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Review by HaroLp RUBEN
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Two things should be said about this book. (1) The title is a misnomer. Of a
total of 112 pages of text, 42 pages are devoted to a very special distribution
associated with the multivariate Gaussian distribution, namely, the multivariate
Rayleigh distribution. This is clearly the heart of the book. Only 36 pages, of
which 17 are concerned nominally with Gaussian noise, actually deal with the
subject named in the title. The remaining pages form an unclassifiable group
concerned with various elementary topics which are not inherently connected
with Gaussian distributions. A breakdown of this group results in the following
list: diagonalization of a quadratic form, covariance matrices, inversion of a
partitioned matrix, transformation of Cartesian to polar coordinates in n-space,
the Fourier inversion formula and, finally, least squares estimation. (2) The
discussion on the Gaussian distribution is far from connected, either spatially
or logically. The same applies with yet greater force to the discussion on least
squares estimation which does not always appear under that title and is in ad-
dition unduly repetitious, not to say downright muddled.

The p-variate Rayleigh dlstrlbution, as defined by the author, is the joint dis-
tribution of p correlated x (not x*) variates, forming a Rayleigh random vector
More precisely, it is the dlstrlbutlon of the vector (r1 , *++,Tp), Where T« is the
ath diagonal element of the matrix' A = D 7X.X, and the X, are independent
p-component normal vectors with arbitrary expectation vectors y. and a common
positive definite covarlance matrix . Some light is thrown on the distribution
by noting that 7o is a multiple of a (in general non-central) x ? variate, and further
that in principle (but presumably only in principle) the joint distribution of the
. could be obtained by integrating out the ‘“‘crossproduct” variates in the non-
central Wishart distribution of A, first studied apparently by T. W. Anderson
[1], [2]. (A warning is in order here. The author’s definition of the multivariate
Rayleigh distribution (p. 27) is sloppy and strictly speaking vacuous. That
‘definition’ imposes normality on each of the p n-component vectors obtained by
taking corresponding components of the x, , and imposes only 1ndependence on
the x, themselves.) The density functions of the distribution for p = 1, 2, 3 and
for special values of the wa. (mostly . = 0), as well as for general p w1th xa
continuant and g, = 0, are given in six theorems. A seventh theorem gives the
density in symbolic form for arbitrary p, w. and X. Three theorems deal re-
spectively with the densities of the product of norms, the inner product and the
angle between two correlated Gaussian vectors, and a further three theorems

1 Here, as elsewhere in this review, I am adapting the author’s notation to conform to
common statistical usage.
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deal with the quotients of norms of such vectors. There are also some additional
theorems concerned mainly with the sum and difference of the squared norms of
two (real-valued) Rayleigh variates, and some results on moments. Many of
these distributional results, under a slightly different guise, are classical, and a few
others will probably have been derived by most readers of this journal at some
point in their statistical careers. Examples of these follow: Rayleigh distribution
for p = 1 (essentially, the non-central x* distribution) , distribution of the ratio of
two nonindependent Rayleigh variates (essentially, the distribution of the ratio
of variances in samples from a bivariate normal population, due to Bose [5] and
Finney [7]), distribution of the angle between two correlated Gaussian vectors
(essentially, Hotelling’s variant® of the distribution of the correlation coefficient
in normal samples [9]), distributions of the weighted sum and difference of two
independent x* variates (expressed in terms of confluent hypergeometric and
modified Bessel functions), distribution of the ratio of two independent non-
central Rayleigh variates (essentially the distribution of a doubly non-central F,
expressed in Tang’s form [21] as an infinite series of Snedecor F-densities, of which
the non-central F in analysis of variance applications is an even more familiar
case). Other distributions derived may not be generally known, and these are
often rather complicated in structure, being typically expressed as multiple
infinite series in which each term involves products of Bessel functions of various
kinds. The value of such results appears dubious from a numerical point of view.
In a publication in the STAM series one would have expected a discussion of the
practical value of the results (rapidity of convergence of the series, ete.), and
also of possible applications in physies and technology, in order to justify the
rather dull algebra invoked in the derivation.

The author’s failure to point out that in dealing with the generalized Rayleigh
distribution one is essentially concerned with the joint distribution of quadratic
forms of normal variates has the effect of obscuring the true significance of that
distribution. Related to this is a failure to mention the important work of Robbins
{16] and Robbins and Pitman [17] in which the distribution of a single such
quadratic form is expressed as a mixture (either improper, i.e., arbitrary linear
combination, or proper, i.e., convex combination) of scaled x*-distributions. (See
also [18] and [19].) Such a tie-up would suggest, for example, that the genera,

2 Define ¢ = arc cos [D 1 Ta¥u/{ 2or Ta? 2ot Ya2}?], where the (z.,y.) are independent
bivariate Gaussian vectors, each with zero expectation and positive definite covariance
matrix £ = (oy;), 2, j = 1, 2. Theorem 2 (p. 45) gives

[(n — DT )/ Z|T )T (n + D]lsinm2 o/ {(c'e®2)t 4 o2 cos ¢}7]
< F(n, 350 + §; [0 cos ¢ — (o102?)}/a'? cos ¢ + (o110%%)}])

as the density of ¢ ((¢¥7) = =~1). On setting r = cos ¢, and using the Gaussian transformation
Fla,B;v;2) = (1 — ) BF (B, v — a; v; z/(x — 1)) we obtain the density of r, the sample
correlation coefficient in random samples of size n 4+ 1 form an arbitrary non-singular
bivariate normal population, in the form given by Hotelling. This again involves the
hypergeometric function F, but the argument is (1 4 pr)/2, where p = o1/ (ouo2)? is the
population correlation.
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p-variate Rayleigh distribution could probably be expressed, relatively simply,
as a p-tuply infinite series of scaled x’-distributions. A further related point
should be made here. The assertion (p. 31) that the determination of the density
function of the norm of an arbitrary Gaussian vector appears to be extremely
difficult is false. Actually, the density referred to can be obtained by an ele-
mentary conditional probability argument [19]. Incidentally, this density has a
rather simple form ([18], [19]).

The discussion on finite-dimensional Gaussian distributions presents, in
scattered form (pp. 16-19, 2026, 71-72, 75-76, 83-84, 88-92), some basic and
elementary properties of such distributions (marginal and conditional dis-
tributions, linear transformations of a Gaussian vector, moment generating and
characteristic functions, linearity of regression). Singular Gaussian distributions
are also discussed. This list is noteworthy for its brevity. One would normally ex-
pect to find a similar degree of coverage in the first post-introductory chapter of
any text book on multivariate analysis (e.g. Anderson [3]). No mention is made
of, inter alia, quadratic functions of normal variates (including independence of
such functions and Cochran’s decomposition-theorem), characterization proper-
ties (in particular, the projection property), the optimum entropy property of the
multivariate Gaussian distribution and the multivariate central limit theorem.
One might add that since the area of “multidimensional Gaussian distributions”
has been most intensively explored by statisticians, any book so entitled, even if
aimed primarily (asis apparently this book) at mathematicians and engineers
should certainly contain, for the sake of general orientation, a synoptic review,
however brief, of sampling theory in its application to multivariate statistical
analysis. The treatment would have gained greatly in naturalness and informa-
tional content from a geometrical (coordinate-free) approach, and from a defi-
nition of the multivariate Gaussian distribution as that of the joint distribution
of linear combinations of independent normal variates. Many of the basic proper-
ties are then immediate consequences of the definition. A further advantageis that
the singular Gaussian distribution arises automatically and in a very natural
manner. [The derivation of the “density” of a singular Gaussian distribution in
terms of delta functions (pp. 88-92) is both unconvincing and unappealing.] The
derivation of the linear regression property (pp. 83-84) is clumsy and possibly
misleading: linearity of regression of the vector y on the vector x implies that the
generalized mean-square linear regression of y on x coincides with the former re-
gression (irrespective of whether the composite vector (x, y) is Gaussian or not),
a result which follows directly from an obvious conditional argument and the
minimal property of the mean (i.e., E(z — ¢)* is minimized for ¢ = Ez).

The treatment of least squares estimation, again in highly disjointed form,
must be bewildering to the reader with no previous knowledge of the subject. The
Gauss-Markov theorem (the description Gauss-Markov is never used) in the
form of minimum variance unbiased estimation of a linear parametric function is
given on pp. 87-88. (Maximal rank is implied.) On pp. 112-113, Section 4.6, the
author considers the estimation of the regression parameters from a finite set
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of observations when the regression function is a linear combination of time-
functions (continuity of these functions is unnecessarily imposed) and the errors
are correlated. Why this should appear in a chapter entitled “Some Applications
to Gaussian Noise” is a mystery. Next, optimization in the class of linear unbiased
estimators is sought on the basis of the odd criterion that the sum of variances of
the regression coefficient estimators be minimized. There is no hint that the cor-
related-errors model is only a slight modification of, and is easily reduced to, the
more usual model in the Gauss-Markov theorem, and that the estimation prob-
lems (efficient estimation of a linear compound of the parameters) for the two
cases are essentially the same (simultaneous minimization of the variances of the
regression coefficient estimators being then achieved trivially by taking special
linear compounds). The reader’s bewilderment will not be lessened by the fact
that special cases of the correlated-errors Gauss-Markov theorem (namely,
constant regression on pp. 85-86 and a single regression coefficient on p. 97,
this last case under the guise of maximum likelihood estimation, the errors being
assumed jointly normal) have appeared previously in the book and by the
vague statement that the result of Section 4.6 may be regarded ‘“‘in certain
respects” as a generalization of the earlier results.

Potentially, much the most interesting topic in the book is that of Gaussian
noise (Chapter 4). However, one’s hopes are soon dashed. Actually only about
one-quarter of Chapter 4 is devoted to infinite-dimensional processes. What
there is of this is useful, but it is little indeed. Essentially it consists of (i) a
proof that (analogously to a finite-dimensional distribution) the normality of a
continuous-time process is preserved under a linear transformation (‘filter’),
and (ii) the determination of the covariance function of output noise in terms of
that of input noise, assumed to be wide-sense stationary, under a time-invariant
linear filter with given impulsive response function, or, equivalently, in terms of
the spectral density of the input noise and the transfer function of the filter.
For (ii) normality is irrelevant, and one wonders again what this is doing in a
chapter called “Some Applications to Gaussian Noise.” (The justification that a
Gaussian process is determined by the mean and covariance functions is lame.)
The remainder of the chapter consists of (iii) Section 4.6, already referred to
previously, and (iv) maximum likelihood estimation of a parameter entering
into the specification of a signal contaminated by Gaussian noise from a finite
set of observations of the distorted signal. In half of (iv), namely, when the
noise is additive, estimation by maximum likelihood is equivalent to estimation
by generalized least squares (i.e., using the correlated-errors Gauss-Markov
theorem ), though the connection is not brought to light. Omission of the increas-
ingly important topic of inference based on continuous time records (requiring
methods for associating probability densities and likelihood ratios to specified
waveforms) is particularly regrettable from the point of view of the communica-
tions engineer concerned with such estimation and discriminating problems as
evaluation of a signal strength or testing for the existence of a weak signal in
the presence of strong background noise. (As already mentioned previously, the



BOOK REVIEWS 305

estimation problems considered by the author are not intrinsically associated
with infinite-dimensional processes.) One general and rather powerful line of
attack is provided by the Karhunen-Lo&ve representation [10] [12] (series ex-
pansion of a mean-square continuous random function on an arbitrary time
interval in terms of normalized eigenfunctions and eigenvalues of a homogeneous
linear integral equation with the covariance function as kernel )—which is also
of fundamental theoretical importance inits own right—or some equivalent
formulation (such as that of Parzen’s reproducing correlation function kernels
in Hilbert space [14]), the problem being thereby reduced to a specification of
the joint density of the countable set of (observable) random coefficients in
the K-L expansion [8] [20]. The later coefficients are uncorrelated and, in the
case of Gaussian noise, jointly normal and therefore also independent. To men-
tion a few more fairly obvious lacunae: there is no mention of the Gaussian limit
distribution in shot noise processes, of Wiener processes, of maxima and zero-
crossings, and (if the text is not to be devoted mainly to Gaussian distributions)
of prediction or design (optimum allocation of observations).

The Fourier inversion formula as stated on p. 76 is incorrect, unless the
integral is to be interpreted as a Cauchy principal value. (In the proof,
limg, . [%%, dii is replaced indifferently by [Zwdt .) ¥,, referred to after
Equation 2 on p. 95, is a covariance matrix only (and not a correlation matrix
in the usual statistical sense). The term ‘regression curve’ (p. 83) for the regres-
sion of one random vector on another is unfortunate. The statement that the
Cramér-Rao bound provides an upper bound for the efficiency of an estimator
(p. 96) is misleading (the CR bound being, in general, unattainable). In line
8 from the bottom of p. 101, W,0W,/da should read (W,0W,/dc.)>. The formula
for the fourth moment of a quadratic function of a N (0, I) vector (Equation
(11) on p. 105 and Equation (4.4.11) on p. 120) is incorrect, and the coefficients
14, 28, 52, 10 should read 12, 32, 48, 12. (Incidentally, all the moments of such
a function are computed easily from Lancaster’s elegant formula [11] for the
cumulants of the function.) The term ‘“reproducing properties” (p. 24) is used
in altogether too wide a sense.?

To sum up: the author’s stated objective of presenting ‘“‘the basic facts con-
cerning multidimensional Gaussian distributions in a concise, crisp and we hope
elegant form” has not been met. Only a very few of the most elementary of
such facts have actually been presented, and for these the enquiring reader would
do better to refer to, say, Chapter 2 of Anderson [3] or to the appropriate sections
in any good statistics textbook, e.g., Cramér [6], where the treatment is superior,

3 The fact the x + y is normal if x, y are independent and normal—a property which is
a consequence of the fact that a linear function of a normal vector is itself normal— is not
mentioned, while the ‘reproducing property”’
fiw n(x, w, TN, v, T2) dx = n(w, vz, +32),

(n(-, u, ) being the density of a N (u, =), = positive definite) is allowed to take up two
pages of proof via elementary matrix algebra.
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better motivated and at the same time often more compact. So far as infinite-
dimensional Gaussian processes are concerned, the reader will surely gain greater
insight from even a cursory reading of judiciously chosen sections in (say) [15]
and [13], supplemented on the more statistical side by [4] and [8]. A monograph
on Rayleigh distributions, suitably extended and modified along the lines men-
tioned previously, would in fact have been more appropriate and perhaps more
honest. As it is, one gets an overall impression of padding for the sake of a
respectably sized book. This impression is strengthened by the peculiar uneven-
ness of level. The reader for whom the book is intended (described as one “familiar
with the elementary facts concerning linear algebra” and who has “some ac-
quaintance with advanced calculus and probability”) is, to quote one example,
on the one hand given a description of the mechanics of reducing a quadratic
form to a sum of squares, and on the other is assumed to require no explanation
of (or even reference to) Fubini’s integral theorem (used on p. 103) or the
Wiener-Khintchine relations (quoted on p. 106). I fear that after struggling
with this book the earnest but uninitiated reader will, like the Persian poet-
philosopher, come out by the same door as in he went.

Not a few statistics books have appeared recently which are insufficiently
motivated, poorly organized, substantively thin and bereft of all cultural depth
or historical perspective. Perhaps one should hardly expect even reputable
publishing firms to be very much concerned about this depressing phenomenon.
The primary concern of a publication firm, like every commercial organization,
i, after all, to make a profit, and, with the rapid and universal growth in the
number and size of university departments, technical institutes, research groups,
ete., a publisher can now reasonably expect, at the very least, to break even with
any scientific book from sales to libraries alone. Dare one hope that writers and
would-be writers of scientific books will, for their part, return to an old scholarly
tradition by refraining from rushing into print unless and until they have some-
thing worthwhile and substantial to say?
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