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1. Introduction. The concept of linear estimation for a finite population
total was generally defined by Godambe (1955). Since then following results
have been established concerning the class of linear unbiased estimates:

(i) non-existence of a uniformly least variance estimate [Godambe (1955)],

(ii) non-existence of uniformly least variance estimates in subclasses [Koop
(1957), Prabhu Ajagaonkar (1962)],

(iii) admissibility of a certain estimate in common use [Godambe (1960),
Roy and Chakravarti (1960)],

(iv) the Bayesness of the above estimate [Godambe (1955), Hidjek (1959)].
The results (i), (iii), (iv) above are, in the present article, extended to entire
class of unbiased estimates, removing the restriction of linearity.

It is interesting that though unbiased non-linear estimates of the population
total could be easily constructed, (Section 3), none of them have been proposed
in the literature. The concept of invariance, namely that an estimate of popula-
tion mean should be independent of the scale and origin, discussed by Roy
and Chakravarti (1960), does not enable us to restrict ourselves exclusively to
linear estimates. Neither does, as shown in Section 3, the intuitive feeling that for
every nonlinear unbiased estimate of the population total, there exists an un-
biased linear estimate with uniformly smaller variance, is true.

In the present paper, after extending the admissibility of the estimate re-
ferred to in (iii) above, we have also investigated the admissibility of the esti-
mates for its variance, one proposed by Horvitz and Thomson (1952) and the
other by Yates and Grundy (1953). The Horvitz and Thomson’s estimator for
variance is proved to be admissible.

Finally we have presented some results, in connection with estimation of the
population total, where the usual restriction of unbiasedness is removed, es-
pecially (iii) is established without the restriction of unbiasedness.

2. Definitions and preliminaries. Let U denote a finite population (set) of
units (elements) u, i.e. U = {u}. On U is defined a real variate (function )z, z(u)
being its value for the unit u. If & is the class of all real variates x defined on U
and @ a real valued function on X then the general problem in sampling is to
estimate G(x) by observing the values x(u) for just those units u belonging to
specified subset s of U, given the sampling design (Definition 2.3). In the usual
notation s € U. More often however we particularly are concerned with estimating
a special type of function @, conventionally called population total.
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DeriniTioN 2.1. A function T on X is called the population total if for every
redX,

1) T(x) = 2 e o(u).

Thus here the problem is to estimate T'(z) by observing just those values z(u)
for which u ¢ s where s C U.

DEerINITION 2.2. A subset s of U, s C U, is called a sample.

Let S denote the set of all possible samples (subsets of U) s. On S is defined a
function p such that 1 = p(s) = 0, forall se S and D .5 p(s) = 1.

DerinITION 2.3. A sampling design d = (S, p).

It is easy to see that all the known sample survey designs are special cases of
d = (8§, p) in the above definition. Of. course it is almost never practicable to form
all possible samples S and then choose one from them with prescribed proba-
bilities p. Instead, to implement a sampling design d = (S, p), some one of the
easily managable sampling procedures such as stratification, subsampling, draw-
ing units one after another with varying probabilities, etc., is adopted. Thus to
implement a given sampling design d = (S, p), more than one sampling pro-
cedures may be possible. One procedure is always there, namely, forming all
possible samples s, and then choosing one from them with prescribed probabilities
p. In this connection some interesting results are due to Hanurav (1962). We
have discussed this topic in Section 5.

DErINITION 2.4. 1(8) the total number of units » in the sample s is called the
sample size of s.

Let, for a given sampling design d = (S, p),

(2) 2 eeup(s) = m(w)

where s ¢ u denote all samples s having the unit u. Then

DeriniTioN 2.5. For a sampling design d = (S, p) the inclusion probability
for the unit u is 7 (u), as given by (2), for all u e U.

Due to one of the authors (1955) is the following central relation between the
inclusion probabilities w(u) and the sample sizes n(s):

(3) E(n) = Zsesn(s)p(s) = Zuw w(u),

whatever the sampling design d = (S, p) may be. Thus it would be clear that as
soon as the inclusion probabilities w(u) are specified the average sample size E(n)
is automatically fixed for the sampling design. In this connection we have some
important results due to Hanurav (1962), regarding a particular estimate.
Additional relevent results are in Section 7.

DEFINITION 2.6. An estimate e(s, x) is a function on S x X (see Definitions 2.1,
2.3), depending on z only through those x(u) for which u ¢ s. That is for any two
z, «’ such that z(u) = z'(w) for all w e s, e(s, z) = e(s, ).

From practical considerations it is evident that the estimate e(s, x) need not
be defined at all for samples s for which p(s) = 0. Now it is true that the above
definition of an estimate is not most general, in the sense that there arcestimates
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in common use and in the literature which are not special cases of e(s, ) in (2.6).
However in Section 5, we would present an argument based on the principle of
sufficiency to show that we may restrict to Definition 2.6 without any loss of
generality in our search for an optimum estimate. Next the estimate e(s, r) is
said to be linear if

(4) 6(8, 13) = Zues B(s) u)x(u):

where 8 is a function on S x U such that 8(s, u) = 0if u gs.
DEerinITION 2.7. For a given sampling design d = (S, p), an estimate e(s, )
is said be unbiased for the population total T'(z) in (1) if

(5) Zsss e(s, x)p(s) = T(x)
for all z £ .

For a given sampling design d, the class of all unblased estimates e for the popu-
lation total T would be denoted by D, i.e.,

(6) D = {e: D use(s, x)p(s) = T(x), for all z e ).
For any estimate e ¢ D we have its variance V (e, x) where
(7) Vie,) = 2 s le(s, z) — T(z)F'p(s)

for every x ¢ X.

DeriniTION 2.8. For a given sampling design d, an unbiased estimate & (i.e.
¢ ¢ D, the class of all unbiased estimates given by (6)) is said to be admissible in
D if for no other estimate e ¢ D,

(8) Vie, z) = V(¢ z)

for all z ¢ X, strict inequality being true for at least some « ¢ %. The admissibility
for any subclass of D is defined similarly.

3. Comments on unbiasedness and linearity. The criteria of unbiased esti-
mation, i.e. estimation satisfying (5), seems to have been taken for granted in
the field of sample survey. Here, apart from its intuitive appeal, its additive
property is most important. If e, is an unbiased estimate of some population
total T; then Z e; is an unbiased estimate of Z T; . Further if all e; are inde-
pendent by law of large number, (D e;/ > T:) — 1, in probability, as more and
more estimates are added together. And in a certain sense the convergence is
faster, the smaller the variances of e; . Indeed this provides a very good justifica-
tion for preferring an unbiased estimate with smaller variance, in sample surveys,
where more often the primary aim is to estimate some grand total > T . How-
ever in the last section we would investigate the criteria of unbiasedness further.

Now, though in literature non-linear unbiased estimates of the population
total have never been proposed, they can be constructed quite easily. Consider
an artificial but a very simple illustrative example. The population
U = {u1, u2, us} consists of only three units. The sampling designd = (S, p),
(Definition 2.3), is such that for thesamples s = (u1, us), s’ = (w1, us) we have
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p(s) = p(s’) = %. For the rest of the samples the probability is zero. Now con-
sider the ncm lmem estimate e given by e(s, z) = &(s, z) + 2°(u,) and e(s’, z) =
e(s’, x) — 2’(uy) where &(s, z) =z(w) + 2x(up) and &(s’, ) = z(uy) + 2x(us).
Clearly e is an unbiased estimate for the population total. Moreover, contrary to
ones intuitive feeling it is impossible to construct an unbiased linear estimate
I(s, x) whose variance (asin (7)) V (I, z) is smaller than or equal to V (e, z) for
all z e . For if V(I, ) < V(e, z) for all z ¢ X, where V(e, ) = V(e, z) +
() + 22 (wn) (2(u) — 2(us) ), considering the magnitudes of termsin V (I, x)
and V (e, z) it follows that V (I, z) < V (e, z), if z is such that |z (u)| for all u e U
is less than a certain e. But since in the present case ¢ is nothing but an estimate
in (9) of Section 4, it follows from Theorem 4.1 and the subsequent Remark
4.1, that I = é. Next since V(e, z) = V (¢, z) + 2*(w1) + 22°(wy) (x(u2) — z(ws3) ),
it is evident that for some z, V(e, ) < V (g, z), thus proving that a linear un-
biased estimate [, for which V (I, ) < V(e, z) for all x ¢ % does not exist.

Next, even the principle of invariance, discussed by Roy and Chakravarti
(1960), stating that an estimate of population mean should be invariant relative
to the scale and origin of measurement does not restrict us exclusively to linear
estimates. Indeed along with unbiasedness, if some additional assumptions such
as continuity etc. are made the linearity of estimation may follow. But these
additional assumptions appear to be far from necessary or even plausible.

Yet in the literature on sample surveys only two authors seem to have con-
sidered the possibility of removing the restriction of linearity. One of them is
Aggarwal (1959). Without restricting to unbiased or linear estimates he has
established the minimazity of certain estimates over a subset of &, defined by
D wer (x(u) — T(x)/N)* £ No*,where N isthe total numberof units in U. In our
opinion this is not a very practically useful approach as it is not easy to guess the
value of ¢® of the variate under study. (In Section 8 we demonstrate the failure
of “minimaxity” over a practically interesting subset of %.) To us it seems that
practically most fruitful subset of & for investigating admissibility, minimaxity,
ete. is given by au(u) < x(u) < ax(u), ue U. Indeed the sampler usually will
have such knowledge of o’s about the variate under study, from his past ex-
perience or from his knowledge of the values y(u), u € U, of some other correlated
variate y. Next Das (1962) has attempted to prove some results without the
restriction of linearity. But his results are false. His fallacy rests in his assumption
of the existence of a best (i.e. least variance for all ¢ %) estimate in the entire
class of unbiased estimates D, in (6). Then he claims to have proved that the
linear estimate ¢in (9) (to follow) is thebest estimate in D, which implies that ¢
is also the best in the subclass of D, consisting of all the linear estimates in D.
This straightaway contradicts a well known result by Godambe (1955) namely
the non-existence of a best estimate in the class of all unbiased linear estimates,
about which Das seems to be completely unaware. He has committed a similar
mistake, while claiming to have proved the bestness of a certain unbiased esti-
mate of the variance of € in (9).

4. An admissible estimate in D. Though in the last section we would investi-
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gate to some extent the criteria of unbiasedness, until then we would take it for
granted. Now it is easy to see that unless the sampling design d = (S, p), (Defi-
nition 2.3), is such that the inclusion probabilities =(u), w e U, in (2) are all
non-zero, no estimate of 7' in (1) can be unbiased. That is the class D in (6) is
empty.

THEOREM 4.1. For any sampling design d, having the inclusion probabilities
m(u) > 0 for all ue U, the estimate & given by

(9) é(s,x) = Zues x(u)/ﬂ'(u)

18 admissible in D, according to the Definition 2.8.

After the non-existence of a uniformly (i.e. for all x £ %) least variance estimate
was demonstrated for the class of all linear unbiased estimates of the population
total, for the same class the ¢in (9) was proved to be admissible, according to the
Definition 2.8, by Godambe (1960) and Roy and Chakravarti (1960), inde-
pendently. We now propose to take the reverse way round. First the admissibility
of ¢ in (9) would be established for the entire class of unbiased estimates, D in
(6). And we then, as a logical consequence, deduce the non-existence of a uni-
formly (i.e. for all z £ %) least variance estimate in D.

Proor or THEOREM 4.1. Let ¢in (9) be not admissible. Then by Definition 2.6,
there would be an estimate

(10) e(s,z) = &(s, z) + [e(s, ) — &(s, 2)]
= &(s, z) + h(s, z),
such that e e D, i.e.

(11) ' ZHS h(s,z)p(s) = 0
and D s €(8, 2)P(8) £ Dees (s, 2)p(s) for all z e X. That is
(12) 2wes B(s, 2)p(s) = —2 2us h(s, z)é(s, )p(s)

for all x £ X. We note here that (s, x) is a function defined on 8 x &, depending
on X only through those values z(u) of x for which u £ s (see Definition 2.6).
Now let & C X such that if € %, then just k values of x are non-zero (that is
z(u) # 0 for just some k units u ¢ U). We now first establish the

LemMa. If h(s, z)p(s) = O for all (s, ) such that se S, xe X, then
h(s, z)p(s) = 0 for all (s, x) suchthat se S, x & Xpyy .

Let 2" & %iyq then from (11) and (12) we have

(13) 0 D esih(s, 2 )p(s) = 0
and
(14) 24 > s Bi(s, 2)p(s) £ —2 2 3 sih(s, 2)é(s, 2)p(s),

where S7 C 8 such that a sample s £ S¢ if and only if just for 7 number of units
win s, ' (u) # 0. Now h(s, z)p(s) = 0 for all (s, z) such that se S, z £ X , im-
plies h(s, 2 )p(s) = Oforall se Sifori = 1, --- , k. Thus from (13) and (14) we
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have

(15) D eesens B(s, 2)p(s) = 0

and

(16) Dsesis B(s, 2)D(8) S =2 D ey h(s, 2)e(s, 2 ) ().

However in (16)

(17) é(s,z’) for all samples se& Sk is constant,

namely Y _..v z (u)/7(w). Thus from (16) we have

(18)  Laesss B8, 2)0(8) S —2(Xuew 2’ (W) /m(u)) Liesy hls, )p(s).

Now (15) and (18) imply &(s, ' )p(s) = 0 for all s £ Sy . Noting D550 8i = 8,
we have h(s, z')p(s) = 0 for all s ¢ S. Thus the Lemma is proved
Further from (12) it follows that

(19) h(s,z)p(s) = 0 forall (s,z) suchthat seS,ze%X,.
It follows from (19) and the above Lemma that
(20) h(s, z)p(s) = 0 forall (s,x) suchthat seS, zeX.

And (10) and (20) imply the Theorem 4.1.

Once the admissibility of the estimate & in (9) is proved an example of an in-
admissible estimate may be of interest. Consider the following simple though
artificial illustration. The population U = {u;, us, us} consists of three units. Let
the samples s = (w1), & = (), s = (), s = (w1, ), & = (w1, u3)and

= (usz, us). Now the sampling design d = (S, p) is such that p(s’) = % for
i =1, .-, 6, the probability for other samples being zero. Next consider an un-
biased linear estimate I(s, ) for the population total. As in (4), I(s, z) =
D ues B(s, u)x(u). For unbiasedness, let B(s*, uz) = B(s’, u) = B(s, us) = 0 and
B(slr ul) =6 — :B('sl’ ul), 3(857 u3) =6 — B(s.y u3)7 B(Sey u2) =6 — 6(82; u2)-
Then the variance of I(s, 2) as in (7) is given by,

V() = § 2t () (B8, ue) + (6 — B(s', wa)®) — T(x)

where T(z) = D', z(u:). Clearly for the variations of 8(s’, u:), s = 1, 2, 3,
V(l, z) is minimized for 8(s’, u;) = 3 for ¢ = 1, 2, 3, whatever z may be. And
evidently for all other values of B(s’, u.), 7 = 1, 2, 3, the estimate I(s, ) is in-
admissible. This simple example also shows: that the complete class of linear
unbiased estimates as characterized by Roy and Chakravarti (1960) is in fact not
minimal complete.

REMARK 4.1. It may be seen that the Theorem 4.1 is valid for any subset of
X defined by —an(u) £ v(u) £ as(u) where ay(u) = 0, ae(u) > Oforall u e U.

This is practically very important for as said before in Section 3, the sampler
will usually have some knowledge (from previous investigations or otherwise)
concerning each unit we U which enables him to specify some range as
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ar(u) < z(u) < ax(u), for the value of the variate x associated with the unit w,
for u ¢ U. Note Remark 4.1 covers all the positive intervalsof &, 0 < z(u) < a(u),
u ¢ U, which are more often relevent.

REMARK 4.2. The Theorem 4.1 is also valid for any subset of X defined by
z(u) = c(u) or z(u) = 0 for ue U, c¢(u), u ¢ U being some fixed numbers. Now
substituting in the above remark c¢(u) = 1, u ¢ U we derive the admissibility for
the case of sampling attributes, i.e. zero-one variables. (The Remark 4.2 and its
implication is due to the referee.)

REMARK 4.3. The only property of € in (9) (in addition to its unbiasedness)
that is utilized in proving its admissibility is given by (17). It can be more clearly
stated as: the estimate é(s, ) in (9) depends on s only through those units u ¢ s
for which z(u) # 0. That is for any two samples s;, s; and a given x if for all
ues + s2 — sise, x(u) = 0, then e(s1, x) = e(sz, ). Thus over previous proof
of admissibility in fact establishes the more general

THEOREM 4.2. Any function g(s, x) defined on S x X which depends on (s, x)
only through those (u, x(u)) for which u € s and x(u) % 0 is an unbiased admissible
estimate of G(x) = > wes g(s, z)p(s), according to the Definition 2.8 modified by
replacing T(x) by G(z) in (5) and (7).

(Note: G(z) here may depend on p(s), s € S, in contradistinction to T(x).)

It is easy to see that Theorem 4.1 is a special case of Theorem 4.2. Next since
the estimate ¢ in (9) is a linear (as in (4)) unbiased estimate of the population
total and since the non-existence of a uniformly (i.e. for all x £ &) least variance
estimate, in the class of all linear unbiased estimates, is already established by
one of the authors (1955), from Theorem 4.1 we have,

COROLLARY 4.1. In the entire class D in (6) of the unbiased estimates of the popu-
lation total, a uniformly (i.e. for all x & X) least variance estimate does not exist.

Now two unbiased estimates have been proposed in the literature for the
variance of € in (9), namely

(21) o1 = Due (1 — w(w))a’(u)/x" ()
+ Zu,u’za.u;éu' (1 - 1r(u)1r(u')/1r(u, u’) )x(u)x(u’)/w(u)w(u'),
(22) v = Duwe (w(u)r(w)/x(u, w') — 1)(z(u)/r(w) — z(u)/x(u))?,

where 7(u, ') = Do P(8), i.e. summation of p(s) over all samples containing
u, u. Similarly Zu,u:u denotes summation over all pairs of units u, u in s. The
estimate »; has been proposed by Horvitz and Thomson (1952) and v, by Yates
and Grundy (1953). Yates and Grundy (1953) have vigorously rejected v,
in (21), preferring v, in (22) on the considerations of the sampling fluctuations,
mostly based on illustrative examples. However from Theorem 4.2 we have

THEOREM 4.3. In the entire class of unbiased estimates of V (e, x) the variance
of € in (9), the estimate vy , in (21) is admissible.

It is interesting that the Theorem 4.2 does not say whether the estimate v,
in (22) is admissible or not. Now the result that in the class of all unbiased
gquadratic estimates of V (g, z), no uniformly (i.e. for all z £ ) least variance"



1714 V. P. GODAMBE AND V. M. JOSHI

estimate exists, can be established on the same lines as (i) in the Section 1
without any difficulty. Next, following the arguments leading to Corollary 4.1,
we have from Theorem 4.3.

CoROLLARY 4.2. In the entire class of unbiased estimates of V (&, x), no uni-
Sformly (i.e. for all x € X) least variance estimate exists.

6. The principle of sufficiency. (Here we reproduce some ideas due to Hajek
(1959) for continuity of presentation.) In the comments following the Definition
2.6 of an estimate, we already have said that the Definition 2.6 is not general
enough to cover all the known or possible estimates. This can be expressed more
precisely as follows: As it has been pointed out following the Definition 2.3 of a
sampling design d = (8, p), that to implement d = (S, p) in practice one or
more sampling procedures are possible. And usually the outcome of the applica-
tion of a sampling procedure would not be just a sample s but something more.
For instance, consider the sampling procedure of drawing units one after another.
Here we not only have a sample s but also know the order in which the units of
s have been drawn. Or consider a more complicated sampling procedure given
by Rao, Hartley and Cochran (1962), where first the population is stratified
by some random device and then from each stratum some units are drawn. Here
in addition to a sample s we also observe the strata to which the different units
of s belong. Further the order in which the units from different strata are drawn
is also provided. All this may be denoted by 5. (Here one must note that § does
not include any variate values x(u) at all.) Thus if S denotes all possible out-
comes 5 for a sampling procedure, our sample s (Definition 2.2) can be considered
as a function on S. There may be a number of points 5 ¢ S such that

(23) s(3) = s.

Of course the sampling procedure would also uniquely define the probabilities
q(3) of the outcome of 5 for all 5§ ¢ S. Hence we can denote a sampling procedure
by (S, ¢). And if the resulting sampling design is (S, p) we have

(24) Dii= 4(3) = p(s).

Thus by now it should be clear that given a sampling procedure, generally we
can construct estimates e(s, z), which are not special cases of the estimate e(s, )
in Definition 2.6. Again we may have, for example, one estimate ¢(3, z) given by
Rao, Hartley and Cochran (1962), Equation (1). But this does not at all affect
the generality of our results in the earlier or later sections for the following
considerations. Let the units of a sample s be denoted by w’, - - -, un() . Now the
total outcome including the variate values z(u), of a sampling procedure can

be denoted by (5, z(u:’), -+, x(un)), as in (23), s(§) = s and n(s) asin
Definition 2.4. Considering X as the parameter space we may denote by
(25) Prob (5) x(ulx)) ] x(ux”(s)) ' CL',),

the corresponding probability for any specified point x £ . Then for all § and
s satisfying (23) we have
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(26) Prob (3, z(w"), <+, x(Un) Ix') = q(3) if 2'(uw) = z(u), ues
=0 otherwise.

Thus (26) clearly expresses that the probability of the outcome 35, z(u,’), - -,
Z(unw) depends on z’, the unknown parameter, only through s. Hence by de-
finition of a sufficient statistic we can say that (s, (u’), -+ -, T(Usw)) s suf-
ficient for . It then follows that if ¢(5, z(wu."), -+, z(unw)) is an unbiased
estimate of G(r), a function defined on %, we can construct by Rao-Blackwelliza-
tion of g another unbiased estimate e(s, z(u:"), - - - , z(u%hw)) of G(z) such that
the variance of e is smaller than or equal to that of g everywhere in &. This shows
that our Definition 2.6 of an estimate, does not make any of our results less
general.

6. Bayes approach. The admissibility of the estimate & in (9) being es-
tablished for the class D in (6) of all the unbiased estimates for the population
total, it may be of interest to see if € is a Bayes solution in D, with respect to
some prior distribution « on &. This has its own importance for people who think
that all our prior knowledge, in the present case about the population or the
variate under study, can be formulated in some sort of a prior distribution «. But
it is necessary to note that our Bayes approach is partial in the sense that we
have preserved the criteria of unbiasedness in (5). In fact as would be clear later,
our investigation in terms of prior distributions on X is for choosing between dif-
ferent sampling designs and between different estimates. But our ultimate in-
ference about the variate x would exclusively depend on the observed sample s
and the variate values z(u) for u ¢ s. Especially the inference would be independ-
ent of the assumption of any prior distribution. This approach was first adopted by
one of the authors (1955) and later on by Héjek (1959) and Aggarwal (1959).

Our criteria of judgement in terms of a prior distribution would exclusively be
the expected variance of an estimate as defined in (30), to follow.

Now with respect to a given prior distribution a on & we define

(27) 8(z(u)) = [xx(u)da,
(28) d(z(u) = [x (@(w) — &(x(u)))’ da.
Similarly

‘8(e(s, z)), Var (e(s, z)), Cov (e(s, x), h(s, z)), etc. would denote
(29) the corresponding expectation, variance and covariance, etc. wrt
a, s being held fized.

And if as in (7), V(e, x) denotes the variance of an estimate e, the erpected
variance of e wrt « is

(30) gVie) = fac Ve, x) da.
THEOREM 6.1. For every prior distribution a on X such that

(31) the variates x(u), u € U are distributed independently wrt o
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and any sampling design d = (S, p) for which the inclusion probabilities (Def-
wnation 2.5)

(32) w(u) >0 forallueU,

the expected variance (30),

(33) 8V(e) 2 2w ' (@(u))/m(u) — 2uew o (z(w))

for every unbiased estimate e i.e. e £ D in (6), o°(x(u)) defined as in (28).

Earlier the inequality (33) was established for the class of all linear (as in
(4)) unbiased estimates under the same restrictions as (31), and (32) by one of
the authors (1955). The following proof generalizes it to the entire class D, in
(6), of unbiased estimates.

ProoF oF THEOREM 6.1. Let, as in (9),

(34) &(s, %) = 2ues (w)/m(u).
Then as in (10) we can express any other estimate
(35) e(s,z) = é(s,x) + h(s, ).
Then using the notation (29), we have from (35)
(36) Vare(s, z) = Varé(s, z) + Varh(s, ) + 2Cov (é(s, z), h(s, x)).
Multiplying (36) by p(s) and summing over S, we get
(37) Dusp(s) Vare(s, ) = D wsp(s) Varé(s, z) + 2 s p(s) Varh(s, )
+ 2D s p(s) Cov (&(s, x), h(s, ))
To show that the last term in the right hand side of (37) vanishes, we have
Cov (&(s, ), h(s,x)) = 8[(¢(s,x) — 8(&(s, 2))) (h(s, x) — &(h(s, 7)))]
8[(e(s, ) — &(&(s, x)))h(s, )]
= D e 8{[(x(u) — &(x(w)))/m(u)lh(s, x)}
due to (34). Multiplying (38) by p(s) and summing, we get,
(39) 2 ws p(s) Cov (&(s, x), h(s, 2))
= 2w 8{[(x(w) — &(@(u)))/m(w)] 2e0u P(8)R(s, 7))},

s 3 u denoting all s which include the unjit u. Now if estimate e in (35) is un-
biased, i.e. if e ¢ D in (6), then from (34), (35) we have

(38)

(40) 2 wesP(s)h(s,z) = 0
for all z € X. That is
(41) Yo D()h(s, &) = — Dupu D(8)A(s, T),

s 2 u denoting all samples s which do not include the unit . It follows from (31)
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and (41) that the two factors (z(u) — &(z(w)))/w(u) and D .. p(s)h(s, x)
are distributed independently wrt the prior distribution «. Hence we have in
(39),

(42) 8{[(z(u) — &(x(u))/7(u)] 20su P(8)h(s, )}
= 8[(x(u) — 8(x(u)))/m(w)]&( Xsru P(8)A(s, 7))

= 0.
Thus from (39) and (42) we have
(43) D ws p(8) Cov (&(s, z), h(s, z)) = 0.
And from (37) and (43) we have
(44) D s P(s) Vare(s, z) = X .sp(s) Varé(s, z).
Using (28) and (34) we have from (44),
(45) 2uesp(s) Vare(s, z) 2 2w o(2(u))/x(u).

Now for the estimate e the expected variance (30)
8V(e) = &(2us p(s)(e(s, ) — T(x))*)
(46) = 2uaD(s) Vare(s, @) + 2.es p(s)[6(e(s, 2)) — (T ()]
— D2uw o’ (z(u)).
(45) and (46) give the required result
8V(e) Z 2uw o’ (2(u))/m(u) — P o’ (2(u)).

Actually (46) enables us to prove the more interesting

THEOREM 6.2. For any sampling design d, for which in addition to (32), the
sample size ( Definition 2.4)
(47) (n(s) #n) >p(s) =0

(i.e. d is a fired sample size (= n) design), and for any prior distribution a which
i addition to (31) has

(48) &(x(u)) = [6(T(x))/n]r(u) forallue U,
(i.e. &(x(u)) proportional to w(u)),
(49) &V(e) = &V(e)

for any unbiased estimate e, i.e. e ¢ D in (6), & being given by (34).

That is for any sampling design d satisfying (32) and (47), the estimate € in
(34), is a Bayes solution, in the class of unbiased estimates D in (6), wrt a
prior distribution «, satisfying (31) and (48).

Proor. Due to (47) and (48), the second term in the right hand side of (46)
vanishes, for the estimate ¢ in (34). Hence we have from (46),

(50) 8V(8) = 2w o’ (@(u))/m(u) — Xuew a*(z(u)).
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The Theorem 6.2 follows from (50) and (33).

The practical significance of Theorem 6.2 is as follows: Often our prior knowl-
edge about a population would be such that we may know the expected values
&(z(u)) for different units u ¢ U, and condition (31) is satisfied. Under these
circumstances the Theorem 6.2 states that for a sampling design d satisfying
(47) and having the inclusion probabilities w(u) proportional to &(x(u)), the
estimate € in (34) is optimum (unbiased Bayes). If in addition we assume
o*(x(u)) to be proportional to &(z(u)), u e U, the right hand side of (33) is
minimized for fixed sample size (n = .. w(u)) designs, when =(u) ispropor-
tional to &(x(u)), w e U, as shown by Godambe (1955). Hence the optimality
of sampling design d, satisfying (47), (48) and the estimate e. However, con-
cerning this question of sampling designs a few more comments would be found
in the next section.

7. Fixed sample size designs. We have already seen that the estimate ¢ in
(9) has some very desirable properties, such as admissibility or Bayesness. Now
admissibility of (9) is valid regardless of the condition (47) of fixed sample size.
However Bayesness of (9) is proved only for fixed sample designs. Following is an
additional argument in favour of fixed sample size designs in connection with
the estimate ¢ in (9). The variance of €,

(51) V(& ) = D uer @ (w)/m(u)
+ Zu,u’ev,u#u' [W(uy u/)/r(u)r(ul)]x(u)r(u/) - T2(x)’

m(u, u’) being the same as in (21).

TrEOREM 7.1. For any gwen fixed sample size design d (i.e. d satisfies (47))
with inclusion probabilities (Definition 2.5) equal to w(u), w £ U, it is impossible to
construct a varying sample size design d* (i.e. d* does not satisfy (47)) with the
same inclusion probabilities w(u), uwe U, such that the variance in (51) for d*
18 smaller than or equal to that for d, for all x € .

Proor. For a sampling design with inclusion probabilities #(u), u e U, the
average sample size E(n(s)) as in (3) is given by E(n(s)) = D uww(u).
Let further Var n(s) denote the variance of the sample size n(s), for the sam-
pling design d*. Then we have due to Hanurav (1962), the equation

(52)  2wwevamr 7 (u, w') = E*n(s)) — E(n(s)) + Var n(s),

7*(u, w') being the probabilities for d*, corresponding to r(w, w’) in (51). Now
the Theorem 7.1 is true due to the fact that if it was false, putting in (51),
z: x(u) = w(u), ue U, we would get, for the fixed sample size design d,
wwret i T(Uy W) 2 D wwrer g T (uy u), contradicting (52).
Hanurav (1962) has given a different justification for fixed sample size de-
signs, in terms of some prior distributions.

8. On relaxing the criteria of unbiasedness. Now as said in the Section 3,
in the field of sample surveys the criteria of unbiasedness as defined in (5)
is very appealing. And nearly always it is taken for granted. Actually without
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this criteria of unbiasedness, mere considerations of admissibility or minimaxity
may lead us astray. For instance it is easy to see that every ‘constant’ is an
admissible minimax estimate, of the population total, over the entire . One can
also construct examples to show that generally the estimate € in (9), which we
have been primarily investigating, is not minimax over intervals &, z: oq(u) =
z(u) = o2(u), ue U, which are of practical importance as said in Remark
4.1. Consider the following simple though artificial illustration: The population
U = {w, u} consists of two units. Let the sample s; = (u:) and s2 = (u2).
Assume the sampling design d = (S, p) to be such that p(s1) = p(s) = 3.
Now for the subset of & given by z: |x(w1)| = C, |z(u2)| £ C, the maximum
variance of the estimate & in (9) is 4C* while the maximum value of ) _,.s (e(s, )
— T(z))*p(s) for the estimate e given by e(s1, u1) = z(w1), e(sz2, u2) = x(uz),
is C*. Here clearly é is not minimax. All these comments are relevent in connec-
tion with Aggarwal’s work (1959) attempting to justify the estimate (9),
without appealing to the concept of unbiasedness. Finally in this connection
we prove the following Theorem 8.1 relating to all linear estimates (as in (4))
e(8, ) = D ues B(s, w)z(u) such that for any given unit u, u e U, B(s, u) is the
same for all samples s which include u, so that the estimate e;(s, £) can be written
as

(53) 61(8, 23) = Zucs b(u)x<u))
and where further b(u), u ¢ U satisfy
(54) b(u) 2 LueU and D uew (1/b(w)) = n.

TueOREM 8.1. For any fixed sample size design (that is one satisfying (47)),
every estimate e;(s, x) in(53) which satisfies (54) with n equal to the sample size,
is admissible in the class of all linear estimates of the population total T'(x), in
the sense there does not exist any linear estimate e(s, x) such that

(55) s (e(s, z) — T(2))’p(s) = s (als, @) — T(2))p(s)

for all x & X, strict inequality holding for at least one x.
Proor. Let the linear estimate satisfying (55) be

(56) e(8, ) = D ues B(s, w)(u).

Now h(s, z) is defined from (53) and (56) by

(57) e(s,z) = ei(s, z) + h(s, z),

so that

(58) h(s, @) = 2 ues (B(s, u) — b(w))z(u)
= D usals, u)x(u),

where

(59) a(s, u) = B(s, u) — b(u), seS,ues.
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On substituting (57) in (55) and simplifying we get
(60) 2 wesp()H(s, ) + 2ues p(s)h(s, z)(er(s, ) — T(z)) = 0.

As the left hand side of (60) is a semi-negative definite quadratic form, the
coefficient in it of x°(u), u ¢ U, must be non-positive. Hence using (58), we get

(61) 20 P(8)e (8, u) + 2o P(s)a(s, u)(b(u) — 1) £ 0,
where sz u denotes all samples s, which include the unit u, u ¢ U. Now let,
(62) 2osau D(8)a(s, u) = 8(u).

From (61) and (62), we get,
(63)  Dwup(s)(a(s, w) — 8(u)’ + w(u)s*(u) + 8(u)(b(u) — 1) = 0,
where 7(u) = .. p(s) as defined in (2). Now from (54) and (63) we have
(64) 8(u) £0, allue U:
Next for £ & given by #(u) = 1/b(u), ue U in (53),
(65) (s, §) = 2ues b(w)(1/b(w)) = n(s)
=n
for p(s) # 0 by (47). Again by (54)
(66) T(&) = n.
Now substituting (65) and (66) in (55) we have from (57) for all samples
s with p(s) # 0,
(67) h(s,Z) = 0.
Since from (58) and (62),

2oues P(R(s, &) = 2uer 8(w)E(u) = 2 uew 8(u)/b(u),
it follows from (67) that

(68) 2 uew 8(u)/b(u) = 0.

Now noting from (54) that b(u) > 0, u e U, we have from (64) and (68),
8(u) = 0, ue U, which from (63) means for all samples s for which p(s) 0,
a(s,u) = 0, u ¢ U, so that from (58), h(s, ) = 0, which further with (57) and
(59) gives

(69) 8(8, .’13) = 61(87 x))

for all s with p(s) 0. As (69) implies that strict inequality in (55) cannot be
satisfied for any z ¢ %, the Theorem 8.1 is proved.

Since &(s, ) in (9) is a special case of e (s, z) in (53) we have from Theorem
8.1 the

CoroLLARY 8.1. For any fixed sample size design the estimate é(s, z) in (9)
is admissible in the class of all linear estimates of the population total T'(x).
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9. Necessity of the condition of fixed sample size in the Theorem 8.1. If
the sampling design does not satisfy the condition of fixed sample size namely
(47), the estimate e,(s, z) in Theorem 8.1 is inadmissible excepting trivial cases.
This we demonstrate in the case of the practically interesting estimate &(s, z) in
(9) by constructing a uniformly superior linear estimate. Put

(70) e(s,z) = (1 — k)e(s, z),
where k is a constant such that

(71) 0<Fk<l

From (70)

D2esP(8)(€'(s,2) — T(2))* < s p(s)(é(s, 2) — T(x))
for all x £ X, if for all x £ &,

Y s D(8)8(s, ) — 2k( D ses p(s)é°(s, 2) — T*(z)) < 0,
which since k > 0, implies k £ 2(1 — T*(2)/ D_ses p(s)& (s, x)), that is
(72) k < 2V(&(s, 2))/[T*(z) + V(&(s, )]

where V(é(s, )) is the variance as defined in (7). If the sampling design is one
with fixed sample size (i.e. (47) holds) then the minimum value of (72) for the
variation of z in X is zero, as V(é(s, £)) = O for & given by £(u) = w(u), ue U
as defined in (2). Hence no k satisfying (71) and (72) exists. However if sampling
design is one with' varying sample size, V(é(s, £)) would not vanish for any
xeX, except in the trivial cases when the linear simultaneous equations
e(s, ) = T(x) for all se S with p(s) # 0, reduce to N (the number of units in
U) or less independent equations. Excluding such cases the right hand side
of (72) will have a minimum K, > 0. Hence assigning to k in (70) a value such
that 0 < k < minimum of (Ko, 1), we get a linear estimate e'(s, z) which is
uniformly superior to é(s, z).

ILLusTrATION. We take a simple though rather artificial example. Let the
population consist of 3 units u,, ue, us, and let the sampling design assign a
probability 4 to each of the samples (u1), (u2), (us), (w1, u2), (u2, uz) and
(us, u1). Then denoting z(u,) by z,, r = 1, 2, 3,

(73)  Dusp(8)8(s, @) = 2(z’ + 5’ + 25) + $(xaxy + o5 + 2321).

We minimize the right hand side of (73) subject to a fixed value of T(z) say T.
By using Lagrange’s multipliers this minimum value is easily found to be 27>,
Hence clearly K,, the minimum value of right hand side of (72) = 2(1 — &)
= 1. Hence taking k = {5 say we get from (70) the estimate ¢'(s, ) = &¢(s, ),
which is uniformly superior to (s, z).
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