BOUNDED LENGTH CONFIDENCE INTERVALS FOR THE p-POINT
OF A DISTRIBUTION FUNCTION, II'

By R. H. FARRELL
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1. Introduction. Let 0 < p < 1. A number 7,,r is a p-point of the distribution
function F if F(yp,r) = pwhile F(y,r—) < p.Given L > 0and 0 < o < 1,2
(sequential) confidence interval procedure is a L-a bounded length confidence
interval procedure if when sampling stops an interval of length not exceeding L
is given which covers v,,r with probability at least 1 — a.

Throughout this paper we consider only those detision procedures that are
based on independently and identically distributed random variables. In the
sequel we make this completely precise. We present a negative result (see the
statement of the theorem below). It will be convenient to say simply “there does
not exist a procedure that works for all F ¢ F.” This means a set F of distribution
functions is specified and that the common distribution function F of the random
variables is in F. The problem is to obtain a confidence interval of length <L
for the p-point v,,r of the common distribution function F. The experimenter
is allowed to construct his procedure using the information F ¢ F. We show
that there cannot exist confidence interval procedures of a specified type giving
an interval of length =L yet covering v, r with probability =1 — a for all
F ¢ F. Thus, for example, it is clear that no sequential confidence interval pro-
cedure can work for all F satisfying F(vp,r — L—) = F(vpr + L).

In Section 2 of the first of this series of papers, Farrell [3], we define a measure
of flatness by

(1.1) er = suPocp<t min (F(ypr + pL) — p, p — F(vpr + (p — 1L)).

We shall be interested in confidence interval procedures that may be applied to
observations on F ¢ F, where if F' ¢ F then ez > 0.

We are interested in choices of F for which fixed sample size procedures will
fail to be L-a bounded length confidence interval procedures. In case F ¢ F
implies that F has a unimodal density function, Weiss [5] has shown the existence
of two-stage L-a bounded length confidence interval procedures. In the general
case of F ¢ F if and only if e» > 0 we show in [4] the construction of a sequential
L-a bounded length confidence interval procedure with certain optimality
properties. Examples of sequential procedures have also been constructed by
J. Kiefer and L. Weiss but these examples have not been published.

The present paper gives a nonexistence result.
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TrEOREM. If m = 1 and ¢f F contains all distribution functions F having bimodal
density functions then there does not exist an m-stage L-a bounded length con-
Jidence interval procedure that works for all F ¢ F.

A similar result has been proven by J. Kiefer and L. Weiss but their result has
not been published. The author [3], Theorem 2, has a related result. The author
wishes to thank D. L. Burkholder for suggesting this problem and for helpful
conversations.

2. Proof of the theorem. An m-stage procedure consists of the sampling plan
(stopping rule) and a function A of the observations which is the terminal de-
cision. In this section we develop a series of inequalities. The last of these in-
equalities shows that given an m-stage sampling plan; given a function A of the
observations, and given an integer n = 1, there is an F ¢ F such that P(|A — v,,#|
< L/2) < 1/n.

We begin by giving a precise description of the terminology. Suppose {X, ,
n = 1} is a sequence of independently and identically distributed random
variables each having F as distribution function. Suppose random variables N
and Y are given such that N = 1 and N is integer valued. Suppose

(1) the conditional distribution of N and Y given {X,, n = 1} exists and
does not depend on F;

(2) for all real numbers y and integers « the event {N = ¢, Y < y} is independ-
ent of the collection of random variables {X,, n = ¢ + 1}. Then we shall say
that Y is determined by a sequential sampling plan. For future reference note
that if a random variable \ is defined by A = 1 when N = k and A = 0 when
N > k, then the joint conditional distributions of A, ¥ given {X, ,n = 1} does

not depend on F. Therefore EQAY | X;, X, ---) = EQY | X1, -+, X&)
does not depend on F.
The definition of an m-stage sampling plan is very similar. Let Ny, ---, N,

be integer valued random variables such thatfor1 <7 < m,N; = 1. Let N =
N1+ -+ 4+ N, .Suppose Y is a random variable such that

(1) The conditional distribution of Ny, ---, Nn, given {X,, n = 1} is
independent of F;

(2) N,is independent of {X,,n = 1};

(8) Theevent N1+ --- + Ny = 4, Npy1 = jisindependent of Xiyy, Xiyo, - - -
fori=z1,j=21,12k=<m-—1;

(4) Forallreal y and integerss = 1 theevent N = 7and Y = yisindependent
OfX.'+1,X.'+2,“’- ‘
Then we shall say that Y is determined by a m-stage sampling plan. It should be
noted that Y is determined by a sequential sampling plan. Also, notice that N
is determined by an (m — 1)-stage sampling plan.

These definitions of sequential and m-stage sampling are broad enough to
include randomized sampling and decision rules.

In the following F and (G will denote distribution functions and S will be the
set of real numbers  such that F(z) 5 G(z). R will denote the set of real
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numbers and E, will denote Euclidean k-space. The probabilities of certain events
will be compared when the random variables {X, , n = 1} each have F or each
have @ as distribution. Probabilities and expectations relative to these distribu-
" tions will be indicated by wusing “F”’ or “G” as a subscript.

Lemma 2.1. Suppose S is contained in an interval (a, b) whose endpoints are
points of continuity of F and G. Suppose ¢ s a real valued Borel measurable func-
tion on Ej and that 0 < ¢ < 1. Further suppose F(b) — F(a) < ¢ < 1 and
G(b) — G(a) < e. Then |Ex(p) — Ealp)| £ 1 — (1 — €)* = ke

Proor. Let W =R — (a,b) and T = W X W X .- X W, the Cartesian
product & times. Observe for use in the following that if ¢ is the characteristic
function of the set 7 then Er(¢¢) = Eg(ey) since F and G induce the same
k-dimensional measures on the Borel subsets of T'. Then

Er(¢) = Er(e¥) + Er(e(1 — ¥))
= Eo(p¥) + Er(p(1 — ¥))
< Eo(p) + Pr(y = 0)
=E¢(g) + 1 — Pe(X1eW) -+ Pe(Xr e W)
< Eole) + 1 — (1 — o).
By interchanging F' and @ in the above inequality the new inequality
Eo(¢) < Ex(p) +1— (1 — o

is obtained. These two inequalities are equivalent to the first inequality of the
lemma. Since 0 < ¢ < 1, the inequality 1 — (1 — €)* < ke follows at once from
the mean value theorem.

Lemma 2.2. Let F, G, S, (a,b) and € be as in Lemma 2.1. Let the random variable
¢ be determined by a sequential sampling plan and suppose 0 < ¢ = 1. Then for
each integer k = 1, |[Ex(p) — Eolp)| = 1 — Pp(N £ k) + ke.

Proor. The following method of proof and the notations used derive from the
article of Bahadur and Savage [1]. Let F® denote the distribution on E; cor-
responding to the coordinate variables being independent and distributed as F.
Similarly for G*. Define a random variable A\ by A = 1 when N < kand A\ = 0
when N > k. Then

Eolp) Z Eo(\e) = [, BN | X1, -+, Xi) dG®

As observed above E(A¢ | X1, - - - , X}) does not depend on the distributions F or
@. Therefore

Eos(No) = [5, Er(Mo| X1, -+, Xz) dG®
= Er(N\p) — ke (by the previous lemma)
= EF(<P) — Er(e — NP) — ke
2 Er(p) — Er(1 — \) — ke.
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Therefore Ex(p) — Eole) < 1 — Pr(N = k) + ke. Replace ¢ by 1 — ¢. The
above arguments remain valid and the new inequality Ee(p) — Er(p) = 1 —
Pr(N £ k) + ke is obtained. Thus the lemma is proven.

LeEmMA 2.3. Suppose 8 > 0. Let the random variable ¢ be determined by a one- ~
stage sampling plan and suppose 0 < ¢ = 1. Then there is an ¢ > 0 such that for
every pair of distributions F and G and every pair of real numbers a, b if

(1) F(b) — F(a) = &

(2) {x|F(z) # G(z)} s contained in (a, b);

(3) the points a and b are continuity points of F and G;
then lEr((o) - Ea(ﬁo)I = 4.

Proor. The distribution of N does not depend on F and G. Choose an integer
k = 1 such that P(N < k) = 1 — §/2. Choose ¢ >.0 so small that ¢k < §/2.
Then Lemma 2.3 follows from Lemma 2.2.

LeMMA 2.4. Let the random variable ¢ be determined by an m-stage sampling plan
and let 0 < ¢ < 1. Suppose 8 > 0 and 0 < p < 1. Let a real number interval
(a, b) be given. There exists a distribution function F with bimodal density function
f having modes a and B satisfying, « < a < b < B,F(a) <p < F(B),and F(B) —
F(a) > 0. In addition, if G is any distribution function satisfying {x | F(z) 5
Q(z)} C (a, B) and o and B are points of continuity of G then |Er(e) — Ee(o)|
< é.

Proor. By induction on the number of stages m. The case m = 1 follows at
once from Lemma 2.3. Assume the conclusion of Lemma 2.4 holds for m — 1.
Relative to modes a*, 8* and the number (m — 1)8/m, such that ¥ <a<
b < B let H satisfy the conclusion of the lemma.

The total sample size N is determined by an (m — 1)-stage sampling plan.
By the inductive hypothesis, if k¥ = 1 then IPH(N k) — PF(N < k)| <
(m — 1)8/m whenever {z | H(x) = F(z)} c (o 8%) and o* and B8* are con-
tinuity points of F. Choose k* so that 1 — PH(N k*) = 8/(2m). Choose
e > 0 so that ek* < 8/(2m) and ¢ < H(8*) — H(a"). In addition take e so
small that we may find a dlstnbutlon function F having a blmodal density func-
tion with modeSaanstatlsfymga <a<a<b<pB=p*F(B) —F(a) = ¢
and F(a) <p < F(B) We may obtain F by modification ofH so that {z | H(z)
= F(z)} © (a¥ B*). Then for any distribution function G satisfying {z | F(z)
# G(z)} C (a, B) and for which « and 3 are contmulty points of G, we obtain
from Lemma 2.2, |Ex(p) — Eolp)] £ 1 — Pe(N < k*) + ék* <1 — Px(N = k%)
+ (m — 1)8/m + 8/(2m) =< 5. That completes the induction.

ProoF oF THE THEOREM. Let A be the given measurable function of the ob-
servations. Let L > 0 be given and an integer n = 1 be given. Choose a < b
such that b — @ > 2nL. Let F, having a bimodal density function with modes
a < B satisfy Lemma 2.4 relative to the interval (a, b) and the number §/(2n)
where § < 1. Then F(a) < p < F(B8). By modification of F on the interval
(a, B) we may construct distribution functions Gy, - -+, Gz, such that G; has
the unique p-point v, ¢, which is the midpoint of the interval (a« + (¢ — 1)-
(B — a)/(2n),a + (B — a)/(2n)),1 £ ¢ £ 2n. We may further suppose that
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if 1 < 4 £ 2n then G; has a bimodal density function. As is easily shown,

(2.1) 22 Pe(|A — vpa| < L/2) £ 1,

since the intervals involved are nonoverlapping. Further, by application of
Lemma 2.4, if 1 = ¢ = 2n then

(2.2) |Pe(|a = o0l < L/2) — Po,(|A — vpa:l < L/2)| < 8/(2m).
Addition of (2.1) and (2.2) gives
(23) 2 Po,(JA — vpel <L/2) S8+ 1<2

From (2.3) we may conclude that for at least one index ¢, Pg, (|A — v5,6;| < L/2)
< 1/n. That completes the proof of the theorem.

ReMARE. The proof of this paper may be carried out using density functions
relative to a positive o-finite measure u defined on the Borel sets of the line pro-
vided p({a}) = O for all real numbers a.
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