and against normal alternatives, they computed the asymptotic
relative efficiency (ARE) of the best weighted (S:) and unweighted (S;) sign tests com-
pared to the ML test. The ARE’s depend on k and were given as 0.74 and 0.71 for S; and
S3 , respectively, for subgroups of size 5 to 9. (This was intentionally conservative; ac-
tually, ARE’s of 0.77 and 0.74 can be attained for £ = 8.) In this note, 8; and S; applied
to variances of subsets are considered. The ARE is shown to increase with k, the limits
being 0.86 for S; and 0.83 for S; . These values can be almost attained for k¥ = 49, while
subgroups of 15 will still yield ARE’s of 0.83 for S; and 0.80 for S; . Thus for large sam-
ples which permit the use of sizable subgroups, the resulting reduction in the number of
sign tests and the increased ARE should compensate for the loss of simplicity incurred by
using variance-based, rather than range-based, sign tests. ‘‘Efficiency’’ comparisons of
different subgroup sizes are carried out for samples of 150 and 1500.



