ADMISSIBILITY AND BAYES ESTIMATION IN SAMPLING
FINITE POPULATIONS. II

By V. M. Josu

Unaversity of North Carolina

1. Introduction. In Part I of this paper the admissibility was investigated
primarily for the class of unbiased estimates of the population total. In particular
the Horvitz-Thomson estimate was shown to be admissible in the class of all
unbiased estimates, (cf. Theorem 4.1 of Part I). In the following, the investiga-
tion is extended by removing the restriction of unbiasedness, with the corre-
sponding modification of the definition of admissibility: Now some other estimate
is shown to remain admissible for all sampling designs. The result appears to
have implications concerning the basic logic of sampling with varying prob-
abilities. These however are not discussed here.

2. Notation. The notation used here is the same as that formulated in the
Section 2 of the Part I of this paper and is not restated here. The definitions and
preliminaries, as given in that section, also apply in the following discussion. In
addition for convenience of discussion, here we assume that the units u of the
population U are numbered, that is U = (u1, -- -, ux), N being the total num-
ber of units » in U. As a result a sample s (Definition 2.2, Part I) can now be
specified by the set of integers namely the serial numbers of the units u ¢ s.
Thus for u, &€ s now we write r &£ s. Further, the variate value z(u,) associated
with the unit u, would be denoted simply by z,,r = 1, --- , N. And we have z =

(1, -+, xx), a point in Euclidean N-space Ry . Now the problem is to find
an estimate (Definition 2.6, Part I), of the population total
(1) T(z) = Yima,

by observing those z. for which r ¢ s, the sample s being drawn according to a
given sampling design (Definition 2.3, Part I). We extend the Definition 2.8, in
Part I, of an admissible estimate by removing the restriction of unbiasedness as
follows:

DEeFINITION. Given a sampling design d = (S, p), an estimate e(s, x) is said
to be admissible for T in (1), if and only if there does not exist any other estimate
¢'(s, z) such that
(2) s P(8)(€(s,2) —T(2))" £ s (s)e(s, x) — T(x))"
for all x € Ry, strict inequality holding true for at least one z.

3. Admissibility of an estimate. We now prove the following

TueoreM. The estimate e*(s, ) given by
(3) e*(s,2) = (N/n(5)) 2ree s

Received 25 March 1964; revised 28 May 1965.
1 On leave from Maharashtra Government, Bombay.

1723

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Mathematical Statistics. MIKOIRS ®

2

WWW.jstor.org



1724 V. M. JOSHI

where n(s) is the sample size (Definition 2.4, Part I), is admissible for T accord-
ing to the Definition in the preceding section, for any sampling design.

REMARK. ¢*(s, z) can also be shown to be admissible on any subset of Ry
givenbyz:¢, £ 2, £ ¢,7 =1, ---, N, c1, c; being some arbitrary constants

with a slight obvious modification of the proof below.
Proor. If ¢* in (3), is not admissible, then by (2) there exists an estimate
¢'(s, x) such that, for all z ¢ Ry,

(4)  2usp(s)(€(s, ) — T(2)) £ Dusp(s)(e*(s, z) — T(x))"
We put
(5) g(s,2) = (N — n(s))7(€'(s, ) — Dres @),

9% (s, z) = (N — n(s))7'(*(5, &) — Dores 3r),

n(s) being the sample size (Definition 2.4, Part I) of s. Now assuming n(s) =
N — p(s) = 0, and putting for such s, g = ¢* = ¢ in (5), we have from (4)

(6) Zusp(S)[(N — n(s))g(s, x) — Zm xrlz
S 2ees ()N — n(s))g*(s, ) — 2sn .

(Even without this assumption, the proof needs only a slight modification.
For, obviously it is enough to consider in (4) estimates e such that ¢ = T,
for sample s for which n(s) = N.) Now taking the expectations of both sides of
(6) wrt a probability distribution of Ry such that z;, - -, X are independently
and dentically distributed, with a common finite discrete frequency function w,
common mean 6(w) and common variance o*(w), we have

2owes P(8)(N — n(s))’Eul(g(s, z) — 8(w)) + (6(w)
(7 — (N = ()7 2 2)]" £ s p(s)(N — n(s5))’E.
[(g*(s, 2) — 8(w)) 4+ (B(w) — (N — n(s))” X z)I-

The existence of E, in (7) follows from the finite discreteness of the frequency
function w. Now noting that the expectations of the product terms on both sides
of (7) vanish due to the independence of z;, - - - , z» and cancelling out the com-
mon term Z,,s p(s)(N — n(s))?*(w) on both sides of (7), we get

(8) s P()(N — n(s))’Eulg(s, ) — 8(w))’
S 2us p(8)(N — n(8))’Eu(g™(s, ) — 6(w))".

Sincez,,r = 1, --- , N are distributed independently and identically we replace
in h(s, ) and h*(s, z) in (8) the variates z,, r ¢ s, in some order by z;, z,,
-, Tm respectively, and let

(9) h(s, z) and h*(s, z) denote the resulting

values of g(s, z) and g*(s, z), respectively.
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Next putting in (7),
(10) Em‘?m P(8)h(s, ) = Pnon(x)

where 8, is the set of all samples s with fixed size m, i.e. n(s) = m and P, =
D s p(s), we have

D ees P(8)(N — n(s))’Eu(h(s, ) — 8(w))*
(11) = 2t (N — m)* s, D()Eu(h(s, ) — ém(z))?
+ 2omt (N = m)’PuEu(én(z) — 6(w))™

Now if in (10) h(s, x) is replaced by h*(s, ) in (5) and ém(z) by ¢n*(z),
then from (3), we get

(12) h*(s,2) = én*(z) = 208 /n(s).
Hence from (11) and (12) ’
(13)  2ws p()(N — n(s))’Eu(h*(s, ) — 6(w))*
= 2on1 Pu(N — m)"(¢n™(2) = 0(w))".
And further from (8), (11) and (13) we get
met (N = m)* 2 es,, D(8)Eu(h(s, ©) — ¢m(z))’
(14) + 2nat (N = m)’PuBu(én(z) — 6(w))*
S 2t (N = m)’PuEu(én*(z) — 6(w))".
That is
(15)  2omes (N — m)*PrEu(én(z) — 0(w))*
S 2mt (N = m)"PuBou(¢n’(2) — 0(w))".

Now from (15) and Lemma 1 in the next section we get if P, % 0,

(16) on(2) = ¢n"(x)
for all x ¢ Ry . Further, substituting (16) in (14) we have
(17) Eu(h(s,z) — ¢n*(x))* = 0

for all samples s having p(s) # 0. Next from (17) and Lemma 2, in the next
section, we have

(18) h(s, z) = ¢n*(x)

for all s having p(s) # 0 and all x. Further from (5), (12), (18) and (19)
follows the result

(19) €(s,z) = e*(s, z).
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Now (4) and (19) imply the Theorem stated at the beginning of this section.
It is interesting to note that using a result due to Hodges and Lehmann (1951)

establishing the admissibility of sample mean, wrt squared error as loss, for the

mean of a normal population with unit variance, we can from (15) straightaway

deduce, that a.e. in R, ,

(20) ¢n(z) = ém"(z)

for a fixed sample size design (i.e. p(s) = 0 4f n(s) = m). Note here we have not-
used Lemma 1. Apart from the restriction of fixed sample size design in (20), it
is important that ¢.(z) = ¢.*(x) in (20) is established for almost all pomts in
R ; while what we need for establishing our ultimate result is ¢n(z) = ¢m *(x)
for all points in R, , which is achieved in (16) with the help of Lemma 1.

It is also worth while to note that Aggarwal (1959) has already investigated
the minimaxity of the estimate e*(s, z) in (3), on a certain subset of Ry . How-
ever he restricts himself to simple random sampling without replacementwith
fixed number of draws. In contrast, we establish the admissibility of the es-
timate e* for any sampling design (Definition 2.3, Part I) what so ever. Further
the subset of Ry considered by Aggarwal is given by = = (21, ---,zx):
> ¥ (x, — T(z)/N)? < const. while our Remark following the Theorem in this
section establishes the admissibility of e*(s, z) on a practically much more
realistic subset of Ry as explained in Section 3 of Part I of this paper.

4. Lemmas. Now we would prove the lemmas referred to in the last section.

Lemma 1. If ’

(a) 21, 2, -+, xx are independently and identically distributed real random
variates,

. (b) for every m = 1', “++, N, ¢n(x) is a real function of x1, T2, ++ , Tm,
(c) foreverym =1, -+, N, Tm = (1/m) > 7y 2:,
(d) for every common finite discrete frequency function w of 1, -+ - , zx,
2ot An'Eu($m(z) — 0(w))" < 2V A’Eu(En — 6(w))",
E, denoting the expectation, §(w) the common mean of xy, ---, zy and An,
m =1, -+, N being arbitrary real constants, then for every x = (x1, Tz, + -+, Ty)
eRy, ¢n(x) = Enforallm,m = 1, --- | N for which A,, 5 0.
Proor. Let By C Ry be such that if z = (21, -+, 2,, ---, zy) € Bi then
z,,r =1, ---, N contain k or less distinct values. Now by the condition (d)

of the Lemma 1, considering the discrete frequency function w which is zero
every where except at one point, we have, for all z ¢ By,

(1% én(x) = &n for all m = 1, ---, N such that 4, s 0.

Further in the next paragraph, we prove that if (1) holds for z £ By_; then it also
holds for all z & B, , which would mean (1*) holds for all z ¢ By = Ry, proving
the Lemma 1.

Let the common frequency function of z;, - - - , zy, referred to in the condi-
tion (d) of the Lemma 1, be zero except at k specified distinct values namely,
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w(t) = pi,pi>0,¢=1, ---, k and Z',?_l p: = 1. This frequency function
clearly gives positive probability only to those points z = (z, sttty Xyttt , Ty)
for which z,, r =1, --- | N is one of the values &, - -, # . Let these points x
constitute the set By(ti, ---, t&). Then Bi(t,, -, &) C B defined in the
beginning of this proof.

Throughout the remainder of the proof, summations over all z ¢ Bi(4 y oy ),
z(m) & Di(ty, -+, &) and x(m) & Dpi(tr, -+ , ) will be indicated by s, ,

> b, and > o, » respectively.
Now writing

(2% ¢n(z) = Tn + hn(2),

we have from (d)

(3" et A’ 2y hn(2) (& — 0) [Toa p2% < 0,

g(t:, x) denoting for eachx = (21, -+, z,, -+ -, xy) the total number of those
zr,r =1, ---, N, which are equal to ;. Note, for all z & By(t;, ---, &),
>k 1g(ti,x) = N, g(t;, ) = 0 and

(4%) 0= D iipii.

Now let Dyi(ty, -+, &) C R, the m-space of the points z(m) = (21, -+, Tm),
the first m coordinates of x = (x(, --- , zy), such that

(5%) x(m) e Dm(ty, -+, &) if and only if xeBy(t, -+, t).

Since hn(z) and Z, are defined on R, , by summing in (3*) for allz ¢ By (ty,

-, t) with a common z(m), we have,

(6%) 2omet Am’ D0y hn(@) (Em — 0) [[ica p24=™ < 0,

where g(t;, x(m)) is the total number of co-ordinates in z(m) = (z1, -+, &m)
which are equal to ¢;, ¢ = 1, - -+, k. Note that for every 2(m) € Dui(ts, -+ - , t),
g(t1) x(m)) 2 0) 1= 17 T k) le=l g(t@ ) x(m)) = m, and

") (1/m) 25 tig(te, 2(m)) = & .

Now in (6™) let

(8*) Dmk(tly R tk) = Drink(tly ] tk) + Dz&k(tly Ty tk))

where x(m) = (21, *-+, Tn) € Dpe(ty, -+, t) if and only if 2;, -+, x,, con-
tain all the distinct values &, -+, & . Now we assume that (1) holds for

T & By_1 . Since this assumption obviously means A, # 0 = h,(x) = 0if the
coordinates of x(m) contain less than k distinct values, we have form = 1,-- - N,

(9%) if Am 5 0 in (8%) for all z(m)eDxi(tr, - -, t), hm(z) = O.
From (6*) and (9%)
(10" 2o An' 2opp hn() (@n — 0)[[ia ps“*™ < 0.
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We note that in (10*),
(11%) gt., 2(m)) 2 1, P= Lk

Next we substitute (4*) and (7*) in the left hand side of (10*) and multiply
it by 1/]J%-1 p: . The resulting expression (note here (11*)) is further integrated
over the domain

Q=1[p, ,p:pi>0,i =1, -~-,lcandZ'§=1pi = 1].
We then have

me1 An’ D 01 Jobn(x)(&m — 8) [ T5es p2 ™ T4 dp:
(12%) = X An’ 2o hn(®) fo (it (9, 2(m))/m — p)ty)

i p T dps

= 0’

as for every j,
Jati(g(t;, 2(m))/m — p,) [Tica p#“ =™ 42 dpi = o.
[Note that:
Jo ITimp™ Izt dpi = (D b)) [T T(ny) formiz 1,i=1,---,k

Now because of (10*) the integrand in (12*) £ 0 and is also continuous in
p = (p1, -+, pi) for all p € Q. Therefore from (12*), we have

(13%) et A Ti (@) (B — ) Lo pi =™ =

for all p e Q. Next the condition (d) of the Lemma also gives in place of (3*),
the stronger relation

(14%) me1 Am 25y (b (2) + 2hn(2)(En — 0)] Lo p#“® < 0.

Then proceeding exactly as from (3*) to (10*) and lastly dividing by J]%-: p:,
from (14*), we have for all peqQ,

(15%) 2ome1 Aw 2oop ' (2) 4 20 (2)(Zn — O)]Lm p=™7 < 0.
Further from (13*) and (15*) we get
(16*) el Amzzb;,,,, hmz(x) HI?=1 pig(t"x(m))_l =0

for all peQ. Next considering the inequality (16*) for a point p =
(pr, -, ) € Q, we have

(17%) Am # 0= hp(z) = 0 for all z(m) e Dy (t1, -+ , t).
Thus from (8%), (9%) and (17%) we have, form =1, --- | N,
(18%) An #= 0= hu(z) = 0 for all z(m) € Dpi(ty, +-- , t).
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But since k,(z) is a function of z;, - - - , z, we have from (5%), (18%)
(19%) Ap # 0= hp(z) = 0 for all ze Bi(ty, -+, ).

Further since the set By as defined in the beginning of this proof satisfies B, =
Ui, .. Be(ti, --+, &), we have from (19*), form = 1, ---, N, A,, # 0 =
hn(z) = 0 for all z & B, , which along with (2*) means that, form = 1, ---, N,

(20%) Am 5 0= ¢n(z) = &m for all z € By

Thus as stated in the first paragraph of this proof, the Lemma 1 is proved by
induction.

LeEmma 2. If

(a) &1, -+, Tm are independently and identically distributed real random
variates,

(b) G(z) and H(z) be real functionsof t = (21, *+* , Zm) &€ Bm

(¢) for every common discrete frequency function w of ,, « -+ , Tm, Eu(g(x) —
H(z))" =0, '
then G(x) = H(zx) for all x = (%1, -+, Tm) € R .

Proor. Let the common frequency function w in the condition (c¢) of this
Lemma be zero, except at m specified values, namely w(t;)) = p:;, p: > 0,
i=1, -+, mand ) mp; = 1. This frequency function clearly gives positive
probability say P(x) only to those points x = (21, ++-, 2, , ++-, Zm) for which
Z,,r =1, -+ misoneof the values t;, - - -, t. . Let these points z, constitute
the set B(t1, -+, tm). So that in condition (¢) of this Lemma,

B, (G(z) — H(2))" = 2aeny, i P(2)(G(x) — H(2))" = 0,

which implies G(z) = H(z) for all x ¢ B(ty, +++, tw) and as &, -+, tn are
arbitrary, the result G(x) = H(z) for all z ¢ R,, follows.
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