CYCLIC DESIGNS!

By H. A. Davip anp F. W. WoLock

University of North Carolina and Boston College

1. Introduction. Cyclic designs are incomplete block designs consisting in the
simplest case of a set of blocks obtained by cyclic development of an initial
block. More generally, a cyclic design consists of combinations of such sets and
will be said to be of size (n, k, r), where n is the number of treatments, k the
block size, and r the number of replications.

It is well known (e.g. Bose and Nair [1]) that cyclic development of a suitably
chosen initial block is one of the methods of generating designs with a high
degree of balance in the arrangement of the treatments such as balanced in-
complete block (BIB) designs and partially balanced incomplete block designs
with two associate classes (PBIB(2) designs). Again, the cyclic type is a rather
junior partner among the five types into which Bose and Shimamoto [2] classify
PBIB(2) designs. The emphasis in these and many related papers has been
understandably on the number of associate classes, the cyclic aspect being
incidental. In the present article we proceed in opposite fashion putting the
cyclic property first. It will be shown how cyclic designs may be systematically
generated and how the non-isomorphic designs of given size may be enumerated
and constructed. All such designs are PBIB designs but may have up to in
associate classes. For n < 15 and k = 3, 4, 5, tables of the miost efficient cyclic
designs are presented and comparisons with BIB and PBIB(2) designs are
made.

Points which make cyclic designs attractive are:

(i) Flexibility. A cyclic design of size (n, k, k) exists for all positive integers
n, k, 7. If n and k have a common divisor d then a “fractional set” of size (n, k,
k/d) exists corresponding to each d. Fractional sets may be combined with
designs of size (n, k, ik) to form fresh designs, or used by themselves especially
if n is large. Thus there are cyclic designs for many sizes (n, k, r) for which no
PBIB(2) design is available, but the reverse may also happen.

(i) Ease of representation. No plan of the experimental layout is needed since
the initial block or blocks suffice.

(iii) Youden type. In view of their method of generation cyeclic sets with r = k,
and hence combinations of such sets, provide automatic elimination of hetero-
geneity in two directions.

(iv) Analysis. For cyclic designs the coefficient matrix of the normal equations
is a circulix. The inverse matrix may therefore be obtained explicitly (as another
circulix), thus making possible a general method of analysis. Questions of analysis
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will not be considered further here since methods given in a special case by
Kempthorne [9] continue to apply with minor modifications. However, details
and aids to analysis are presented in [12].

Cyclic designs as a class in their own right were introduced for ¥ = 2 by
Kempthorne [9] and: Zoellner and Kempthorne [13]. Design aspects for the case
k = 2, which has some special features, were considered in [6] and [7], and will
not be treated in this paper. For general k cyclic designs are closely related to
the circular designs of Das [5]. See also the survey of non-orthogonal designs by
Pearce [11] who calls cyclic designs a “little publicized class.” PBIB designs
have been studied from an algebraic point of view in a series of papers by Masu-
yama. In some of these (e.g. [10]) reference is made to cyclic designs but no
detailed results are obtained.

2. Cyclic sets. Label the treatments 0, 1, 2, ---, n — 1. To fix ideas consider
the arrangement of n = 7 treatments in blocks of size ¥ = 3. The complete
design of (3) = 35 distinct blocks may be set out as follows:

{012} : 012 123 234 345 456 560 601
{013} : 013 124 235 346 450 561 602
) {014} : 014 125 236 340 451 562 603
{015} : 015 126 230 341 452 563 604
{024) : 024 135 246 350 461 502 613

From any block the others in the same row may be obtained by increasing each
object label in turn by 1, 2, 3, 4, 5, 6, and reducing modulo 7. The rows have
been arranged to start with the block of lowest numerical value and are desig-
nated by the initial block placed in braces. We call each row a cyclic set.

"A block may also be conveniently represented by identical beads spaced
regularly on a circular necklace. Fig. 1 shows the blocks 012 and 123. The set
{012} is then generated by successive unit rotations.

It is not difficult to show that each cyclic set forms a partially balanced
incomplete block (PBIB) design with b (no. of blocks) = n and r (no. of repli-
cations) = k. If object j 4 7 is an ath associate of 4, so isn — j + 7. Thus the
number m of associate classes is at most 2(n — 1) for n odd and n for n even,
but may be less, with m = 1 for a balanced (BIB) design. An additional feature

Fig. 1
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of a cyeclic set is that each object occurs once in each position within a block.
Order effects are therefore automatically balanced out and the sets are Youden
Type designs, balanced (m = 1) or partially balanced (m > 1).

The same procedure can be used for any n and k except that when n and & are
not relative primes fractional sets arise consisting of n/d blocks, where d is any
common divisor of #» and k. In terms of Fig. 1 such sets correspond to arrange-
ments of beads which can be reproduced in fewer than n rotations of the necklace.

For the purpose of systematically enumerating all cyclic sets it is convenient
to characterize each set by a circular partition of n. Thus we may re-
place {Oxl Lo X3 * " Tk—2 xk_l} by (.’131 y X2 — 1,23 — Loy ***y Tp—1 — Tk—2, N — xk_l).

ExampLE 1. For n = 8, k = 4 the set {0123} becomes (1115). The cyclic sets
may now be written down in increasing order of the numerical value of the
corresponding partition: (1115), (1124), (1133), (1142), (1214), (1223), (1232),
(1313), (1322), (2222). After (1142) we omit (1151) this being identical with
(1115), ete. As the repetition of digits indicates the set (1313) consists of the 4
blocks

0145 1256 2367 3470 r = 2)

and (2222) of the 2 (disconnected) blocks 0246, 1357 (r = 1). These are still
PBIB designs but, of course, no longer of the Youden Type. We shall say that
the corresponding arrangements of beads on a necklace have periods 4 and 2,
respectively. As a check, note that all (§) blocks are accounted for since 8 X 8 +
442 =170
. For any n and k, the total number of sets, being equal to the number of distinct
arrangements of £ white beads and n — k black beads on a necklace of n beads
(which may not be turned over) is given by (Jablonski [8])

@) Nk, n — k) = n 2g(d){(n/d)!/[(k/d)[(n — k)/d)1},

where the summation is over all integers d (including unity) which are divisors
of both £ and n — k, and ¢(z) is Euler’s function, the number of positive integers
less than and prime to z. Thus

N, 4) = }Y/414! + 41/221 + 2Q21/111) = 10.

The number of cyclic sets of various sizes making up this total is tabulated in
[7] for n < 15. _

If a design of sizen = b = 7 and k = r = 3 is required a look at the associ-
ation schemes of the 5 sets in (1) leads to {013} or {015}, both being BIB designs.
For most sizes there will be no balanced set and the choice is less clear but might
be based on the usual efficiency factor. Combinations of sets provide larger
designs and again the question of optimal selection of sets arises. This presents
a formidable task for all but small designs. Our principal aim is to show that
this task can be greatly simplified if certain isomorphisms between cyclic sets
are recognized. A systematic approach for the construction of optimal cyclic
designs is then developed.
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3. Equivalence classes. Let us now apply to {012} of Equation (1) the re-
numbering or permutation

R(7,3) =G 5 & 3 5 1 4)
obtained by multiplying each of the 7 labels by 3 (mod 7). Then {012} becomes
036 362 625 251 514 140 403,

a Youden Type design which is merely a re-arrangement of {014}. We write
{012} —; {014}. Thus {012} and {014} are isomorphic. Two further applications
of R(7, 3) give {024} and the original {012}. We have therefore established the
equivalence class {012} ~ {014} ~ {024]. No blocks need be written in the
process if partition notation is used: {012} —; {036} = (331) = (133) = {014} —
(035} = (322) = (223) = {024}. Likewise {013} —; {032} = {023} = (214) =
(142) = {015}, so that {013}, {015} form a second equivalence class.

The same procedure can be used for any prime n and any k. To see this, note

that the permutations R(n, 1) (the identity permutation), R(n, 2), ---, E(n,
n — 1), form a group under “multiplication” * defined by
3) R(n, ) * R(n,j) = R(n, % mod n)

which is isomorphic with the multiplicative group of residues mod n. Hence all
elements R(n, ) are generated by powers of R(n, g), where g is a primitive root
of n (ie., g° % 1 mod nforz = 1,2, ---,n — 2 but g = 1 mod n). But a
permutation ¢ which changes one cyclic set into another must be of the form
R(n, ) if we assume without loss of generality that o leaves 0 unchanged; for if
a, b, ¢, d, are elements of the residue set with @ and b = a + d two elements in
the same block we require that

o(b) — o(a) = o(d) alla, b, d
or

o(a) + o(d) = o(a + d),

showing that ¢ is multiplicative: o(a) = ca. Thus all possible isomorphisms
between cyclic sets can be established conveniently by repeated application of
R(n, g).

When n is not prime the R(n, ©) continue to form a group under % of (3) pro-
vided ¢ and j are restricted to be integers relatively prime to n. The group is now
of order ¢(n) and is clearly isomorphic with the multiplicative group of the
reduced set of residues. g is said to be a primitive root of n if ¢(n) is the smallest
power making ¢*™ = 1 mod n. Primitive roots exist only if n equals 2, 4, p, or
2p", where p is any prime > 2 and n any integer. For values of n admitting a
primitive root we proceed as before; otherwise, multiplication by each member
of the reduced set of residues will establish most isomorphisms.

Exampr 1 (cont’d.) Since 8 does not have a primitive root we begin by
applying R(8, 3) to the sets of Example 1 and find

(1115) —» (1232), (1124) —; (1223), (1142) —; (1322).
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The other sets are unchanged by the transformation. Likewise R(8, 5) gives
(1115) —5 (1232), (1124) — (1322), (1142 — (1223).

R(8, 7) produces “mirror images” obtained by reading a circular partition anti-
clockwise rather than clockwise, e.g. (1124) — (4211) = (1142). This iso-
morphism had already been established by R(8, 3) and R(8, 5) because 5 = —3.
However, an additional isomorphism can be obtained by the permutation

@ @O G Gy & 6
which takes (1133) into (1214). This is the only instance we have come across

where the equivalence of two cyclic sets cannot be demonstrated by a multipli-

cative permutation.

A listing of all equivalence classes for cyclic sets in experiments with n < 15
and k = 3, 4, 5, is given in [12]. The efficiencies of these sets regarded as designs
have also been tabulated. When n = 8, k¥ = 4 we find

De31gn E E1 Ez E3 E4
{0123} = (1115) .812 .922 .834 .760 .712
{0124} = (1124) .851 .867 .873 .810 .868
{0125} = (1133) .851 .867 .809 .867 .877
{0134} = (1214) .836 .863 ..810 .869 .807
{0145} = (1313) 779 .802 .803 .668 .800 (r = 2)

Here E is the overall efficiency and E; ( = 1, 2, 3, 4) is the efficiency factor
relating to the comparison of jth associates, i.e., E; is the ratio. of 24°/r to the
variance of the estimated difference in treatment effects for two treatments
which are jth associates. On the basis of E the choice of optimal design for
r = 4 among the five sets (the fifth duplicated) lies between {0124} and {0125},
with the latter preferable in having only 3 associate classes. It should be noted
that except for fully balanced designs the highest value of E does not necessarily

TABLE 1

Most efficient symmetric cyclic PBIB design D for n treatments and block size k, and its
efficiency E. N.B. Superscripts 1 ¢ denote respectively BIB and PBIB(2) designs

k=3 k=4 k=5
n D E D E D E
6 {013}2 .84 10123} .895 {01234} .961
7 {013}1 718 {012411 .876 {01234} .932
8 {013}2 748 10125} .851 {01235}2 .914
9 {013} 722 {0134} .836 {01235} .898
10 {013} .700 {0125} .823 {01245} .888
11 {013} 676 {0125} .817 {01247} .880
12 {014} .673 10137} 813 {01247}2 .870
13 {014}2 .667 10139} 812 {01269} .863
14 {014} .670 10146}2 .805 {01358} .859

15 {015} .641 {0137} .795 {012410} .853
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TABLE 2

Balanced (BIB) and two-associate PBIB designs with codes and efficiencies from Bose et al.
[8] and Clatworthy™ [4]

k=3 k=4 k=5
n D E D E D E

6 Rl .78 82, R2 .88, .89 BIB .96

7 BIB .78 BIB .88

8 R5 .75 SR7 .84 R108*, R109* .91, .90

9 SR12 .73 R8, LS1 .80, .83 LS10, R112* .90, .89

10 T6 .70 817, T2 .79, .79 R114* .88

11 T12 .82 BIB .88

12 R15 .81 R116*, R117* .87, .87
' R118* .81

13 C1 .67 BIB .81

14 R24 .80

15 728 .66 R27 80

correspond to the design with the smallest number of associate classes. Other
optimality criteria might be used but the choice of cyclic design is in any case
reduced to one of the non-isomorphic sets. Moreover, it is only combinations of
these sets (and possible disconnected sets) which need to be considered in the
construction of larger cyclic designs. In Table 1 we list the most efficient cyclic
setsforn < 15and k = 3,4, 5.

Cyclic sets with two associate classes. For purposes of comparison we have made
a corresponding compilation in Table 2 of two-associate PBIB designs of all
types as given by Bose et al. [3] and (with asterisks) by Clatworthy [4]. The
BIB designs in this range are also included. It will be noted that Table 2 has
gaps for several (n, k) combinations although the symmetrical case is favorable
to the existence of designs with a high degree of balance. The table also shows
that a cyclic design with more than two associate classes may be more effic.ent
than any two-associate PBIB.

It is of some interest that every regular (R) group divisible PBIB of Table 2
may be laid out as a cyclic design; this is already done in [3] in some cases and
may be effected for the remaining designs by suitable relabeling. We find the
following isomorphisms:

n=6 :Rl ~{013}, R2 ~ {0124};
n=28 :R5 ~{013), RI108* ~ {01235}, R109* ~ {01246};
n=9 :R8 ~ {0136}, R112* ~ {01346};
n = 10 : R114* ~ {01257};
n =12 :R15 ~ {0137}, R116* ~ {01356},
R117* ~ {01249}, R118* ~ {014710};
n =14 :R24 ~ {0146};

n = 15:R27 ~ {0137}.
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There are only two other cyclic designs with two associate classes in the range
under consideration. For n = 13 we have C1 ~ {014}; for n = 12 the design
{01247} has the same association scheme as R116* but is not isomorphic with it.

4. Combinations of cyclic sets. Cyclic sets for given n may be combined to
produce a wide variety of cyclic designs, still of PBIB form. This can always be
done if the number of replications r is a multiple of k¥ but will also be possible
for certain other values of r if fractional sets exist. We shall say that the combined
design is of size (n, k, r). Equivalence classes may again be established. However,
the most efficient cyclic design of given size is not necessarily one made up of
the most efficient cyclic sets.

Exawmpik 2. For n = 9, k = 3 we have the equivalence classes

A (117), (225), (144);
B : (126), (243), (153), (162), (234), (135);
C : (333) (r=1).

The order within a class has been arranged so that successive sets are obtained
by the application of R(9, 2), the primitive root of 9 being 2. There are clearly
two non-isomorphic designs of size (9, 3, 4) obtained by combining (333) with
any member of Class A or Class B. Of these the latter, which may be written as
{013, 036}, is the more efficient, with £ = 0.713 and 4 associate classes.

To get designs with » = 6 we can take two sets from A, two from B, or one
from each. Call the sets 41, A2, A;, and B:, By, ---, Bs. We then have the
following seven equivalence classes:

A1, Asds, AsAs,

BiB;, B:B3 , BsBy, BsBs , BsBs , BeB; ;
Bi\B;, ByB4, BsBs , BsBs, BsB1, BsB: ;
BBy, B:Bs , B;Bs ;

AiB1, AsB; , A3Bs, AiBy, AsBs, AsBs
AiBs , A2B;, A3By, AiBs, A3Bs, A3B: ;
AB;s, AsBy, A3Bs , A1Bg, A3B1, A3B, .

Calculations show that the most efficient cyeclic design is A;4; with £ = 0.731
and 4 associate classes.

The present example has been chosen to bring out the enumeration procedure
required when the original cyclic sets fall into several equivalence classes.

Actually, for r = 6 as many as four PBIB(2) designs are available, viz. SR13,
R10, LS3, and LS9*, of which LS3 is the most efficient having E = 0.741.
When r = 4 the only tabulated PBIB(2) design is LS6, with the relatively low
efficiency £ = 0.667. For r = 10 Table 3 lists a selection of cyclic designs in
cases where no such PBIB(2) designs are known to exist or are all of more than
trivially inferior efficiency.

It is of interest to note that the number of non-isomorphic designs made up
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TABLE 3

Selected cyclic designs with r > k, corresponding optimal two-associate PBIB designs, and
effictencres E

(n’S‘,f’e N Cyelic design E PBIB(2) design  E

83,6 013, 014} 756 R50* 747
8 4 5 (0134, 0246} 850 —

9, 3. 4 {013, 036} 713 L6 667
10, 4, 6 {0147, 0156} 825 T3 789
10, 4, 8 {0126, 0148} 1830 Rl4 893
11, 3. 6 {013, 026} 727 —

11,3 9 {013, 014, 027} 730 -

1,48 {0134, 0248) 823 —

13, 4. 8 {0125, 0159} 807 c2 797
13, 5, 10 {01247, 01258} 865 —

14, 3, 9 {014, 0211, 019} 709 —

14, 5, 10 {012410, 01710 12} .862 —

15, 3, 4 {015, 0510} 682 793 673
15, 5. 6 {01257, 036912} 856 T38* 808

of s sets all chosen from the same class of S sets is just N(s, S — s), where N is
defined by (2). This is so because we can now regard the beads of Fig. 1 as
representing sets rather than blocks. The operation R(n, g), where g is a primitive
root, produces a unit turn. The enumeration of non-isomorphic designs when
sets are from more than one class proceeds exactly as described in [7] for k = 2.

5. Fractional sets. The number nk of observations required for a cyclic set-of
size (n, k) will often be greater than desired, especially when # is large. In this
situation fractional sets are very useful. As pointed out in Example 1 such sets
are characterized by a repetitive pattern in their partition representation. No
such design is possible if # is prime. For n composite fractional sets exist corre-
sponding to every divisor d (1 < d < n) of n since there must be at least one
partition of n consisting of d repetitions. Clearly, k£ must be a multiple of d, and
r = k/d; (however, r = 1 gives a disconnected set). From a cyclic set with
parameters (n/d, k/d) a fractional set with parameters (n,k,r = k/d) can
always be obtained.

ExampLE 3. For » = 30 connected fractional sets exist for k = 4, 6, 8, 9,
10, - - - . Suppose we require a design with & = 6. The non-isomorphic connected
cyclic sets of size (15, 3) are (1113), (1212), (1311), (1410), and (159). Of these
(1212) leads to the most efficient design of size (30, 6, 3), viz. (12121212) or
{01315 16 18} with £ = 0.762.

In [12] a selection of the most efficient fractional sets of given size is tabulated
for n < 100.
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