THE PERFORMANCE OF A SEQUENTIAL PROCEDURE FOR THE
FIXED-WIDTH INTERVAL ESTIMATION OF THE MEAN'

By NorMAN STARR
Columbia University and the University of Minnesota
1. The problem. Let
(1) X1, Xy, -

be independent N (6, ¢°) with ¢> < «. Suppose we require a confidence interval
for 0 of width at most 2d (d > 0) and with probability of coverage at least
a (0 < a < 1), irrespective of the values of 8 and ¢°. Define for n = 2

Xo=n' XX, S'=(n— D7 Xk (Xi— X,
and for z > 0 let
o(x) = (2n)7 [z a;
a = constant for which ¢(a) = «, and
(2)  ea(®) = T((n + 1)/2)/(nm)'T(n/2) [ (1 + £/2)7"P" dt;
a, = constant for which ¢,(a,) = a (n = 1,2, ---); then
(3) limp,w @Gs = a.

Observe that if ¢ is known a confidence interval I, = [X, — d, X, + d] for 6
of width 2d and with coverage probability = is assured provided » is chosen so
that

(4) n = dd*/d,

since then P(0 ¢ I,) = ¢(n'd/s) = a. However, it is clear that no procedure
based on a fixed number n of observations of (1) satisfies the requirements when
o is unknown. In this circumstance one recourse is to two-stage sampling [10]. The
Stein procedure leads to an n which approximately satisfies (4) with ¢” estimated
from the initial sample of size n; (and a increased to a,, to reflect the limited
degrees of freedom ). It seems intuitively inefficient not to utilize all of the sample;
we shall investigate the performance of a sequential procedure A which does just
this, leading to an n satisfying (4) with ¢ estimated on n — 1 degrees of freedom.
Accordingly, we prescribe the rule
A: Observe the sequence (1) term by term, stopping with Xy , where

(5) N s the first integer n = ny such that 8.} < nd'/a}_,,
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SEQUENTIAL ESTIMATION 37

with np = 2 a fixed integer; then form the interval Iy = [Xy — d, Xy + d]

which has the required width.
Heuristically, the interval Iy will be an approximate solution of the problem:

(6) P(ely) = a.
Furthermore, the expected sample size using A will be
(7) EN = d'5"/d’.

To see why (6) should hold we remark that if we set
To = [&a = (6aSu/nd), X + (@1s8u/n)],
then for fixed values of 6, o, and n
(8) P(6eJ,) = Pn* | X, — 0/84) £ o] = 0n1(Cny) = a.

Moreover, the N defined by (5) is such that Iy contains Jy ; hence ‘neglecting
the excess”, P(0 ¢ Iy) =2 P(0 e Jx). If we could infer from (8) that P(6 eJx) = a,
(6) would follow. Since lim,.,, S,° = ¢® with probability 1, it follows from (5) by
neglecting the excess that o® = d’N/d? at'least for N large; thus EN should
satisfy (7). Finally, we remark that a comparison of (4) and (7) suggests that
not much should be lost due to ignorance of ¢ if we use A instead of a sample of
fixed size.

It would therefore seem to be of considerable interest to establish rigorously
the values of the functions

9) C(\) = P(6ely), D(\) = EN
for values 0 < A < « of the parameter
(10) N=og/d

upon which € and D are easily seen to depend, and thereby to determine whether
(6) and (7) are reasonably exact, for all . Thus, we define

(11) mn = C(\)/a,

the ratio of the coverage probability using A in ignorance of ¢ to the prescribed
coverage probability «, and

(12) m = D(\)/a’N’,

the ratio of the average sample size using A in ignorance of ¢ to (approximately)
the smallest value of n satisfying (4) which would be used when ¢ is known.
Following the terminology of [3], we shall say that 7, and , are measures, at the
parameter value A, of the consistency and efficiency of A, respectively. Therefore,
in order to implement practically a recommendation of A we should establish
that the procedure is “more or less” consistent (m\ =2 1) and efficient (g =< 1),
for all \.

A appears to have been first discussed by Stein [10], who stated the second
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order limiting performance of the procedure. Subsequently, the consistent and
efficient asymptotic character of A was proved along somewhat different lines
in [1], [2] and [5]. The computation of C' and D for several moderate values of A
was carried out by Ray [7] using a slight modification of (5) for ease of computa-
tion; Ray incorrectly conjectured on the basis of his fragmentary computations
that this modified version of A is asymptotically inconsistent.

However, while A has attracted theoretical attention, it appears that the
procedure has been scrupulously avoided by practicing statisticians; owing
perhaps, at least in part, to the fact that the several investigations of its per-
formance have been only partial. The object of this article is to confirm that the
procedure (together with several variants of interest) is indeed reasonably con-
sistent and efficient, for all ¢. Moreover, we will show that while A has a slightly
reduced minimum probability of coverage compared with the Stein procedure
[10], it is always more efficient than two-stage sampling; the difference in
efficiencies being sizeable whenever, in ignorance of the variance, the first stage
sample size is chosen poorly.

Preliminary theory is given in Section 2, following [7] and [8] in certain re-
spects. Asymptotic results for small and large \ are given in Sections 3 and 4,
respectively, while computational results for intermediate A are presented in
Section 5. Comparisons with Stein’s procedure are presented in Section 6.

2. Preliminary theory. At the outset we remark that N is a geniune sampling
variable; that is,

LEmMMA 2.1. P(N < ) =

Proor. By the strong law of large numbers, lim, .., S." = ¢” with probability 1,
which implies

P(N = ») = P{(8./n) > (d’/a,_1) forall n = no} =

Define the N (0, 1) random variables W, = (D7~ Xi — nXn1)/aln(n + D
(n 2 1), and observe that (n — 1)8,’/¢® = D 15 W (n = 2). Therefore
(5) can be rewritten in the form

(13) N is the first integer n = no such that Y i W' < n(n — 1)/Nd2,
and the probability distribution of N is defined for n = no by
(14) p.(\) = P(N =n) = P{D 5. Wi < (k+ 1)k/Nalfork=n— 1,
but not foranyny — 1 £ k <n — 1}.

The joint probability density of {W.?;7 = 1, - -+, n — 1} is easily seen to be

dF (W, -+, Waa) = RO 317
exp (—3 21 w5 w1 d(ws)

for0 £ w;;7=1,---,n — 1. Noting that
(15) Vi= 2 WS (kz 1)
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has the chi-squared distribution with k£ degrees of freedom, the joint probability
density of {Vi;k=1,---,n— 1} is

dF (Vy, -+« Vao1)
= RO exp (— 3o ) 155 (vi— vi) TS dos

for 0 £ vy £ v, £ --+ = v, . Therefore, subject to A, the probability that
sampling is terminated at the nth observation is from (14) for n = n,

(16) pa(N) = f e .[lovw) fBﬂo—l ano an_z fsn—l dF(Vy, -+ V)

where forng — 1 £ k < n — 1, B is the interval ((k 4+ 1)k/Na:’, ©), B, is
the complement of B; , and where the multiple integral over [0, = ) represents
an ny — 2 fold integration while the remainder represents an n — no + 1 fold
integration. Then with p,()\) defined by (16), from (9) we have

(17) D(\) = 2 nen npa(N),
and, since X, is independent of the vector (Wi, - -+, Wa_1),
C(\) = 25.1ps(MP(8 eIy |.N = n)
(18) = > e Da(NP(nY X, —60|/c = ntd/c | N = n)

= 2rmne Pa(Ne(n'/N).

With this background we are prepared to provide a conspectus of the per-
formance of the rule A.

3. Theory for small A.
TrEOREM 3.1. With \ defined by (10),

(19) limy o P(N = no) = l,
(20) lim)‘..o C()\) = l,
(21) limy.o D(N) = mo.

Relation (19) follows immediately from (14). Since from (18) and (19)
limyso C(A) = limaeo Dncny Pa(Ne(nd/A) = limasop(nd/N) = o(w) =1,

relation (20) is established.

To prove (21) we require

LemMmA 2.1. Define Sy = Z:’:,.,,_l P(Va./n > (n + 1)/Na,’), where V, is
defined in (15). Then

(22) limy.o S\ = 0.
ProoF oF LEMMA. Setting A = 1 + Sup,1 . , we have for A < A~
(23) S = Ziewat P{(Va/n) — 1> [(n + 1)4%/ay’] — 1
< Dt P((Va/n) — 1 > n/N).
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Noting that E(V, — n)® = 2n, and applying the Chebyshev inequality, we
obtain from (23)

Sy = D2 nonet NE((Va/n) — 1)°/nf] = 2820 apean™,
from which it follows that (22) holds.
To establish (21) we remark that
(24) DO\) = 2maaP(NZn) = D24 P(N 2n) + 2 nenea PN >0+ 1)
=g+ Domenge1 P(N > n + 1).
Since it is easily seen from (14) that P(N > n + 1) = P( dHWE >

(k 4+ 1)k/Na’ foreveryny — 1 < k = n) < P(Va./n > (n + 1)/Na,?), we
have

(25) limr,o D mene—1 P(N > n + 1) = limy.o Sy,
and (21) follows by combining (24) and (25) and applying Lemma 2.1.

4. Theory for large A\. Because p,(\) given by (16) is relatively intractable,
the computations of C and D are extremely difficult; to simplify them, modify
A to A* by amending definition (5) to read

(5%) N* is the first odd integer n = no* such that S’ < nd*/d’,

with no* a fixed odd integer = 3. Then, for the modified rule A¥, in analogy with
(9), (11) and (12), define

C*(\) = P(@eIy) and D*(\) = EN¥
n* = C*(\)/e, and
m* = D*(\)/a’\".
The computations of C* and D* have been carried out for &« = .95 and \ =

0.5, 1, 1.25, 2, 2.5 (with no* = 3) by W. D. Ray [7], and are summarized in

Table 1.

We observe that as \ increases the values of C*()\) appear to steadily decrease;
indeed Ray conjectures ([7], p. 240) that as X becomes infinite, C*()\) “appears to
tend to a value smaller than 95 per cent, in contradistinction to Anscombe’s

result.”
The reference is to a theorem first stated by Stein [10] and proved in somewhat

TABLE 1
A*, no* = 3,0 = .95, a = 1.96
A 0.5 1.0 1.25 2.0 2.5
C*(\) .99975 .9775 .941 .931 .929
D*(\) 4.1 6.6 8.4 16.7 24.9

a?\? .96 3.84 6.0 15.4 24.0
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different forms by Anscombe [1], [2] and by Gleser, Robbins, and Starr [5].
The version proved in [5] is as follows:

THEOREM 4.1. Let N be the sampling variable defined by (5), where {a,} is any
sequence of positive constants (not necessarily those defined in (2)) such that (3)
holds. Then with \ defined by (10), 7 by (11), and n, by (12),

(26) limy,wm =1 (asymptotic consistency),
27) limy,wm = 1 (asymptotic efficiency).
Moreover, (26) and (27) hold when N, 7., and n. are replaced by their starred
equivalents.

Now Ray reasons that while his conjecture is apparently inimical to (26) there
are, after all, differences in the stipulations of A, for he is willing to admit (26),
and of A*, which dictates his computations; in particular the starting sample
sizes no*(equal to 3 in Ray’s computations) and no (equal to 2 in Anscombe’s
[1] proof of (26)) differ.

To allay these doubts regarding the asymptotic consistency of the- general
procedure it is necessary to stress two points.

(i) Theorem 4.1 holds irrespective of the choice of the starting sample size
No = 2.

(ii) It is immaterial to the asymptotic theory which of the rules A and A*
is used, the relations (26) and (27) holding in either case.

Ray has apparently been misled because his computations are fragmentary
and inadequate. In fact, the author has performed more extensive computations
using A* which do indeed indicate that C*()\) begins to increase steadily as A
becomes large, apparently tending to « as in fact Theorem 4.1 requires. These
computations are discussed in the following section.

6. Theory and computations for moderate \. We have from (18) that
C(\) 2 o(nd/N), 0 < N < o, which, with (20) and (26), shows that the con-
stant B,

(28) B = infoace C(N) = §0(a)’

is positive. The value of 8 depends on the whole sequence {a,} which defines N
through (5) and not just on the limit (3). It is obvious that we can choose the
sequence {a,} subject to (3) so that the value ,

(29) 7 = infoaace ™ = B/

is arbitrarily close to 1, but only at the expense of making the quantity
7 = SUPpcr<w M UNreasonably large.

In this section we restrict our attention to the sequence {a@,} defined in (2) and
A* given by (5%), precisely the rule evaluated by Ray.

Taking n = 2m + 1, we have in analogy with (21)

(30) N* isthefirst n = 2m + 1 with m = me* such that
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mWE L 2m2m 4+ 1)/Na,® = 2byie,
where

(81) m* = (n* —1)/221 and b, = (m — 1)(2m — 1)/Nd3ns.
We observe that V. = W, + W)’ has probability density dF(V,) =
3exp (—3vs) dvz, (v2 > 0), and define Z = 1V,, which has probability density
dG(Z) = e¢7dz, (z > 0).
Then for the rule A* we have in analogy with (14) for m = me*
Pn*(\) = P(N* = 2m + 1)
(32) = P{D%1Z; > by for every m* < k < m — 1,
but not for k = m},
and in analogy with (18) and (17)
(33)  C*(N) = 2Zmmer P (Nel(2m + 1)'/N],
D*(\) = 2immer (2m + Dpu*(N) = 1 + 23 mmpe mpn*(A).

The probability (32) can be evaluated by a method following [8] which is
summarized in Appendix 2.

One further minor modification of the procedure is of interest; namely, that
the experimenter using A* be required to make a fized number J of additional
observations after having decided (nominally) to terminate sampling. We
call the amended rule

A*(j): Observe the sequence (1) term by term, stopping with X vesi (7 2 0),
where N* satisfies (5%).

We remark that

R*(0) = R
Ci*(N) = 2memer Pue(N)el(2m + § + 1)}/2] G z0),
D;*(\) = j + D*(n) (G z0),

where C;* and D,* are respectively the coverage probability and expected sample
size using A*(j). We further remark that taking any finite number of additional
observations after stopping does not affect the asymptotic theory, nor indeed
the theory for small \, save in the respect that (21) becomes

(34) limao D;*(N) = no* + 7 (G = 0).

C,;* and D;* have been computed for several hundred values of the parameter
0 <A< oo witha =.95Mn"=3,j=0,2, 4, andn* = 5,5 = 0, 2) and with
a = .99 (n* = 3,7 = 0, 2) subject to the requirements of A*(j). The computa-
tions were carried out on an IBM 7094 at the Columbia University Computer
Center. A summary of these computations for representative values of \ is given
in Table I (@« = .95) and Table II (a = .99) of Appendix 1. Figure 1 (a = .95)
and Figure 2 (e = .99) provide a diagramatic representation of the behavior
of C;*(\) and, in analogy with (12), of m*(j) = D,;*(\)/a®\%, for the several
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TABLE 2
B*
a = 95
no* ] B*

A 3 0 .92848
B 5 0 .93792
c 3 2 .94146
D 5 2 .94783
E 3 4 .94873

a = .99
Al 0 .98347
B 3 2 .98752

versions of A*. We remark in passing that the computed values differ sometimes
from those of Ray.

of spemal interest of course are the values (in analogy with (28)) of 8*
infoorce C*(N), whlch are displayed in Table 2.

We observe that 7* defined in analogy with (29) is not appreciably less than
1 in any of the versions, so that the cost in coverage probability due to ignorance
of ¢ is ¢ next to nothmg ” Moreover, we remark that for any of the several
versions of A*, n* appears to decrease monotonically (and rapidly) to 1, being
large only for A near zero when the expected number of observations D* (N\) is
small anyway (and depends largely on the starting sample size together with the
additional number, if any, of observations take subsequent to stopping). There-
fore the cost in observations due to ignorance of ¢ is similarly not appreciable.

It is obvious that the basic rule A will have a minimum coverage probability
B not very much less than .928 (when o = .95) and efficiency 7 exceedingly close
to 1 for N bounded somewhat away from zero.

Hence the basic procedure and its several variations are remarkably consistent
and efficient, uniformly in \. 7 can always be adjusted upward by using a dif-
ferent sequence from that defined in (2), increasing the starting sample size nq ,
or taking j additional observations subsequent to nominally stopping, but only
at the expense of increasing 5. Alternatively, n can be arbitrarily decreased but
only at the cost of concomitantly decreasing 7. There is no unique version of A
which jointly reduces the loss in observations and minimum coverage probability,
due to ignorance of ¢. Presumably the statistical worker should let his particular
requirements dictate the choice of the procedure to be used in applications.

6. Comparison of A with Stein’s two-stage sampling procedure. B. M. Seel-
binder [9] and others (e.g., J. Moshman [6]) have considered the problem of
obtaining an appropriate determination of n,, the size of the initial sample for
C. Stein’s [11] two-stage sampling procedure:

Let us define N, = total sampling size using two-stage sampling, and E\(N,) =
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expectation of N, at the parameter point 0 < A < . Seelbinder proves a some-
what stronger limiting theorem than did Stein; namely

(35) limy,e [Ex(N,) — @&\ =

Noting that the sequence {a,} defined in (2) has the property: a; > a2 >
a3 > ---, it follows from (3) that the Stein procedure is asymptotically less
efficient than A; in fact, (35) implies

limy,e BEA(N.) /&N = ah,i/d® > 1 (ny fixed),

compared to the asymptotic result (27) proved for A. Moreover, it is not dif-
ficult to prove that

(36) lim)‘_.o E)‘(Ns) =1n.

Seelbinder suggests (p. 647) in using Stein’s two-stage sampling procedure
that if one is uncertain about the value of o but believes it is such that A < 10
“then the first part of the sample (n;) should be taken to be 250 or thereabouts”
s0 as to decrease the possibility of having E’x(N ) inordinately large for N bounded
somewhat away from zero.

Therefore, comparing (36) with (21) or (34) (for which in practice none of
the values no , mo*, or 7 will be large) we see that for \ near zero A and its several
variants are distinctly more efficient than the Stein procedure.

Seelbinder has computed Ex(N,) for « = .99, .98, .95, .90 and N’ =
.01(.01).1(.1)1.0, for a number of values of n; . A portion of these data together
with the corresponding values of D*(\) (with ne* = 3, = 0) is summarized in
Table 3.

Now, for 0 < N\ < o, E\(N,) depends on the choice of the first-stage sample
size n; . Indeed, if one had precise knowledge of o, the value &i(n1), &Hi(n) =
E\(N, | 1), could be minimized at N by an inspection of Seelbinder’s table (and
interpolation). We remark from an inspection of Table 3 that

(37) D*()\) < min2§n1§w E)\(nl)

for all A for which comparisons are possible. The author conjectures that in fact
(37) holds for all \. However this may be, it is clear that if we had precise knowl-
edge of ¢ (or equivalently of \) we would not rely on any sequential procedure,
but simply preassign n the smallest integer value satisfying (4). Therefore, the
only case of interest to sequential analysis is when ¢ is unknown. In this event an
inappropriate (unlucky) choice of n; can have costly results.

By way of example, suppose we require a fixed-width (2d > 0) interval for 6,
prescribing @ = .95, and that we have some prior reason to believe, or are pre-
pared to assume, that ¢ is such that A = 5, when ¢n fact A = 1. Then from Table 3
we would be inclined to take n; = 61 for which &(n,) is a minimum. Accordingly,
the expected sample size usmg two-stage sampling is £1(61) = 61, comparmg
very unfavorably with D*(1) = 6.6, the expected sample size using A* at the
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TABLE 3
Ezpected sample size using Stein’s two-stage sampling, condensed and revised from [9]
D* and a?\? are included for comparison with A* and the fixed sample size case, re-
spectively.

a = .95
A 1 1.25 1.667 2.0 2.5 3.333 5.0
ni 241 241 241 241 241 241 241 241
121 121 121 121 121 121 121 121
81 81 81 81 81 81 81 101
61 61 61 61 61 61 61.1 100
51 51 51 51 51 51 52.6 101
41 41 41 41 41 41.1 47.8 102
31 31 31 31 31 32 46.6 104
21 21 21 21 21 28.2 48.4 109
11 11 11 15.1 20.2 31.1 55.1 124
6 7.9 10.9 18.5 46.4 41.3 73.4 165

D*(\) (with no* = 3, 6.6 84 125 167 250 43.5  97.1
j=0)

a?\? 3.8 6.0 10.7 15.4 24.0 42.7 96.0
a = .
n 241 241 241 241 241 241 241 241
121 121 121 121 121 121 121 171
81 81 81 81 81 81 84.5 174
61 61 61 61 61 61.1 79.1 177
51 51 51 51 51.1 53.1 79.9 179
41 41 41 41 41.2 48.1 82.3 183
31 31 31 31.1 33.7 47.6 84.0 189
21 21 21.2 24.7 32.8 50.6 89.9 202
11 12.4 16.5 27.9 40.2 62.8 112 251

D*(\) (with n¢* = 3, 10.4 13.9 21.5 29.5 44.3 76.5 168.9
=0

a?\? 6.6 10.4 18.4 26.5 41.5 73.7 166

parameter value A = 1. Using the Stein procedure, a poor guess is a considerable
extravagance.

Reversing the situation, suppose o is such that we believe A = 1, when in fact
N = 5. Then we should be disposed to take n; = 6 or thereabouts for which
£1(ny) is a minimum. In this event £(6) = 165 and D*(5) = 97.1. Again we pay
dearly, using two-stage sampling, for our mistaken judgment regarding the
value of ¢.

We conclude that A* is more efficient than two-stage sampling for A very small
and very large; that it appears that the former procedure is always more efficient
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than the latter for 0 < A < « - and finally that an inappropriate choice of the
initial sample size n; in two-stage sampling can lead to an excessive cost in
needless observations whereas A is always reasonably efficient irrespective of the
value of A and what we “think” this value may be.

On the other hand, two-stage sampling is somewhat more consistent than A,
assuring a coverage probability =, whereas A and its variants assure only 8 < e.

However, in normal experimental situations it would seem prudent to settle
for a minimum coverage probability (irrespective of the magmtude of ¢) which
is not conspicuously less than a, say 94146 (using A*(4) with n® = 3) when
o = .95 or .98752 (using A*(2) with no* = 3) when a = .99, in the certainty
that (at worst) our expected sample size does not sensibly exceed that of two-
stage sampling and that we do not run the risk, in our ignorance of s, of requiring
extra (in extreme cases possibly thousands of) needless observations.

7. Further theoretical problems of interest. Y. S. Chow and H. Robbins (3]
have proved the asymptotic properties (26) and (27) (with a slight modification
of A in the discrete case) assuming of the sequence defined by (1) only that
its members are independent, identically distributed, and have finite positive
variance. This result has been extended to the case of the simultaneous estima-
tion of several parameters by L. J. Gleser [4].

It would be of considerable practical interest to have an evaluation of the
performance, over the entire range of values of \, of this sequential procedure for
observations which do not have the normal distribution. The author is investi-
gating this problem when the underlying distribution of sequence (1) is binomial
or Poisson, and in linear regression models for the simultaneous estimation of
several parameters.

A test of a hypothesis about the mean of a normal population with unknown
variance, which has prescribed error probabilities, can be constructed by com-
‘bining A* with a suitable decision procedure. H. Robbins and the author are
evaluating this test and a study of its performance will soon be available.
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TABLE 11
a = .99, a = 2.5758, no* = 3
Al A*(0) = A* Bt A*(2)

A C*(\) D*(\) mn* C*(\) m*2)
0.5 .999924 5.7 3.445 .999999 4.651
0.75 .99795 7.7 2.074 .99908 2.610
1.0 .9938 10.4 1.571 .9980 1.872
1.25 .9889 13.9 1.338 .9948 1.531
1.50 .9854 18.2 1.217 .9915 1.351
1.90 .98347 26.9 1.123 .9883 1.207
2.0 .98349 29.5 1.110 .9979 1.185
2.05 .98355 30.8 1.104 L9878 1.176
2.10 .9836 32.1 1.099 .98769 1.167
2.15 .9839 33.5 1.094 .98761 1.159
2.2 .9839 35.0 1.089 .98756 1.152
2.25 .9840 36.4 1.085 .98754 1.145
2.30 .9842 38.0 1.081 .98753 1.138
2.35 .9843 39.5 1.079 .98753 1.132
2.4 .9845 41.1 1.075 .98755 1.127
2.45 .9847 42.7 1.072 .98758 1.122
2.5 .9848 44.3 1.069 .9876 1.117
2.60 .9852 47.7 1.064 L9877 1.108
2.80 .9859 54.9 1.055 .9880 1.094
3.0 .9864 62.6 1.049 .9882 1.082
3.5 .9875 84.3 1.037 .9888 1.061
4.0 .9882 109.2 1.028 .9891 1.047
4.5 .9886 137.4 1.023 .9893 1.038
5.0 .9889 168.9 1.018 .9894 1.031

APPENDIX 2

The probability distribution of N * defined by (30) was computed by the follow-
ing method (see [8] for proof).
Define for the case no* = 3 h; = 1, ¢; = 1, and compute recursively

hn(ba) = 22750 [(ba = bn) /i hni(bn) (m=2,3, - ;n=m+1,m+2),
where b,, is given in (31), and then compute
em = €xp (—bn)* 273 Bm_j(bm) (m=23,--).
Then form = 1,2, - .-
Pn (\) = P(N* =2m 4+ 1) = ¢p — Cnp1 -

(We remark that for the case ny* = 5 we take bs = 0, otherwise computing as

above.)
Then C* is given in (33) and D* becomes

D*N) =142 miCn-
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