ON IDEMPOTENT MATRICES

By R. M. LoyNEs
University of Manchester

1. Introduction and summary. Banerjee [1] has recently given proofs of various
properties of real symmetric idempotent matrices. The aim of this note is to
give shorter proofs of some of these. Some of our proofs are suggested by the fact
that idempotent matrices represent projection operators, and by the known
properties of such operators (see e.g. Halmos [2]). The recent paper by Luther
[4] overlaps this note in content;, but has a different aim.

2. The theorems. We quote directly from Banerjee.

Gven a collection of n X n symmetric mairices A; (i = 1,2, -+, m), where the
rank of A; is pi, A = Y Ay, the rank of A is D, and four conditions: (a) each
A is idempotent, (b) A:A; = 0 for all 5 5 j, (c) A is idempotent, and (d) p = >_p; ;
then, (1): (a) and (c) wmply (b); (ii): (b) and (c) wmply (a); (iii): (a) and
(b) @mply (c); (iv): any two of (a), (b) and (c) imply all four conditions; (v):
(c) and (d) imply (a) and (b); (vi):if A, 4; (1 = 1,2, ---, m — 1) are idem-
polent, and A, is positive semi-definile, then A.. is idempotent.

Throughout we assume all matrices real, and by an idempotent matrix 4
we mean a real symmetric matrix satisfying A> = A. The assumption of reality
can of course be dropped, provided we suppose the matrices Hermitian rather
than symmetric.

3. Proofs. We shall make use of the following lemma. Here, as elsewhere, we
write A = B for two symmetric matrices to mean that A — B is positive semi-
definite, and I for the identity matrix.

Lemma. If A isidempotent and P = 0, then from I = A + P follows
AP = PA = 0.

From the lemma follows a result on the distribution of certain quadratic
forms in normal variables. Suppose that the vector z is a sample from a normal
distribution: then if A4 is idempotent, P is positive semi-definite, from z'z >
2'Az + 2Pz follows the independence of z’Az and «’'Pz. This is an immediate
consequence of Theorem 4.13 of [3]. ( This appears to be new, but is of course not
surprising in view of Cochran’s theorem.)

For any given column vector z, let y = Az. Then Ay = A = Az = y.
Hence y'y = y'Iy = y'Ay + y'Py = y'y + y'Py = y'y, from which it follows
that y'Py = 0. By reducing P to diagonal form, or otherwise, it is seen that
Py = 0. Since = was arbitrary we have PA = 0, and by transposing AP = 0.

Now to prove (i) we note that, if ¢ = j, I = A = A; + A;, the hypotheses of
the lemma are satisfied and hence 4:4; = 0.

To prove (ii) we use the fact that a symmetric matrix is idempotent if and
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only if all its eigenvalues are either zero or one. Let X be an eigenvalue of A,
with eigenvector z. Then A = Az. Either A = 0, or we have x = A;z/)\, so
that Az = A;Aw/N = 0, and consequently Az = A = M. Then N = 1,
and A, is idempotent.

The proofs of (iii) and (iv) previously given can hardly be improved.

To prove Part (v) we can argue as follows. The set of equations Az = =,
A =0,4x =0, - -+ A,z = 0 contains no more thann — p + po +ps + - -+ +
pn = n — p; independent equations, and hence has at least p, independent
solutions. These equations imply Az = z. It follows that the non-zero eigen-
values of Ay, which are p; in number, must all be equal to unity, so that A4, is
idempotent. The remaining conclusions are then consequences of the previous
results.

Finally, the hypotheses of (vi) imply that if £ j I = A; 4+ A;, and at least
one of A; and A; is idempotent. Hence from the lemma A;4; = 0. Then we have
A = > A;,and on squaring, A = > 7" A4; + A, It follows that 4, = A,
and A,, is idempotent.
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