INFINITELY DIFFERENTIABLE POSITIVE DEFINITE FUNCTIONS'

By C. C. GANSER
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The class of functions which are continuous and positive definite on the real
line will be denoted by P. This paper presents two types of results concerning the
derivatives of functions in P. The first type of result is that if a function in P
agrees with a comparison function having certain properties on a sequence tend-
ing to the origin then the positive definite function either is identical to the com-
parison function or at least shares some of its properties. In 1960 R. G. Laha [6]
proved the following theorem of this type:

A. Suppose f ¢ P and ¢ is analytic on the line (that is, ¢ is the restriction to the
real line of a function analytic in a strip of the complex plane along the line). If
fand g agree on a double sequence z, , k = =1, 2, - -- , where z_;, = —ux; and
z; — 0, then fis analytic. Therefore f = g on the line. Earlier, in a mimeographed
note A. Devinatz [4] gave a similar result:

B. Suppose feP, geC°nP, and the Hamburger moment sequence
(—1%)"¢"(0) is determined. If f and g agree on a sequence tending to the origin
then f = g.

The second type of result is that certain properties possessed by a product of
functions in P are shared by the factors. For instance, if the product of functions
in P is infinitely differentiable or analytic then so are the factors. In 1959 A.
Devinatz [5] proved the following result of this type:

C. Suppose g ¢ P, h ¢ P and f = gh is 2n times differentiable. Then g and h are
also 2n times differentiable. For real r put F.(z) = ¢"*f(x). Then for some real
r, g% (0)| < 2|F,*?(0)|, %k = 0, --- , n. A similar inequality holds for .

We shall state our results in terms of certain classes of infinitely differentiable
functions which were introduced by T. Carleman and S. Mandelbrojt. A positive
sequence m,, is said to be logarithmically convex when the sequence log m, is con-
vex. A more useful equivalent definition of logarithmic convexity is that

(1) mo/'ml 2 ml/m2 2 -2 mn/mn+1 = e

For a logarithmically convex sequence m, we denote by C(m,) the class of func-
tions, infinitely differentiable on the line, for which f ¢ C'(m,) means that there is
a finite ¢ = ¢(f) such that

sSup; lf(ﬂ)(x)l < q”mn , n = 0, 1’ cee

The purpose of introducing these classes of functions is to generalize certain
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properties of analytic functions which actually depend on the sequence of suprema
of the derivatives. In particular, a class C(m.) is called quasianalytic provided
that any two members, f and g, are identical whenever for some real x,
™ (x0) = g™ (20) forn = 0, 1, - - - . Denjoy [3] and Carleman [2] proved that a
class C(m,) is quasianalytic if and only if the decreasing sequence (1) sums to a
divergent series.

The following two theorems are results of the first type.

THEOREM 1. Suppose f € P and g € C*. If f and g agree on a sequence converging
to the origin through both positive and negative values then f € C*.

An improvement to be noted over Laha’s result is that the comparison sequence
of Theorem 1 need not be located symmetrically about the origin. On the other
hand, the requirement that the comparison sequence tends to the origin both
from the right and from the left is shown to be necessary by the positive definite
function ¢! which agrees with the analytic function ¢ for z = 0. However,
¢~'"! is not differentiable at the origin.

TraEOREM 2. Suppose fe P and g e C(l,). If f and g agree on a sequence con-
verging to the origin through both positive and negative values then f & C(lny1). In
particular, if the class C(1,) is quasianalytic then f = g.

The next two theorems are results of the second type mentioned above, al-
though Theorem 3 is stated in terms of Borel measures whose Fourier-Stieltjes
transforms are in P.

TaEOREM 3. Let n and v be non-negative, finite Borel measures on the line.
Suppose the following absolute moments are finite;

ko = [Zo]t*du(t), b= [Zalt|®dv(t), .= [Z|t|" dusw(t)

forn=0,1,-+.Puta, = max (ky,l,), then C(a,) = C(m,).
THEOREM 4. Suppose g and h are in P, and f = gh & C(a,). Then g and h are in
C(@ny1). In particular] if the product f = gh is quasianalytic then so are the factors.
These results apply to all infinitely differentiable positive definite functions. In

fact, if f(z) = [Z. " du(t), where u is a non-negative, finite Borel measure, then
terms of the logarithmically convex sequence m. = [Z, |t|* du(t) are all finite
and f e C(m,).

Proor or TuEorEM 1. Let the comparison sequence in the hypotheses be
written as a positive sequence zx | 0 and a negative sequence y, T 0. Put
F = Refand G = Re g, then F and @ also agree on z; and y; . Since f ¢ P,

(2) F(z) = Re [Z, ™ du(t) = [Z, cos (tz) du(t)

where 4 is a non-negative, finite Borel measure.

We shall show by an induction on the even order derivatives of G that the
even moments of u are finite, and therefore the even order derivatives of F and f
exist. The agreement of F' and G on both positive and negative sequences is used
only to show that the odd order derivatives of G vanish at the origin.

The first step of the induction will illustrate the general step. By continuity
F(0) = G(0). Since F ¢ P, F(0) = F(z) for all real . Therefore we can show
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that @’(0) = 0 as follows,
[G(z) — G(0)]/zi = [F(ax) — F(0)]/zx < 0 since x>0
[G(yx) — G(0)]/yx = [F(yx) — F(0)]/y» 2 0 since yi <O.
Thus
0 < limpw [G(3) — G(0))/3s = G'(0) = limes [G(z) — G(0)]/zi < O.
Since @'(0) = 0 we obtain from Taylor’s formula that
limpe [F(22) — F(0)]/2" = limiaw [G(x:) — G(0)]/zi" = 3G”(0).
On the other hand, from (2),
[F(0) — F(m)l/m’ = [Za[(1 — cos (t&s)) /] du(t)
= 2 [Z, [sin® (t24/2) /24"] dp(2).

Now a standard argument using Fatou’s lemma shows that the second moment of
B, f_u,t dp.( t), is finite. Applying Lebesgue’s convergence theorem we obtain
F'(z) = 2w i cos (tz) du(t). Thus —F" ¢ P.

To complete the first step of the induction we use Rolle’s theorem to show that
there are positive and negative sequences converging to the origin on which F”
and @” agree. Since F and G agree on z; | 0 and on y, T 0, there are sequences
z; and v , where yx < % < Y1 < 0 < Zppr < 3 < 73, on which F’ and ¢’
agree. Therefore there are also sequences z;” and y”, where 4.’ < 4" < Yrp1 <
0 < Zrp1 < @ < x, on which F” and G” agree.

The complete induction shows that the even moments [Z,, " du(t) are finite
forn = 0,1, ---, hence fe C”.

Proor or THEOREM 2. By Theorem 1, f £ C”. Since f and g agree on a sequence
converging to the origin we have f™(0) = ¢™(0) for n = 0, 1, --- . If
f(z) = [2, e du(t) then the absolute moments, m, = [Z, |t|” du(t), which
form a logarithmically convex sequence, are all finite and fe C(m,). Since
g e C(l,) there is a finite ¢ = g¢(g) such that sup.|g™(z)] < ¢"l.. Also

= [2. 8" du(t) = |f*(0)| = |g‘2")(0)| < q2"l2,. . Then by the logarithmic
convex1ty of m, and I, we have mau < ¢"ln = (/)¢ lenpr and Moy <
(mo/my) /man < (ma/m1)q"len . Hence f & C(lays).

Proor or THEOREM 3. We first note that the assumption that the sequences
k. and 1, are finite is unnecessary. In the notation of the theorem, if m, is finite,
then an easy application of Fubini’s theorem shows that k. and I, must be finite.

Straightforward use of inequalities (1) shows that the sequence a. is loga-
rithmically convex since it is the maximum of two such sequences. Then we ob-
tain the following estimate for m, from inequalities satisfied by logarithmically
convex sequences.

Mo = [2a [Pls + O du() do(s) S Sdo (7) JZ0 1P dut) [Z sl dv(s)
=D 70 (kasly £ Za”=0 (7)an—sa; < aoan2".
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Hence any function in C'(m,) is already in C(a.), so C(m.) C C(@x).

To prove the opposite inclusion it will be enough to show that both C(k.) and
C(l,) are contained in C(m,). A sufficient (and necessary) condition that
C(k,) < C(m,) is that lim sups-« ( kn/m,)"'™ < «.In our case, there is a more
useful form of this condition,

(3)  K(r) = [Z0 Xaeo (" | /ma) du(t) = 250 (ka/mta)t" <
for some r > 0. To show that (3) holds note that for 0 < r < 1,

o [0 2 (" |t + 8"/ ma) du(t) du(s) = Lamer™ < co.
Thus by Fubini’s theorem, for 0 < r < 1,
(4) 2 Y ([t + " /may du(t) < o ae. (v).

We use the inequality [¢|" < 2"(|t + s|* + |s|") for some fixed real s to estimate
K(r).

E(r) = [%% Dm0 (" ["/ma) du(?)
< (20 o0 1(2r [t + o) /mal du(t) + D nmo [(2r [81)"/ma] [Za dpu(2).

The first term on the right is finite for 0 < r < % by (4). An estimate for the
second term follows from an inequality implied by (1), mo/?t. < (mo/my)". Thus

oo 121 [s1)"/ma] [0 du(t) S (Ro/ma) 250 (2r [8] (mo/mn))".

The right side is finite for 0 < r < my/2 |s| mo . Our estimate for K(r) shows that
it is finite for 0 < r < £ min (1, m./|s| me) where s is some fixed real number.
Hence by (3), C(k.) < C(mn).

The argument showing that C(l,) < C(m,) is similar, so Theorem 3 is estab-
lished.

ProoF oF THEOREM 4. Suppose g(z) = [Z €' du(t) and h(z) = [Zo €™ du(t).
Then f(z) = [Zs €™ dusv(t). Let the sequences k, , I, , and m, be defined as in
Theorem 3. Then g &£ C(k,) and h € C(l,). Let the sequence m. be the greatest
logarithmically convex minorant of the sequence sup. [f™ (x)]|. Since f & C(an)
and since m,” < sup. |f™ (z)| we have C (m) © C(an). Furthermore, it is well
known that feC(m,’) [1], that is there is a finite r = r(f) such that
sups |f™ ()] < r"m.’. We use this inequality with the equality, sup, If*” (z)| =
2o 2" dusv(t) = mas , to show that C(m,) C C(my41) as follows,

-0
Man = sUPs [ (2)]| < r*"man < (mo'/my )1 Mansa
and

Mony = (Mo/My)Man = (Mo/my) SUPs |f @ (z)] < (mo/ma)r*" man .

We have obtained the inclusions C(m,) € C(mn41) © C(@ny1). By Theorem 3,
since g € C(k,) and h & C(1.), both g and & are in C(m,). Therefore they are also

in C(Gny1).
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