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0. Summary. Some results are indicated in this note to show the efficiencies of
weighing designs when least square estimates are used and errors are correlated.

1. Introduction. Hotelling’s weighing design problem [2] may be described
as follows: Let it be required to determine the individual weights of p objects
and let there be N weighing operations in all on a balance without bias. Results
of weighings would then fit into the model Y = X8 4 ¢, where Yis an N X 1
random observed vector of the recorded results of weighings; X (X = (z;),
 =1,2,---,N;7=1,2,---, p)is an N X p matrix of known quantities with
z; = +1, —1, or 0, if, in the 7th weighing operation, the jth object is placed
respectively in the left pan, right pan, or in none; 8 is ap X 1 vector (p < N)
representing the weights of the objects;e is an N X 1 unobserved random vector
such that E(e) = 0 and E(ee’) = o’I. X represents the weighing design matrix.
When X is of full rank, the least square estimates of the weights are given by
B = (X'X)'X'Y, and the covariance matrix by Cov (8) = B = &(X'X) ™" = ¢°C.
C.:, which is the 7th diag element of C, represents the variance factor for the
1th object. In weighing designs, we search for the elements z;; such that C;; is
the least for each <.

2. Definition for the efficiency of a weighing design. A weighing design
has been called the best if

(i) each variance factor C; is the least, or

(ii) the average trace of C, that is, )% Cy;/p is the least, or

(iii) the det |C] is the least. In some situations [2], [3], (i), (ii) and (iii) would
lead to an equivalent measure of efficiency. For the purpose of this paper, we
shall adopt definition (ii), and shall denote the efficiency as trace efficiency.

3. Autocorrelation. We are not aware of any recorded literature indicating
whether the efficiencies of the standard weighing designs would alter, if at all,
when the errors are autocorrelated. Some results in this direction are indicated
here. We shall take the error structure to take the form, E(ee’) = o°V, where V

is given by l
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and shall suppose further that p is not known. Under this modified model, the
least square estimates are still given by § = C X'Y. Cov (8) is different, and is
given by

(3.1) Cov (8) = B = #CX'VXC.
From (3.1), we shall have tr B as given by
(3.2) trB = o tr (MM'V),

where M = XC. In particular, whenp = N, X is of dimensions N X N. (3.1)
would then reduce to

(3.3) B = FAX7'vx!
and tr B to
(3.4) tr B = o tr (XX')7V]. .

4. Chemical balance problem. Hotelling [2] has shown that the best weighing
design for a chemical balance is given by an orthogonal matrix with 4=1 as its
elements. (The design matrix is orthogonal in the sense that X’'X is diagonal.)
In this situation, p = N, and the weighing design comes out as the best by any of
the three criteria of efficiency as referred to in Section 2, when the errors are
uncorrelated.

Mood [3] has pointed out that the best chemical balance design is connected
with the Hadamard determinant problem. Hadamard matrix Hy exists when
N = 0 (mod 4) with the exception of N = 2. Plackett and Burman [4] have
constructed all Hadamard matrices of order less than or equal to 100 (excepting
92).

When, however, the errors are correlated, trace efficiency of the optimum
chemical balance design would be obtained as ¢°/N by (3.4). It would further be
clear from (3.3) that an individual variance factor may be a function of p, but
the sum of the variance factors is independent of p. In other words, the average
trace does not alter even when the errors are autocorrelated.

When the errors are not correlated, orthogonal chemical balance design is the
best also by definition (iii) for the criterion of efficiency, as the value of |C|
is 1/N” which is the least. Under autocorrelation, the value of the corresponding
det = (1 — p’)"'/N"™. These two are the same only when p = 0.

6. Spring balance problem. In a spring balance design, the elements z;; are
restricted to be 41 or 0. The efficient designs for spring balance are given by the
designs Px of Mood [3]. Banerjee [1] has indicated that a balanced incomplete
block design (BIBD), used as a spring balance weighing design, would give the
same efficiency as the Px of Mood by definition (ii). (Definition (iii) cannot be
adopted to measure efficiency in this case, as the dimensions of the design matrices
in the two cases are not the same.) BIBD’s represent [1] some efficient sub-
matrices of Px of Mood [3].
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When p = N, the designs Ly of Mood are the most efficient by any definition.
In Ly, N = 4k + 3, k being any positive integer. It has been shown in [1] that
the designs Ly of Mood are given by a special class of BIBD’s (an orthogonal
series). We shall indicate the efficiencies of these two classes of BIBD’s (BIBD’s
in general, and the subclass as given by Ly) under autocorrelation of errors.

6. Efficiency of BIBD (general) under autocorrelation. BIBD’s are char-
acterised by the parametric relationships, bk = vr, N\(v. — 1) = r(k — 1), where
the parameters b, k, v, r and A have their usual meanings. In weighing designs,
v (the number of varieties or treatments) takes the place of p, the number of
objects to be weighed, and b (the number of blocks) takes the place of N, the
number of weighing operations that can be made. For such a design, (X'X) and
(X'X)™ take, respectively the following forms:

r N N - X
xx) <[> ™ A
N D WP
(6.1) * LI R
(X,X)_lz[—x* VA S —x*1
RO VI VR

where r* = [r + Mp — 2)]/(r — M[r + M(p — 1)], and
N = M(r =Nl + NMp — D).
When the errors are correlated, B reduces to
B = [{(r* + N, — N XV (™ + N, — Mo} XT
= [(r* + N)X" — N el VI + NDX — MR paa],

where I, is an identity matrix of order p and J is a matrix of elements 1, the
suffixes of J denoting its dimensions.
Taking form (3.2), we get

(6.2) trB = o tr (MM'V),

where M = [(r* + \))X — Nkl
Substituting the value of (r* + A*) = 1/(r — \), and performing the required
matrix multiplications, we get tr B reduced to

(6.3) trB = ¢ tr [{u(XX') — wWww} V],
where the scalars u and » are positive and given by u = 1/(r — \)%,

v = [{1/(r = N} + 1/l + Mp — DIOE)/[(r = M{r + Np — D)}l
The diagonal elements of (XX') in (6.3) are k, and the off-diagonal elements are
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such as cannot exceed (k — 1), and, in this situation, k has to be equal to (p — 1).
Admitting of this maximum possible value for these off-diagonal elements, we
show as indicated below that » is greater than (k — 1) p.
Forv > (k — 1) u, if,

I/ (r = Nfr + Mp — DHIL/(r = N) + 1/{r + A(p — 1)}]

> (k+1)/(r = \)*

or if, _
(6.4) k+ (1 —=Mn]>(—1),
(6.4) holds good, as, in this extreme situation, &k = (p — 1).

The off-diagonal elements of (XX') will be different for different BIBD’s,

and these elements may not be equal to one another in all designs. Let the off-
diagonal elements be equal to ¢ (¢ < k — 1). (6.3) would then reduce to

tr B = ¢'[N(kp — v) — 2(v — tu)R),

where
(6.5) R=(N—-1)p+ (N=2)p"+ -+ "7,
(6.6) R = [Np(1 —p)— p(1 —p")]/(1 = p), p <1

When p = 0, the average trace would reduce to
(N/p)(kp — v)o" = (N/p){k/(r — N)" = 6"/ (r — N){r 4+ Mp — 1)}]
(6.7) W/ =N+ 1/{r + Mp — DY)’
= [{r + Mp — 2)}/(r = N{r + Mp — D}Io".

(6.7) is the same [1] as found for the average trace for such designs when errors
are uncorrelated.

From the fact that v > ty, it is clear that, when p is positive, BIBD’s, used as
weighing designs, will have increased precision, as compared to the situation when
the errors are uncorrelated.

If, on the contrary, p is negative, the precision will be less. A question may
arise in this situation to find out if it would be possible to work out a spring
balance design such that the factor (v — tu) would be negative, and thus pre-
cision would be increased. It is indicated, below that such a situation is not
possible. This fact will be demonstrated with reference to Ly of Mood which
corresponds to the special class of BIBD’s, as referred to before. Although the
result is shown for a special subclass, it will hold good in general.

7. Efficiency for the designs Ly of Mood. For Ly ,p = N,r =k = 3(N + 1),
A = (N 4 1). As X is of dimensions p X p, we shall use (3.4) to find tr B. The
off-diagonal elements of (XX')™ will be equal to \, and the average trace will
reduce to

(7.1) " = (2AY/N)R] = '4N/(N + 1)* — {8/N(N + 1)’|R],
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where R is as defined in (6.5). It is noticed from (7.1) that, when p = 0, we get
the same efficiency from Ly , as we would obtain in the situation when the errors
are not correlated.

The extreme favorable situation would be obtained when p = +1. The average
trace, substituting the value of R from (6.5), would reduce to

(7.2) o[AN/(N + 1) — 8N(N — 1)/2N(N + 1)’] = 46°/(N + 1)

(7.2) shows that the efficiency would be increased considerably in this situation.
In particular, for L; , each estimate will have a variance equal to ¢°/4, a level of
precision obtainable only for the best chemical balance design for N = 4. (This
remark is made here because it is known that a spring balance design can be no
more than about % as efficient as designs for a chemical balance [3].) The extreme
unfavorable situation would arise when p = —1. The value of R may, in this case,

be conveniently calculated from (6.6). As N is odd, R will be equal to (1 — N).

Hence, the average trace would reduce to

(7.3) JM4N/(N + 1)’ — 8(1 — N)/2N(N + 1))
= 4’*(N*+ N — 1)/N(N + 1)%

(7.3) would be less than o*, pointing out that, for a spring balance, a design may
be preferred to individual weighing operations even under such an extreme dis-
advantage.

A question now arises if, when p is negative, it should be possible to work out
a spring balance design such that —(» — {u), the factor that multiplies R should
be positive. Let p = N, as in Ly . A reference to the construction of (XX')™
would make it clear that if the off-diagonal elements of (XX')™ are positive, the
factor multiplying R will be positive. But, for the off-diagonal elements of
(XX")™ to be positive, the off-diagonal elements of (XX') have to be negative.
And, this is not possible as the elements z;; of X are either 1 or 0 in a spring
balance design.

It has been shown above that, when p is positive, a BIBD would lead to higher
efficiency under autocorrelation. When p is positive, an overall advantage is
feasible, because p, p’, - -+, p"* will all be positive. But, when p is negative, an
even power of p is positive, and an odd power negative. Hence, the disadvantage
in a comparable situation cannot be as sweeping as from a positive p.

We shall indicate next with reference to the best chemical balance design if it
would be possible to take advantage of the signs of p (if known) for working out
a still better design.

8. Status of an orthogonal chemical balance design. The average trace of
an orthogonal (N X N) chemical balance design, ¢°/N, remains the same as
demonstrated earlier, even if the errors are correlated irrespective of the sign of p.
It still remains to be seen if such an orthogonal chemical balance design can be
further improved upon (in the sense of finding a lower trace) when at least the
signs of p are known. If possible, let there be a transformation Z = AX, where X
is an orthogonal matrix, and A, an N X N non-singular matrix such that the
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average trace for the derived design matrix Z would be less than ¢’/N. The aver-
age trace would be obtained as

(81) (1/N)trB = (’/N) tr Z7'VZ'™ = (’/N) tr (ZZ")"'V

(°/N) tr [{A"H(XX')7AT} V] = (¢*/N*) tr [(44")7'V].
From (8.1), it would be clear that if (AA")™ is at least of the form

1 0 --- 00
v 1 v --- 00
(82) O w00 Githu = 1,
000 -+ 1 u
000 --- u 1

the average trace could be made less than ¢°/N, taking +1 or — 1 for u depending
on the minus sign or plus sign of p. Taking, for the sake of an illustration, the
dimensions of (8.2) to be4 X 4 (i.e., N = 4), the value of the det (8.2) comes to
(1 — u*)* — u” which is negative for 4 = =1. This is inconsistent, as (44") ™ is
positive definite. For a fractional value of u, however, we may be able to get a
positive value of the det (8.2), but the matrix A would in that case, consist, in
general, of numbers of different magnitudes as its elements. Thus, it would not be
possible to work out the weighing design Z = AX, as the elements of a weighing
design matrix have to be =1 or 0. It appears therefore that it is not possible to
work out in general a better design than an orthogonal chemical balance design.

9. Concluding remarks. Efficiencies of three classes of basic weighing designs
have been discussed in this note. It has been pointed out, interalias, that an
orthogonal chemical balance design is the best even when the errors are corre-
lated. For spring balance designs, however, BIBD’s (the general series or the
series as given by Ly) may be safely adopted as efficient weighing designs, what-
ever be the sign of autocorrelation.

The special cases would, however, need special considerations.
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