LIMIT THEOREMS FOR QUEUES WITH TRAFFIC INTENSITY ONE!

By Donarp L. JGLEHART

Cornell University

1. Introduction. We shall consider a single server queueing process in which
customers are served in the order of their arrival. Let the instants customers
arrive at the counter be denoted by 71, 72, <+, 7a, - -+ . (We shall follow, for
the most part, the notation used in Takécs [14].) Let 6, = 7,00 — 7 (n = 0, 1,

- ; 7o = 0) denote the interarrival times and let x, be the service time of the
nth customer. We shall assume that {6,} and {x.} are independent sequences of
independent, identically distributed, positive random variables. In particular,
we shall assume that 6, has an exponential distribution with mean 1/x (the
input process is a homogeneous Poisson process with intensity A) and that x,
has an arbitrary distribution, H. This queueing process is often designated
M/G/1.

There are three important characteristics of the queue which we shall be
interested in studying. These characteristics are the queue size (number of cus-
tomers in the system), the busy period (interval of time during which the server
is busy), and the waiting time of the customers. Let £(¢) denote the number of
customers in the system at time £; i.e., the number of customers waiting or being
served at time ¢ Let 5(t), the so-called virtual waiting time at time ¢, be the
time that a customer would wait before starting his service, if he joined the
queue at time f. We shall let r,’, 7./, -+, 7./, - - - denote the instants at which
customers complete their service and depart from the system. Then if we let
£, = E(ta + 0), £ will be the number of customers left in the system at the
moment the nth customer departs. Also, if we define 7, = (7, — 0), 7, will
be the time the nth customer waits before starting his service.

In the study of queueing processes an important role is played by the traffic
intensity p, which is defined as the ratio of the expected service time to the
expected interarrival time. If we denote the mean of the service distribution by u,
then p = Au. If p < 1, it has been shown by Takdcs [14] and others that the
stochastic processes {7(¢):¢ = 0}, {n, :m = 1}, {£(¢): ¢ = 0}, and {& : n = 1}
converge in distribution to non-degenerate limiting distributions. In this case it
is usually said that the queueing process attains a steady-state. The great bulk

of papers in the queueing literature deal exclusively with the steady-state situa-

tion. On the other hand, if p = 1, the distributions of the processes mentioned
above tend to zero as either n or ¢ tend to infinity.

In this paper we shall treat exclusively the case p = 1. Without loss of general-
ity we shall choose our unit of time so that A = u = 1. We shall be interested
in obtaining limit distributions for certain functionals of the stochastic processes
mentioned,in the last paragraph. The basic tool used jn obtaining these limit
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1438 DONALD L. IGLEHART

theorems is the following result of Darling and Kac [3] which we proceed to

describe.
Let {X(#): t = 0} be a Borel measurable Markov process with stationary

transition probabilities
P(t;z, E) = Pr{X(t+s) e E|X(s) = g},

and state space &, a metric space. If V is a non-negative measurable function on
E, then define the functional Z(¢) as

Z(t) = [i VIX(r)]dr.

When V is the characteristic function of a set E C &, then Z(¢) is called the oc-
cupation time of E; that is, Z(¢) is the amount of time in the interval [0, ¢] that
X (7) resides in E. Darling and Kac studied the limiting distribution of the
stochastic process {Z(t): t = 0} as ¢ tends to infinity. If we let p,(x, E) =
[s ¢ **P(t; x, E) dt, then their result is contained in the following

TuroreM (Darling and Kac). If the

(1) fepe(z,dy) - V(y) ~ Ch(s) as s— 0+

uniformly on the set {x:x e &, V(x) > 0}, where C is a positive constant and
h(s) = s °L(1/s)(0 £ a < 1, L slowly varying’), then the

(2) limee Pr{Z(t)/Ch(1/1) < a1} = Ga(z),

where Go(x) is the Mittag-Leffler distribution. For discrete time Markov chains

with n step transition probabilities pi}’, condition (1) should be replaced by

(3) o 2 pPwV(G) ~ Ch(1 — w) a5 w—1—
uniformly on the set {i: V(i) > 0}. Then the conclusion (2) takes the form
limy oo, Pr{ 37 V(X,)/Ch(1/n) < 2} = Ga().
The Mittag-Leffler distribution G.(z) is given by
Go(z) = (1/7e) [§ 202 [(—1)"7/nlIT(an + 1)y sin nra dy.

Fora =0,G(z) =1 —¢" 2 =0,and for a = 3, Gy(z) = I eV ay,
z = 0. :

We should remark that Darling and Kac also obtain a converse to this theorem
which we shall not use. Furthermore, Kesten [9] has extended [3] in the discrete
time Markov chain case to obtain limit theorems for functions V(j) which
vanish outside a finite set of states, but where V(j) need not be non-negative.
The condition required for Kesten’s result is essentially (3). For our queueing
process we shall state the results as applications of the Darling-Kac theorem. At
the expense of introducing more machinery we could equally well apply Kesten’s

results.
To apply the Darling and Kac result to our queueing process we st essen-

2 A function L(#), 0 < t < o, is said to be slowly varying if it is continuous and L(ct)
~ L(t) ast —» o for all ¢ > 0.
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tially check conditions (1) or (3). These conditions cannot, of course, be ex-
pected to hold for all queueing processes that we consider. We shall have to
assume that the service distribution H belongs to the domain of attraction of a
stable law with exponent a (1 < « = 2). Since the expected value (u) of H is
one, this means that the lima,o Hx(Bax + n) = F(z), where H, is the n-fold
convolution of H with itself, B, = n"*L(n), and F is a stable law of exponent
a (1 < a £ 2). We shall summarize this situation by saying that H ¢ D(F, a).
(Since H is a distribution function on the positive half-line, the possible limit
distributions F, for a fixed «, differ only in the specification of a particular
constant.) This condition contains all distributions possessing a finite variance
(as part of the case @ = 2) plus many others as well.

We briefly indicate the contents of this paper. Section 2 is devoted to basic
lemmas required to establish conditions like (1) and (3). In Section 3 we shall
apply the Darling-Kae results to obtain limit laws for the Markov processes
{£a:n = 1}, {9a :n = 1}, and {n(¢): ¢ = 0}. Section 4 deals with the distribu-
tion of the busy period, G. In particular we show that if H ¢ D(F, a),1 < a £ 2,
then G ¢ D(F*, 1/a) for some stable law F*. A similar result is obtained for the
distribution of the number of customers served in a busy period. These results
immediately enable us to apply some results of Dynkin [5] and Lamperti [10]
to obtain furtherlimit laws. Finally, in Section 5 we mention a number of possible
extensions.

We conclude this introduction by mentioning related work of other authors.
Karlin and McGregor [7] have obtained occupation time laws for birth and death
processes. For the special case of an exponential service time distribution their
results yield the occupation time law for the Markov process {£(2): ¢ = 0}.

If welet Xo = xa — 6nand S, = 2.r= X, then it is well known that the
distribution of max {0, S;, ---, Sa} coincides with the distribution of %, ; see
Spitzer [11], p. 330. Darling in [2] has shown that if E[X,] = 0 (this is the case
for p = 1) and X, has a finite variance, say p» — 1, then 7a/n} converges in dis-
tribution as n tends to infinity to the truncated normal distribution with param-
eter uz — 1. In [1] Brody shows that n(¢)/¢ has the truncated normal limit law
(although his constant is not correct) as ¢ tends to infinity. It is easy to show that
En/n* and £(t)/ # also have the same truncated normal limit law.

Furthermore, Darling shows that if E[X,] = 0 and the distribution of X,
belongs to D(F, &), 1 < a £ 2, which is the case if H £ D(F, ), then n,/n"'®
converges to a non-degenerate limit law as » tends to infinity. It seems clear in
this case that (¢)/t'%, &./n"%, and £(t)/t'* will also have this same non-degen-
crate limit law as either n or ¢ tend to infinity.

2. Preliminary lemmas. To obtain the limit theorems described in the intro-
duction we shall have to verify the asymptotic relation (1) or (3). This will re-
quire a knowledge of the transient behavior of the stochastic processes {£, :n = 1},
{ga :n = 1}, {9(¢): ¢t = 0}. In the transient analysis of this queueing process by
Takécs [14] a very important role is played by the following

Lemma 1 (Takées, [14], p. 47). If R(s) = 0 and |w| £ 1, then z = v(s, w),
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the root of the equation

(4) 2= wy[s + A1 — 2)]

which has smallest absolute value, is

(5) (s, w) = 225 (W) [T exp {— (N + s)a}a’™ dH (),
where Y(s) = [§ e dH (x).

This root is a continuous function of s and w if R(s) = 0 and [w| < 1 and
Jurther z = y(s, w) is the only root of (4) in the unit circle |z < 1 4f R(s) = 0
and |w| < 1or R(s) > 0and [w| < 1 or R(s) = 0, [w| < 1and p > 1. Specifi-
cally, o = (0, 1) 1s the smallest positive real root of the equation, = YA (1 — w)].
Ifp > 1, thenw < l;and if p < 1, then o = 1.

Following Takécs we let v(s) = v(s, 1) and g(w) = (0, w). Then appealing
to Equation (4), we clearly have

¥'(0) = —u/(1 = p) (b < 1)
= — (o = 1),
and
g'(1) =1/(1 = p) (b <1
= © (p=1).

We shall only deal with the case p = 1 and shall be interested in the rate at
~ which y'(s) diverges as s — 0+ and at which g’ (w) diverges asw — 1—. Equiva-
lently, we could study the rate at which 1 — ~(s) approaches zero as s — 0+
or at which 1 — g(w) approaches zero as w — 1—. In carrying out this analysis
we can choose to work with either Equation (4) or (5). We shall illustrate both
techniques for different cases. The lemmas that follow derive these asymptotic
expressions starting from various assumptions on the service distribution H.

We begin by stating some results that we shall need in this development. The
first lemma is a standard Abelian result; see for example Doetch [4], p. 460.

Lemma 2. If C is a constant, L(n) is slowly varying, and

an ~ Cn'/L(n) as n— oo, 1<ax2,
then
Dm0t ~ CT(1 — 1/a)(1 — w)* "/L(1/(1 — w)) as w— 1—.

The second lemma is a very elegant local limit theorem recently obtained by
Stone [13] for non-lattice distributions. (The author is indebted to Professor
Charles J. Stone for making this result available to him before publication and
for discussions on applications of the result.)

Lemma 3. Let H be a non-lattice distribution function in the domain of attraction
of a non-degenerate stable distribution function F with exponent o, 0 < a < 2.
Let {44} and {B,} be constants such that the lim, .., H,(B,z + A,) = F(zx), for
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— w0 <z < « Then
HaBa(z + 1) + Aa] — Ho[Bax + Aa] — [F(z + h) = F(z)] = 0a(1)(h + B 7).

where the limpe 0,(1) = 0 uniformly in x and h.

Next we use (4) to study the behavior of 1 — g(w) in the neighborhood of
w = 1.

LevMmA 4. If the ‘service distribution H has a ﬁzn'te second moment ., then
1 — g(w) ~ (2/p)’(1 — w)* and g (w) ~ (2u2) (1 — w)™" both as w — 1—.

Proor. Since p; < o, we can write ¢(s) as

W(s) =1 — s+ (w/2)s"+ o(s") as s—0+.
Appealing to (4) yields
g(w) = w{l — (1 — g(w)) + (w/2)(1 — g(w))* + ol (1 — g(w))’} as w—1—.
After rearrangement we have
(1 — g(w))* = (2/m)g(w)(1 — w) + ol(1 — g(w))"] as w—1—,

which gives the first result. The asymptotic relation for g’ (w) follows immediately
from L’Hospital’s rule.

It should be noted that this same argument was used by Brody (1], p. 78, to
obtain the first result in the next lemma. The second result again follows immedi-
ately from the first. The reader is cautioned that Brody used the unconven-
tional notation o for the second moment of H; we use ps .

Lemma 5 (Brody). If e is finile, then 1 — v(s) ~ (2/w)lst and —'(s) ~
(2u3) %57 both as s — 0+.

Lemmas 4 and 5 could also be proved using (5), a local central limit theorem
for H, , Laplace’s method for integrals, and Lemma 2 above. We proceed now
to the case where H e D(F, ), 1 < a < 2.

Levma 6. If He D(F, a), 1 < a < 2, then

(6) 1 — g(w) ~ af(0)T(1 — 1/&)L7(1/(1 — w))(1 — w)"*
and
(7) g (w) ~ f(0O)T(1 — 1/a)L71/(1 — w))(1 — w) W1

both as w — 1 —, where f is the density of F and L s slowly varying.

Proor. We shall derive (7) from which (6) can be obtained by a standard
Abelian argument. Since g(w) is analytic for lw| < 1 we can write g (w) =
> o baw" where b, = (1/n!) 5 e " dHy4(x). First we shall show that
ba ~ f(0)B, " as n — o, where as usual (B} is such that Hu[B.x + n] — F(z)
as n — . This result together with Lemma 2 yields (7).

Given ¢ > 0, choose M so large that ®(—M) < e, where & is the standardized
normal distribution function. We decompose b, into three parts I:(n), In( n),
and I3(n) as follows.
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bor = (1/(n — DD{ZEZ*Y [i7 6" dHa(z) + Liniantli g [57
+ Zl?=[n+unn+1 fllﬁﬂ}
= Ii(n) + Iy(n) + I;(n).

The principal contrlbutlon t0 bn—y will come from I,(n). Since for [ — Mn'] +
1 =k = [n+ Mnl] we have ¢ k" ~ ¢ *™(k + 1)" asn — o, we can
write for sufficiently large n that

Ln) £ [(1 + o/(n — 1) XA 6" [Ha(k + 1) — Ha(k)).

At this point we thust distinguish the two cases in which H is either a non-lattice
distribution or a lattice distribution. For the non-lattice case we appeal to
Lemma 3 and for the lattice case we use the Gnedenko local limit theorem for
lattice random variables; see [6], p. 236. We shall only carry out the details
for the non-lattice case.

Using Lemma 3 we obtain

Ln) £ [(1 + ¢)/(n — 1)1] XA iy 6" [F((k + 1 — n)/B,)
— F((k = n)/Bx) + 0a(1)B.7']

for n large. Since all stable laws are absolutely continuous this inequality can
be written as

(8) L(n) £ [(1+ % —1)1B,~ 5 e 2" f((z — n)/Bu)dz
+ 0a(1)B, .
Now if we let
J(n) = [1/(n — 1)1 [2thmd ez "“f((x — n)/B,) d,

we shall show that J(n) < f(0) + € for n large. Making the change of variable
y = (¢ — n)/B, in J(n) we obtain

J(n) = [Ba/(n — 1)1] [Mi¥35 21 exp { — (Bay + 1)} (Bay + n)" () dy.
Since n!B,™ — 0 as n — o« and f is continuous, we have
J(n) = [Ba/(n — 1)IIF0) + ¢ [Xi35. 5 exp { = (Bay + n)} (Bay + n)"™ dy
for n large. Letting x = B.y + n again yields
(9) J(n) S{If(0) + e/(n — 1)} [3540 2" da < £(0) + ¢,

since e “2"™'/(n — 1)!is the density of a random variable. Combining (8) and
(9) we arrive at lim Supp.. B.l3(n) = (1 4+ €)*(f(0) + ¢). In a similar manner
we obtain lim inf,,. B.I3(n) = (1 — €)*(f(0) — ¢). Thus since ¢ was arbitrary
we have I,(n) ~ f(0)B,™" as n — . Turning now to I;(n) we write

Li(n) < [1/(n — 1)) A" Pk + 1)
. [F((k +1 - n)/Bn) - F((k - n)/Bn) + On(]-)Bn_l]r



QUEUES WITH TRAFFIC INTENSITY ONE 1443

since ¢ “z" " is monotone increasing in x for0 £ ¢ = [n — M n}] when n is large.
The stable law F has a bounded density f(z) < K for all z which yields

Buli(n) < [K/(n — 1)1] 2h2g™™ ¢k 4+ 1) + 04(1)

for n large. Furthermore
[1/(n = DY Zhz™™ e 0 + 1)

< [1/(n — 1)) [ ey < @(—M) + ¢
for n large. The last inequality is obtained by applying the central limit theorem
to exponentially distributed random variables. Hence, we have shown that the
liMpaw Bal1(n) = 0. Similarly we can show that limg.e Bals(n) = 0. Thus we
have now shown that b,_; ~ f(0)B, ' as n — o which combined with Lemma
2 yields (7).

The next lemma is proved in a similar manner.
Lemma 7. If H e O(F, @), 1 < a < 2,

1 —v(s) ~af(0)T(1 — 1/a)L7(1/s)s""
and
— 4'(s) ~fO)T(1 — 1/a)L7'(1/5)s" ™

both as s — 0.

Finally, we give the value of f(0) in

LemMA 8. If f is the density of the stable law F appearing in Lemmas 6 and 7,
then

(10) £(0) = 77'T(1 + /a)e ™ *R{(1 + 1 tan (7a/2)) ™%},

where the logarithm of the characteristic function of F is given by

—c |t* I:l + (at/t]) tan <1r7a>:|, c>0.
Proor. The inversion formula for characteristic functions states that

£(0) = (1/27) [Zoexp{—clt|*[L + (it/|t]) tan(we/2)]} dt.

This integral has been evaluated by Stone [12], p. 336, to give (10).

There is one case which is not treated in Lemmas 4-7; namely, the case in
which H ¢ D(F, 2) but has an infinite second moment. The proof in this case
would follow the lines of Lemma 6, however, the evaluation of the limg.. J(7)
is more involved. We leave this case to the interested reader.

3. Occupation time laws. In this section we shall apply the Darling and Kac
results to the Markov processes {£,:n = 0}, {n.:n = 1}, and {n(t):¢t = 0}.

We begin by discussing the process {£,:n = 0}, where &, is the number of
customers left in the system at the moment the nth customer departs. We sup-
pose there is a departure at time ¢ = 0— and let & = £(0). It is well known
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(see Kendall [8]) that {£,:n = 0} forms a stationary Markov chain with transi-
tion probabilities

Dij = Pr{fn+l = ] l &= ’l}, n = O, 1, 2, .

given by
Pij = Djmin Hj=2z—landi=1,2 --.
=p; ifjz0andi=0
=0 ifj<i—1landi=23,---
where

p; = [t (e%/j)dH(z), j=0,1,2,-

As usual we let p{}’ denote the n-step transition probabilities. The double gen-
erating function for p{? has been obtained by Tak4cs and we state it as

Lemma 9 (Takées, [14], p. 70). The double generating function of pi} for the
case \ = 1 s given by

"=O ZJ=0 p(n) n J
— L — g(w)] — (1 — (1 — D)L — gl — k(L — )]

where g(w) and Y(s) are defined in Section 2.

This lemma together with Lemmas 4 and 6 enable us to obtain the Darling-
Kac occupation time laws for the Markov chain {¢,: n = 0}. Unfortunately,
we have to restrict the functions V that we use to vanish outside a finite set

of positive integers. We state the result in
THEOREM 1. If up 1s finite and the non-negative function V vanishes outside a

finate set, then
| limp.e Pr{[1/C(V) (1/2)'n] 220 V(&) S )} = Gy(a),
where C(V') 1s a constant depending only on 'V, and Gy is the Mittag-Leffler dis-
tribution of order %. On the other hand, if H e D(F, a), 1 < a < 2, then the
lim, e, Pr{faf(0)T(1 — o) /C(V)L(n)n''*] 22ix V(&) < 2} = Gya(2).
Proor. Consider the generating function given in Lemma 9. If we rewrite
it as
0 Dm0 DW= 2i+1/[3 — wyp(l — 2)]
— {wlg(w)]/[1 = g} {(1 = 2)¢(1 — 2)/le ~ wh(1 = 2)]}
it is clear that the first term on the right hand side is negligible as w — 1—.
Since the term (1 — z)\l/(l — z)/[z — Y1l —2)] = a0 + az + a2’ + -

we can deduce that D a7 w" ~ awlg(w)]’/[1 — g(w)] as w — 1—. Hen\e
we have

0 2 PSPV (G) ~ 25 a,V(Hwlg(w)]/[1 — g(w)] asw — 1—.
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If we let C(V) = >_;a;V(j), then the theorem follows immediately from
Lemmas 4 and 6 and the Darling-Kac result. Note that we need to restrict the
set {j: V(j) > 0} to be finite in order to obtain the required uniform conver-
gence in (2).

Observe that if in Theorem 1 the function V is chosen to be the indicator
function of the state 0, that C(V) = 1 and the limit law tells us that of the first
n customers of the order of n’* of them leave behind them an empty system

(i.e., an idle server) as n — oo,

We turn our attention now to the Markov process {7, : n = 1}. If we let
Q.(s) be the Laplace-Stieltjes transform of the distribution of %,, then the
generating function of Q,(s) has been obtained by Takécs [14], p. 57. We state

the result as
Lemma 10 (Takéics). The generating function of Q.(s) for the case A = 1 1s

gwen by
2 G()w" = w(l — 8)(s)/(1 — s — wp(s))
= sg(w)[l — g(w)]/[1 — g(w)][1 — s — wy(s)].

We shall restrict our attention now to functions ¥V which are indicator func-
tions of bounded sets. Then Lemmas 4, 6 and 10 yield
THEOREM 2. If up is finite, then the

limpoe Pr{[1/C(E) (u/2) '] 270 V(ns) £ 2} = Gy(x),

where V s the indicalor function of the bounded set B < [0, «) and C(E) is a
conslant. On the other hand, if H e D(F, o), 1 < a < 2, then the

. of(0)T(1 — o) $~ 0 — G (s
tim Pr{LONE= L) 32 Vin) 5 o} = Guao)

Proor. Let W,(z, -) be the measure induced on [0, ») by the distribution
of 7, , given 7, = z. Then the Darling-Kac condition (1) becomes

2 a1 Wiz, E)w" ~ Ch(1 — w)

as w — 1— uniformly for all z ¢ E. From Lemma 10 we know that
(1) [7e™ 20 Walz, dy)w” = w(l — 8)e”"/[1 — s — wp(s)]
— sg(w)e /L — g(w)]ll — 5 — wp(s)].

To obtain Z:’:l W.(x, ij" we use the complex inversion formula for La-
place-Stieltjes transforms; see Widder [19], p. 69. If we let o(E, s) = [ze* dt
and denote the right side of (11) by f(s; w, z), then

(12) ? Walz, E)w" = limr.e (1/2m) [55i7 [f(s; w, 2)/sle(E, s)ds, ¢ > 0.

Since we shall let w — 1— in Equation (12), it is clear that the first term on the
right hand side of (11) will not contribute to the asymptotic behavior of (12).
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Thus we can apply Lemmas 4 and 6 to obtain the desired results with
C(E) = limpr,e (1/2m5) [(XiT o(B, s)ds/[l — s — y(s)]ds.

Turning now to the virtual waiting time of the process {5(¢): T = 0}, we
let Q(t, s) = E{e"*""}. Since the Laplace transform of 2(t, s) has been computed
by Takdces [14], p. 53, we can in principle use the same technique employed in
Theorem 2 to obtain the occupation time laws for {n(¢): ¢ = 0} for bounded
sets. We omit the details.

4. The busy period. The server’s time is composed of alternating idle and
busy periods. The length of the successive idle and busy periods are independent
random variables. Since we assume a Poisson input to the queue, the distribu-
tion of the idle periods is clearly exponential. If we assume, as we shall in this
section, that the queue starts with an idle period, then the length of all busy
periods has the same distribution. We denote the distribution of the length of a
busy period by G. For the case p = 1, it is well known that G is a proper dis-
tribution in the sense that G(+ «) = 1 and that the mean of G is infinite; see
Takécs [14], p. 58 and 64. The next theorem gives slightly more information
about G.

THEOREM 3. If p s finite then G ¢ D(F*, ) for some stable law F* and

1 — Gx) ~ (2/mm)x™ as x— + oo,

Simalarly, if H e D(F, a), 1 < a < 2, then G £ D(F*, 1/a) for some stable law
F* and
1 — G(z) ~af(0) L7 (z)z™* as z— + .

Proor. On page 58 of [14] Tak4cs shows that the Laplace-Stieltjes transform
of G is y(s). Dynkin [5], p. 179, has shown that the asymptotic behavior of
1 — vy(s) indicated in Lemmas 5 and 7 is a necessary and sufficient condition
for G to belong to the domain of attraction of a stable law. The asymptotic
behavior of 1 — G(z) also follows from Dynkin’s result.

We turn now to the distribution of N, the number of customers served during
a busy period. Consider again the Markov chain {£,: n = 0}, the number of
customers in the system at the departure points, with n-step transition proba-
bilities p{?’. In the usual way we let £ denote the probability of first passage
from state 7 to state j in n steps. Then clearly we have the Pr{N = n} = f§,
n=1,2,---.Let Fo(n) = Pr{N =< n}. Then we obtain

THEOREM 4. If us is finite, then Fo & D(F*, 3) for some stable law F* and

1 — Fo(n) ~ (2/mwm)'n? as n— «. _
Similarly, if H e D(F, @), 1 < a < 2, then Foy e D(F*, 1/a) for some stable law
F* and
1 — F(n) ~ of ()L n)n™* as n— .

(n) n

Proor. From Lemma 9 we have the fact that D n— p5’w” = 1/[1 — g(w)].
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By the standard relation between the generating functions of {p§;’} and {f§3’}
we see that D aea fi0w” = g(w). Now

a0 (1 = Fu(n))w" = 2o 0 Sndow”™ = [1 — g(w)l/(1 — w).
Thus for p, < o,
o (1 = Fao(n))w" ~ (2/m)(1 —w)™? as w—1-—,
and for He D(F, a) (1 < a < 2),

20 (1 = Fyp(n))w" ~ of (O)T(1 — 1/a)L7'(1/(1 — w))
1 =w)* " as wo1-—.

Since 1 — Fu(n) is non-increasing, we obtain from Karamata’s Tauberian
theorem the asymptotic behavior of 1 — Fy(n) as n — . The fact that Fo
- belongs to the domain of attraction of a stable law again follows from Dynkin
[5].

The results of Theorems-3 and 4 enable us to apply a number of results ob-
tained independently by Dynkin [5] and Lamperti [10]. We proceed to describe
their results.

Let {X,: n = 1} be a sequence of independent identically distributed positive
random variables with distribution function F. We define three new random
variables in terms of the partial sums S, = ZL; X:and Sy = 0 as

N(t) = max{n: S, <},
(13) v(t) =t — Syw,
6(t) = SN(l)+l — .

These are the random variables commonly studied in renewal theory. In renewal
theory language N (%) is the number of renewals in the interval (0, &, y(¢) is
the age (or slack), and 6(¢) is the excess. For this set-up Dynkin and Lamperti
show that

(i) EIN(t)] ~ (an/A sin ar)t®/L(t) as t — =,
(ii) Lim.. Pr{y(t)/t < 2} = (sin ar/7) [fu*(1 —w) % du,0 <z < 1,
(iii) limy.. Pr{d(t)/t < z} = (sin an/7) [§u (1 + u) T du, 0 < z < oo,

ifand only if 1 — F(z) ~ AL(z)x *asz — « with0 < a < 1.

Now the time in a queueing process can be conveniently divided into cycles.
We shall consider a cycle to begin at the start of an idle period and to end at the
completion of the next busy period. Again we assume that the server is initially
idle. Since the length of an idle period is exponentially distributed and inde-
pendent of the next busy period, the Laplace-Stieltjes transform of the cycle
length is (1 + s) *y(s). Thus the distribution of the length of a cycle belongs
to the domain of attraction of a stable law with exponent 8 (0 < 8 < 1) if G
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does. Hence we can immediately apply the Dynkin and Lamperti results to the
sequence of cycle lengths. In this context the random variables defined in (13)
have the following interpretations:

N(t) = number of complete cycles in (0, {];

v(t) the time measured at ¢ since the end of the last completed busy-

period; and

5(t) = the time measured at ¢ until the end of the current cycle.

In a similar manner we can consider the sequence of random variables {N, :
n = 1}, where N, is the number of customers served in the nth cycle. For this
case the random variables of (13) are

N(n) = number of cycles completed at the moment the nth customer

(ol

departs,

y(n) = number of customers served in the current cycle at the moment
the nth customer departs, and

8(n) = number of customers still to be served in the current cycle at

the moment the nth customer departs.
Again we can apply the Dynkin and Lamperti results with the help of Theorem 4.

5. Extensions. There are a number of ways in which the above results can be
generalized. The first and perhaps simplest extension would be to allow cus-
tomers to leave the queue without being served with positive probability ¢ rather
than waiting. Takécs considers this problem in [16]. The analysis is very similar
to the usual M/G/1 queue.

Secondly, we could analyze the queue GI/M/1 by essentially the same tech-
niques as we have used here for //G/1. Furthermore, at the expense of greater
technical details we could also handle the queues M/G/1 and GI/M /1 in which
the customers are served in batches of size m in the order of their arrival; see
Takécs [14], p. 81-112 and 125-139. Also, the queue E,./G/1 (interarrival times
have a gamma distribution) can be analyzed as M/G/1 with customers served
in batches of size m; see Takdcs [15].

Finally, we mention the situation for the queue 3//G/1 in which the distribu-
tion of the service time for a customer initiating a busy period is different than
that of the other customers. In [17] Welch has analyzed that problem along
the lines of Takdcs’ work. In a second paper Welch [18] uses the results of [17]
to investigate preemptive resume queues. Welch’s results can thus be used to
study the case p = 1 which we have considered here.
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