NOTES

THE GROWTH OF A RECURRENT RANDOM WALK1

By Charles Stone

University of California, Los Angeles

Let X_1 , X_2 , \cdots denote independent identically distributed non-degenerate random variables and set $S_n = X_1 + \cdots + X_n$. The random walk S_n is called recurrent if for some number $M(S_n) \leq M$ for some $n \geq m = 1$ for all m. The purpose of this note is to prove the following

THEOREM. If S_n is recurrent, then

(1)
$$P\{\lim \sup_{n\to\infty} S_n/n^{\frac{1}{2}} = \infty\} = 1.$$

The author was led to this result by a conjecture of Y. S. Chow, namely the COROLLARY. If $E|X_k| < \infty$ and $EX_k = 0$, then (1) holds.

It is plausible that (1) also holds whenever $P\{S_n \ge 0 \text{ for some } n \ge m\} = 1$ for all m.

PROOF OF THEOREM. Let μ denote the common distribution of the X_k 's. Then we can find positive constants a and b and probability measures ν and φ such that $\mu = a\nu + b\varphi$ and φ is non-degenerate and has zero first moment and finite second moment σ^2 . Let $\hat{\mu}$ and $\hat{\nu}$ denote the characteristic function of μ and ν respectively. A direct computation shows that there exist positive constants ϵ , c_1 and c_2 such that

(2)
$$0 \le c_1 \Re (1 - r\hat{\mu}(\theta))^{-1} \le \Re (1 - r\hat{\mu}(\theta))^{-1}$$

 $\le c_2 \Re (1 - r\hat{\mu}(\theta))^{-1}, |\theta| \le \epsilon \text{ and } 0 < r < 1.$

Let Y_1 , Y_2 , \cdots be independent random variables with common distribution ν and set $T_n = Y_1 + \cdots + Y_n$. It follows from (2) and Theorem 3 of Chung and Fuchs [1] that T_n is a recurrent random walk. (If $E|X_k| < \infty$ and $EX_k = 0$ then this fact follows alternatively from Theorem 4 of [1]). Let Z_n be independent random variables with common distribution φ and set $U_n = Z_1 + \cdots + Z_n$. Let ξ_1 , ξ_2 , \cdots be independent identically distributed random variables such that $P\{\xi_k = 1\} = a$ and $P\{\xi_k = 0\} = b = 1 - a$, and set $j(n) = \xi_1 + \cdots + \xi_n$ and k(n) = n - j(n). We can assume that the Y_k 's, Z_k 's, and ξ_k 's are mutually independent.

Set $V_n = T_{j(n)} + U_{k(n)}$. Then V_n has the same probabilistic structure as S_n . By the zero-one law for independent random variables, in order to obtain (1) it suffices to show that for any N

(3)
$$\lim_{m\to\infty} P\{V_n/n^{\frac{1}{2}} \ge N \text{ for some } n \ge m\} > 0.$$

Received 23 February 1966.

¹ The preparation of this paper was sponsored in part by N.S.F. Grant GP-5224.

Choose M such that $P\{|T_n| \le M \text{ for some } n \ge m\} = 1 \text{ for all } m$. Set $\tau(m) = \min [n \mid n \ge m, j(n) \le (a+1)n/2, \text{ and } |T_{j(n)}| \le M]$. Now

$$\begin{split} P\{V_n/n^{\frac{1}{2}} & \geq N \text{ for some } n \geq m\} \\ & \geq P\{U_{k(\tau(m))}/((\tau(m)))^{\frac{1}{2}} \geq (M/(\tau(m))^{\frac{1}{2}}) + N\} \\ & \geq P\{U_{k(\tau(m))}/(k(\tau(m)))^{\frac{1}{2}} \geq (M/(k(\tau(m)))^{\frac{1}{2}}) + 2^{\frac{1}{2}}b^{-\frac{1}{2}}N\}, \end{split}$$

which approaches $1 - \Phi(2^{\frac{1}{2}}N/\sigma b^{\frac{1}{2}}) > 0$ as $m \to \infty$ by the central limit theorem. Here Φ denotes the standard normal distribution function.

To prove the corollary we need only note that if $E|X_k| < \infty$ and $EX_k = 0$, then by Theorem 4 of [1], S_n is a recurrent random walk and the above theorem applies.

REFERENCES

 Chung, K. L. and Fuchs, W. H. J. (1951). On the distribution of values of sums of random variables. Mem. Amer. Math. Soc. No. 6, 1-12.