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1. Introduction and summary. This investigation has been inspired by a
paper of V. Fabian [3], where ¢nter alia the applicability of stochastic approxima-
tion methods for progressive improvement of production processes is discussed;
his non-formal discussion includes the case where the optimum of the production
process moves during the optimization process.

In the present paper, the last case is treated in a formal way. A modified
approximation scheme is suggested, which turns out to be an adequate tool,
when the position of the optimum is a linear (or nearly linear) function of time.
The domain of effectiveness of the unmodified approximation scheme is also
investigated. In this context, the incorrectness of a theorem of T. Kitagawa is
pointed out.

The considerations are performed for the Robbins-Monro case in detail; they
can all be repeated for the Kiefer-Wolfowitz case and for the multidimensional
case, as indicated in Section 4. Among the properties of the method, only the
mean convergence and the order of magnitude of E[(x, — 6,)°] are investigated
(here z, denotes the estimated and 6, the true position of the optimum at time

n.)

A lemma, due to K. L. Chung [1] is used repeatedly:

LEMMA. Let b, ,mn = 1,2, -+ | be real numbers such that for n = n,,
(1) b £ (1 — ¢/n")ba + ¢'/n',

where 0 < s <1,¢>0,¢ >0, ¢ real. Then
(2) lim supn.. 7' "°b, < ¢'/c.

The lemma remains true, if the inequalities (1) and (2) are reversed and,
simultaneously, lim supn.. is changed into lim inf,., . (In Chung’s paper, a
further assumption ¢ > s is made, but it is easily seen, that both versions of the
lemma hold true also when ¢ < s; this fact is used in Section 3.)

Throughout the paper, Ko, K;, K, - -- denote positive constants, numbered
in order of appearance.

2. The modified Robbins-Monro method. Let M(z), —» < z < + o,
be an (unknown) real function. Let 6,,n = 1,2, ---,be (unknown) real
numbers, the first, 6;, being the, unique root of the equation M (x) = 0. Set
M,(x) = M(z); forn =1,2, ---,set M,(xz) = M(x — 0, + 6;) so that 6, is
the unique root of M,(z) = 0. Let a,,n = 1,2, - -+ , be positive numbers. Let
21 be an arbitrary random variable; define forn = 1,2, -,

Received 9 December 1964; revised 11 June 1965.
1695

Y‘Jg
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [& )z
The Annals of Mathematical Statistics. RIKOIRE ®

Www.jstor.org



1696 vVAcLAV DUPACL

(3) Togt = Tn' — Qulfn’
where z,* = (1 + n ")z, and y,.* is a rv such that

(4) Elyn* |21, -+, 2] = Mapa(za"),
(5) Var [y.* | @1, -+, 2] S 0’

with some constant o”.

The meaning of the scheme (3) is the following: at the time-instant n + 1,
we try to determine an approximate value for 8,.: . We start from the preceding
approximation z, , make first a correction for trend (z." = (1 +n ")z,), then
estimate the value of the instantaneous regression function M, at z." by means
of the observation y,* and, finally, take a further correction, —anyn". It will be
seen from the next theorem and its corollary, that the use of this scheme is
justified, when 6, is a linear (nearly linear) function of n.

TueorEM 1. Suppose that the following conditions are satisfied:

(6) M(z) <0 for <6, and M(x) >0 for > 6.
There exist Ko, K1 such that

(7) Kolr — 61| £ |M(z)] S Kilz — 6] for —o <2<+,
Forn=12,---,

(8) A a, = a/n°, a >0, i1<a<l

0, varies in such a way, that

(9) Onpr — (1 + 0710, = O(n™), where w > a.
Further,

(10) Elzl] < + .

Then zn — 0, — 0 in the mean, and

(11) El(zn — 0,)") = O(n™%) for o Z $a,

=0 ") for w< %a.
Proor. From (6) and (7) it follows that
(12) M(z) = (x—0)p for —ow <z <+,

where u denotes (here as in the sequel) a quantity, the dependence of which on
z is not pointed out and which satisfies

(13) Ki=uw=K:.
Hence,
(14) M.(z) = M(x — 6, + 61) = (x — 6a)p.

Calculate the conditional expectation of y,*, using successively (4), (14), (9):
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(15) E[yﬂ* | Ti, *°°, xn] = Mn-{-l(xn*)
= (xn* - 0n+l)ﬂ
=(1+ n_l)(xn - en)“ + O(n_w%

and form an upper bound for the conditional expectation of y,*, using (5), (15),
(13):

(16) Ely™ |21, -+, %) S 0" + Ka(2a — 6,)°

for some o> > o°, Ky > 2K’ and for sufficiently large n. (In the sequel, all the
inequalities in which the constants K; occur hold only for sufficiently large n;
but we shall not repeat that phrase.) Subtract 8,.1 on both sides of (3), sub-
stitute according to (9) on the right-hand side and then square:

(17 Turt = Ot = (1 +07") (20 — 0,) + 0(n™) — (a/n%) yn'*;
(18)  (Zat1 — Oar1)’ = (1 + n7)(2n — 6,)" + O(n™>)
+ (@/n)yn" + 0(n™*) (za — 62) — (20/7°)(1 4+ 77" )ya" (20 — 0a)
+ O(n™ ")y,

Now take conditional expectations on both sides of (18) and use (15), (16)
and (13):

(19) E[(xn+1 - n+l)2 I L1, ", xn] = (1 + n—l)2(xn - on)2 + Ks/nzw
+ d’oi/n** 4+ ("Ko/n"*) (Ta — 02)" + (Ko/n*) |20 — 64
— (2aKo/n%) (1 4 )2 (@0 — 6,)° 4+ (Ks/n°) |20 — 6] + Ko/n*.

After enlarging the corresponding coefficients, the terms of lower order of magni-
tude will include the terms of higher order:

(20)  E[(Tns1 — On41)’ |21, -+, 20] £ (1 — K1/n°) (20 — 62)°
+ (KB/nu)Ixn - 0n| + KQ/n2a,

where K; < 2aK,, etc.
Now, we take (unconditional) expectations on both sides of (20); when
estimating El|z, — 6,|], we use the inequality

(21) Ellz]] < e+ ¢ 'El2]

(holding true for every ¢ > 0 and every rv z with finite variance), where we set
e = 1/(6n“"") for some small 6 > 0. We get

(22)  E[(@ns1 — 0n11)"] £ (1 — Ko/n*)E[(zn — 02)"] + Ked /0™ "
+ (Ks8/n*)El(2a — 64)%] + Ko/n*,

consequently,
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(23)  El(@n41 — 0241)"] £ (1 — Kio/n*)E[(2, — 6,)"] + Ku/n*™" for w < ja,
< (1 — Ki/n*)E[(2a — 6,)°] + Kuz/n™ for 2 a.

The application of Chung’s lemma completes the proof.
CoROLLARY 1. Under the assumptions of Theorem 1, let 8, be a linear function
of n, then

(24) El(z, — 6,)"] = 0(n™%) for 3} <a=3
=0(n *"MN) for 3 <a<l;

let 6, be j)roportional to n, then

(25) El(2a — 6)] = 0(n" ) for y < a < 1.

Proor. In the linear case, 6, = An + p; hence 6,43 — (1 + n 8, = —p/n,
so that (9) holds with w = 1; in the proportionality case, we have moreover
p = 0, so that (9) holds with w arbitrarily large. This proves the corollary.

The proportionality case can be achieved, when the variation of 6, is known
to be linear and when the exact value of the root 6 is known at some time-instant;
we need only to choose this value for zero-value and the corresponding time-
instant for zero-time, i.e. 8, = 0.

The assumption (9) about the variation of 8, is satisfied—besides by the
linear function—by functions of the type, e.g.,

(26) 6, =cn’, with —a<p<1—a and c¢ real,
or by every function
(27) 6, =0(n"") with 7> q,

and, of course, by linear combinations of all these functions.

For the case, when (9) is not satisfied, only the following partial result may
be given. If, instead of (9), the relation limu.. 7n°(fnpa — (1 + n)6,) = q
holds for some —» < p < aand 0 < |g| < + =, then the non-random example
M(z) =z, &; = 0, o = O satisfies all the other conditions of Theorem 1, but
Z. — 0, diverges to infinity. Indeed, we get in this case

by — Tnpr = (1 — (a+ 0(1))/n%) (8 — 22) + (g + 0o(1))/n";

for ¢ positive, the application of Chung’s lemma (cf. Section 1) gives
lim infpaw 7 (8, — x,) > 0, so that 6, — z, — -+ = ; similarly, £, — 6, — +
for ¢ negative. ‘

3. The unmodified Robbins-Monro method. We shall now investigate, how the
unmodified Robbins-Monro procedure works in the presence of trend. We first
change the definition of z, :

(3") Tntl = Tn — Onln , n=12 -,
where y, is a rv, such that
(4,) E[y"ixl) 7xﬂ] = Z‘[,,(\.’L‘,J,
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(5,) Var [ynlxly ,xn] -<_: 0'2-

(Theorem 2 holds true, irrespective of the definition of Ely, | z1, - - - , ,) either
as Mn(xn) or as M,1(x,).) With this re-definition of x, , Theorem 1 is falsified
in general; the case M(z) = z, 2; = 0, ¢ = 0 can again serve as a counter-
example, whenever the trend of 6, is such that limu.. 7’ (6,41 — 8,) = ¢ for
some —o < p < aand 0 < |g] < 4+ «. We shall, therefore, replace also (9)
by a stronger condition

(9,) Ony1 — 0, = O(n™), with w> a;

this is again satisfied by functions (26) and (27), but no more by the linear
function.

TurorEM 2. Under the assumptions (3'), (4"), (5'), (6), (7), (8), (9", (10),
we have

(28) E[(zn — 0,)) = O(n™%) for o= 3a;
=0 By for w < e

Proor. As in the preceding theorem, it holds (12), for it follows from (6)
and (7) only. Instead of (15) and (16), we get now

(29) E[yn | X1, ***, xﬂ] = (xn - 011)“7
(30) Ely. |21, -+, %a] £ 0" + Kig(za — 62)%

The rest of the proof is quite similar to that of Theorem 1 and will be omitted.
A related problem has been treated by T. Kitagawa ([4], p. 12, Theorem 4.2).
Under the assumption Ky < (M(z) — M(z'))/(z — 2') < Ky for real z, «,
and under the usual assumptions about {a,}, Kitagawa considers a given sequence
of real numbers {a,} such that the roots 6. of the equations M(z) = a,,

n =12 .- satisfy
(31) 7=1 (0n — 0a41)” < + o0

then he defines the scheme 2,41 = 2, + an(any1 — yn), with the standard mean-
ing of Yn (Elyn |21, -+, 20l = M(z,), Var [y, |21, -+, ] £ o) and asserts,
that E[(za — 6.)"] — 0. But this theorem is false, as can again be shown by the
following counter-example: a, =n"%, } < a <1; M(z) =z, 11 =0, " = 0,
limpe 7°(0nt1 — 62) = g, forsome 3 < p < a and 0 < |g| < + «, which yields
the divergence of 8, — z, to infinity. (The gap in Kitagawa’s proof is that the
constants F, = 2'(1 — Aa,) do not fulfill the condition [~ F.* = 0.)

The Kitagawa’s theorem will hold true, together with the same order-estimates
as in our Theorem 2, if we choose the constants a, according to (8) and replace
(31) by the condition (9"). The proof is then entirely similar to that of Theorem
2.

4. The Kiefer-Wolfowitz method. The investigations made for the Robbins-
Monro case in preceding two sections, can all be repeated for the Kiefer-Wolfo-
witz case as for the multidimensional case. We shall state only the analogue of
Theorem 1.
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Let M(z), — o < x < + «, be a real function, let 6, ,n = 1,2, - - - , be real
numbers, 6; being the value at which M (x) achieves its unique maximum. Set
M(z) = M(z), for n =1,2, --- set M,(x) = M(x — 6, + 61). Let a,, ¢,
n = 1,2, --- be two sequences of positive numbers. Let z; be an arbitrary rv;
define forn = 1,2, - -+,

(32) Tny1 = xn* + an(y;n - y‘;n——l)/cm

where z,* = (1 + 7 )z, and ysn, ysa_ are rv’s such that their conditional
expectations, given zy , - - - , Zn , are My y1(#n™ + ¢n), Mnia(2.* — ca) respectively,
their conditional variances are bounded by a constant ¢, and they are condi-
tionally independent.

TuEoREM 3. Suppose that the following conditions are satisfied: M (x) s in-
creasing for x < 6, and decreasing for x > 6, . There exist Ky , K11 , Kyg such that

(33) Kulz — 6| < |[M'(z)| < Kulz — 6,

|M"(z)] < Kis ‘ for —wo <z < 4.
Forn=1,2,---,
(34) a, = a/n% a>0, i<ax<l,
(35) cn = c¢/n", ¢ >0, a/6 Sy <a—1i.
0. varies tn such a way that
(36) Oppr — (L + 0710, = O(n™®), where > o
Further, Elxj] < + . Then 2, — 6, — 0 in the mean, and
(37) El(za — 62)"] = [0(n™™) for w2 da—1,

= {O(n—m"_“)]) for w<3a—1.

Proor. Let us denote DM (zx) = (M(x+¢) — M(x —c))/c. We have
from (33):
m

(38) D.M(x) = 2M'(z) + 3 (M" (x + 8:¢) + M" (x — Bac}
= —(x — 0)u+ \c’, where 2Ky < u < 2Ky, |\ £ 3Kis;

hence,

(39) DM, (z) = DM(x — 0, + 6:) = —(z — 0,)u + A"
Further, by (39), (36) and (35), 4

(40) E[(y2n — yan—1)/Ca |31, -+ , %] = De,Mnia(zn)

= —(IB: - n+l)ﬂ + >\cn2

= —p(l + 7)) (2 — 6,) + N/0* + O(n™)
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(the last term will be neglected in order estimates, because vy < a — } together
with w > a implies w > 2y);

(41) E{ [(y;‘n - y;n—l)/cn]2 I Ty, *°°, xn} é 202/Cn2 + [Dc,,Mn+1(x:)]2
< Kin® + Kao(@n — 0,)%
Subtract 6,41 from both sides of (32), substitute on the right-hand side according
to (36), re-arrange and square; we get
(42) (xpp1 — 0n+1)2 =1+ n—1)2(xn - 0,,)2 + O(n—m)
+ (@’/0) [(y2n — Yan-1)/cal’ + O(07°) (T — 65)
+ (2a/n°) (1 + n7)[(y3n — Y2n—1)/cal(Zn — 6a)
+ O(n—(”+a))(y:n - y:n-l)/cn .
Take conditional expectations, use (40) and (41) and neglect terms of higher
order; we get
(43) E[(Zat1 — On41)* |21, -+, 2a] S (1 — Ka/n%) (2 — 64)°
+ (K22/nu)lxn - onl + [K23/(na+2‘y)]lxn - onl + Kﬂ/n2a_27-
Take unconditional expectations; the terms with E[|z, — 6,|] estimate with
help of (21), setting e = 1/(8n“"*) and e = 1/(8'n*"), respectively. We get
finally
(44) E[(nr — 0”)2] = (1 — Ky/n*)E[(zn — 01»)2]
+ Kzo/nzw—a + Kﬂ/na-H'y + KM/n2a—2‘y,
but the term Ka/n*™" can be joined to the last term, for the condition vy = «/6
implies @ + 4y = 2a — 2y. Chung’s lemma gives the statement of the theorem.

6. The use of Dvoretzky’s theorem. The mean-square convergence in all
above theorems (as well as convergence with probability one) can also be de-
duced from Dvoretzky’s theorem [2], [5], even under slightly more general
conditions on 6,. We shall indicate this implication only for the method of
Section 2. Let us replace the conditions (8) and (9) by the more general

(8*) limn-boo na, = + ®©, Z:BI a,.2 < + ©,
(9% bnis — (1 + 1n7")60, = o(an).

THEOREM 4. Under the assumptions (3), (4), (5), (6), (7), (8%), (9%), (10)
it holds that ‘

limpaw El(zs — 6,))] =0 and P(limp.w (2, — 6,) = 0) = 1.

PROOF. Set 2 = Zn — On, €& = — Gn(yn — Mnpa(z2)), @n = Ony1 —
(1 + n7")8, . Then the scheme (3) can be rewritten as 2,41 = Tw(21, ** ,2a) +
€, , Where

(45) Ta(ry, +++,7n) = (L 4+ 01 — wp — @M ((1 4+ 27)1rs — wn + 61).
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Among the conditions of Dvoretsky’s theorem, D rm1Blen] < +© and
E(en|21, -+ ,2.) = 0 are evidently satisfied; it remains to prove

(46) ]T,.(h y * rﬂ)l Max (@, lrﬂl

for some o —> 0 and Z‘:_l Yo = + 0.
From (8*) and (9%) it follows, that there exist p, > 0, such that p, — 0,
n—l Onpn = + and Wp = O(llnpn)
Using (7) we get

(47) Ta(ry, -o+ y7a) = (1 — @uu){(1 + 27 )rs — wa},
whence

(48) |Ta(r1, =+ 5 1a)| S (1 — Koan){ (1 4 n7")|ra| + |wal}
forn > n.

Now, if |rs| < pn, then

(49) ITﬂ(rl y "% T,.)I = (1 + n-l)Pn + lwnl < 2pp H
if {ra| > pn, then
(50) ]Tﬂ(rl ) T,.)l = (1 — Koan + 0(0,.))]‘7’,,] + ]wnl

= |ra] — 3Ko@nps
Thus the condition (46) is satisfied with a, = 2p, and v, = 3KoGapn .
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