REPETITIVE PLAY IN FINITE STATISTICAL GAMES
WITH UNKNOWN DISTRIBUTIONS!

By J. Va~n Ryzix
Argonne National Laboratory

1. Introduction and summary. This paper is concerned with repetitive
sequential play in finite statistical games (decision problems) from the statisti-
cian’s point of view. We shall assume that the statistician’s move at stage k may
depend on the previous k¥ — 1 moves of Nature as well as the random variable
X; = (Xy, -+, X&), where the X; are independent observations (r.v.’s) (possibly
vector-valued) from the sequence of statistical games, k = 1,2, --- . The play
is repetitive in the sense that each component game is identical in structure,
with only the moves of the statistician and Nature changing. Furthermore, we
impose no assumptions regarding the behavior of the parameter sequence of
Nature’s moves. The statistician does have the added disadvantage that the
finite class of distributions in the component game is not fully specified. How-
ever, he does know that class in question has: either (i) all members with discrete
distributions or (ii) all members with ¢-dimensional a.e. continuous Lebesgue
densities.

This same problem when the distributions are fully known has been treated in
[6] for statistical as well as more general games in which Nature’s space is finite.
In the case where the distributions are completely specified but the history of
the past moves is unknown to the statistician, see [20], [22], [27], and [28]. The
development in this paper is closely connected to and motivated by these results,
particularly those of the preceding paper [27].

If for fixed N, the empirical distribution py of Nature’s moves is known, then
the statistician could use as a rule for each of the N component games a strategy
Bayes against py having risk ¢(px). In all the papers cited in the previous
paragraph, the aim was to construct for the statistician, when py is unknown
and N not specified, a sequence of randomized decision functions whose Nth
average loss minus ¢(px) approaches zero (or has an upper bound approaching
zero) in a suitable sense as the number of repetitions of play, N, increases. How-
ever, in the case of statistical games, all of the above results require that the
finite class of distributions be fully specified. In this paper we remove that
assumption by estimating the distributions sequentially based on past moves
and observations. Then in the present play of the component game the statis-
tician substitutes these estimators into a procedure which is Bayes against the
empirical distribution of Nature’s previous moves. The resulting sequence of
procedures is shown to be “asymptotically good” in the sense that the average
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loss over the N games Wy minus the Bayes risk ¢(py) approaches zero (in an
appropriate sense) as N, the number of games played, increases.

In Section 2 we introduce notation and preliminaries. Section 3 discusses play
in repetitive games and defines the proposed sequential procedures t = {t;}. In
Section 4 we prove preliminary results upon which all proofs are founded.

Section 5 considers the discrete case giving uniform (in sequences of Nature’s
moves) convergence theorems (as N — ) for the quantity Wy — ¢(pn).
Theorem 5.1 is a uniform convergence theorem of O(N™*) of the expected value
of Wy — ¢(px) for finite discrete classes, each member of which is non-degenerate
and satisfies a certain tail probability condition. Under the same conditions,
Theorem 5.2 gives uniform convergence to zero in probability for the quantity
N* (log N)' {Wy — o¢(px)} as N — . Uniform convergence of
Wy — ¢(px) — 0 in probability for general non-degenerate finite discrete class
is presented in Theorem 5.3.

Section 6 treats the estimation problem for densities needed to form the ran-
domized strategy sequences t in the continuous case. The results stated are
based on a paper by Cacoullos [3] generalizing the univariate results of Parzen
[15]. '

In Section 7, we present results for the continuous case. Theorem 7.1 and its
corollary give uniform convergence of Wy — ¢(py) to zero in probability and
of its expectation to zero, respectively. The finite continuous classes of Theorem
7.1 are very general in the sense that each member is a continuous a.e. density.

Finally, in Section 8 we draw certain conclusions and relate our results to
similar results obtained elsewhere.

The novelty of the paper rests in the fact that through the past history of
Nature’s moves and the observations connected with past play, one can con-
struct a sequential strategy, t = {ti}, with very little knowledge about the finite
class of distributions, which approaches asymptotic “optimal” play. The lack of
knowledge on the finite class of distributions distinguishes this work from the
related “repetitive type”” problems in games and/or decision theory treated in
(11, [21, [4], [6], [7], 8], [9], [10], [12], [17], [18], [19], [20], [21], [22], [24], [25], [26],
[271, [28], and [29].

For possible applications of this work see Neyman [14], especially his Example
3 and his discussion relating to the work of Blackwell [2].

2. Preliminaries. See Section 2 of the preceding paper [27]. Reference to
Section 2 and equations therein for the remainder of this paper will be taken as
a reference to the corresponding Section 2 of [27].

3. Sequential strategies in repetitive statistical games. Consider again the
problem stated in Section 2. If in such a problem the statistician knows at stage
k, the first k observations X = (X1, -+, Xz) and the previous k£ — 1 moves
of Nature represented by the ¥ — 1 parameter values, 01 = (61, -, Ok1),
(8, = 0), then the procedure in (2.1) at stage k will be a function of X; and
0,1, i.e., in (2.1) we have
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(31) tk(e, Xk) = tk(ek_l 5 Xk), k = 1, 2, e,

To further specify the strategies t = {t;} in (3.1) consider what else is known
to the statistician. Recall that in Section 1, we specified that the finite class
® = {Py ; 6 ¢ @} is unknown to the statistician. However, he does know that for
all problems either ® = @, or ® = @, , where
®, = {Py | For each 0 £ Q, P, is a discrete distribution on the countable set
%« with § the o-field generated by points and u is counting measure}

®; = {Py | For each 6 ¢ Q, Py is a g-dimensional distribution on %, Euclidean
g-space, having an a.e.(u) continuous density with u as Lebesgue
measure and F the o-field of Lebesgue measurable sets}

We shall refer to the situation in which @ is @, as the discrete case and in which
® is @, as the continuous case.

The problem is now to select a sequence of strategies t approaching “optimal”
play in an appropriate sense. This can be done in both the discrete and con-
tinuous cases cited above. The sense in which a procedure t is deemed good is
to show the regret function Ry(0, t) — ¢(p~(0)) in (2.12) approaches zero at
some rate uniformly in 0 ¢ Q as N — «. See Theorems 5.1 and Corollaries 5.3.1
and 7.1.1. We also examine the more delicate problem of convergence of the
average loss of N games. That is, we examine conditions under which Wy (6, t)
— ¢(pn(0)) converges in probability uniformly in 6 ¢ Q as N — o, where
Wx (0, t) is given by (2.5). Studying this last type of convergence, which al-
though technically more difficult, provides more insight and enables this work
to be more closely related to the “experience theory’ approach of [4], [10], [24],
and [29]. Also as was pointed out by Samuel in [22] one actually incurs losses
rather than risks.

Returning to the problem of proposing sequences of strategies t, note that
the procedure t(£, «) with components in (2.9) depends on the finite family
= (fix), -+, fm(x)) of densities (2.2) as well as on £ and z. Hence, we write
tin (2.9) as t(f, £) = i(f, & x) with components d = 1, --- , n given by,

ta(f, £,2) = 0 if (¢ LYf(z)) > min; (§L7(x))
(3.2) =1 if (¢ Lf(z)) <minga (¢§LF(z))
= arbitrary if (& L%(x)) = min; (5L (z)).
Similarly, (2.8) and (2.11) rewritten displaying this dependence become

(3.3) r(f, 6 8) = [ 2 (5 L (2))ta(x) du(z)

(3.4) o(f, &) = r(& ([, £)).

Note also that from the definition of ¢ (7, £) as inf; »(f, £, t), we have
(3.5) r(f, &) 2 ¢(f, &) forall ¢, fandé.

The sequential strategies we propose can now be simply defined. At stage ,
k = 2, estimate for each 6 £ @ the density fs(x) by fis(z) where this estimate is
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based on the past moves of Nature 0,_; and the past observations X; ;. Sub-
stitute these estimates into a current Bayes solution (represented by (3.2)) on
X with respect to the (k — 1)st stage empirical distribution on Q given by
pr-1(0). The resulting sequence t is the one we shall study.

Specifically, let g = {gr(u, )} be a sequence of real-valued measurable func-
tions on € x & each of which is an estimator of fy(x) for each 6 ¢ Q, in the
sense that gi(uw, z) = 0 on X x X, [ ge(u, z) du(z) = 1 a.e. u and gre(x) =
Eoi(U, 2) = [ gi(u, )fs(u) du(u) < o a.e. u. In the discrete case, we give a
sequence of unbiased estimators in the sense that gy (x) = fy(x) a.e. u, while in
the continuous case, the sequence g will be asymptotically unbiased in the sense
that gre(x) — fo(x) a.e. u as k — . Precise discussion of estimator sequences g
are deferred until later.

Given the sequence g of estimators, define for each 8 £ Q, the vector sequence
of estimators f = {fi} with /i = (fu(z), - -+, fim(x)) where

(36)  fu(@) = {2iaadeed ™ 2i1de00(Xy,2) i proe(0) > 0.

= O lf pk‘o((')) =0
Note that the sequence f of estimators depends on 6 ¢ @ even though we have
not displayed this dependence in (3.6).

The rule we propose substitutes fo—s = (fiz11, -+ foer,m) forf = (fi, -+, fm)
and pr_1(0) for £in (3.2) in the kth component game, k = 1, (taking & = fo =0,
the zero vector in E™). Thus, we define t* = {t,*} in (3.1) as

te (01, Xi) = t(fisr, pea(0), Xi) with dth component
(8.7) ta(ficr, pra(0), Xx),d = 1, -+, n, where t;(f, £, z) is given by (3.2)
and f_; for k = 2 has its 8th component defined by (3.6).

We assume that the arbitrary values in (3.2) (which may be functions of f and
£) are defined to include the range of (fee1 » Pr1), k = 1. We note that this can
always be done. For example, one such selection is ¢(f, £ x) as in (2.10).

A sequence t* so defined satisfies two lemmas which are vital to the asymp-
totic results obtained in the discrete case (Section 5) and the continuous case
(Section 7) and are given in the next section.

4. Some useful lemmas.

Lemma 4.1. Let t* = {t."} be a strategy sequence defined by (3.7) and
let we_1(6, 2) = (Lg, t(fi1, pr—, 2)). Then

(41) N7 2 Elwes(6r, Xx) | Xsa] £ Ay + Bx + o(fv, pw)
(4.2) N7 Elwea(6s, Xi) | Xea]l = An + 6(fx, pn),

where E[ | Xy_1] denotes conditional expectation giwen Xy (unconditional ex-
pectation for k = 1), ¢(f, £) is as in (3.4) and

Ay = N7 200 fwia(8r, @) {for(2) — gu( X, x)} du(z)
By = N7 20000 [ {wia(0k, ©) — w0, 2)}g (X, @) du(z).
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Proor. To obtain Inequality (4.1) observe that
W1 (0 , 2)fo,(2) = wia (0, 2){fo, () — g (Xi , )}
+ {wia (0, @) — wi(0e , )} g (X , @)
+ wi (6, 2)g0(Xi , ).
This equality when averaged on k, together with noting that

(4.3) Ewi(0r, Xx) | Xeaal = [ wea(6k , 2)fo, (@) du()
yields (4.1) with inequality replaced by equality and ¢ (f, , &) replaced by
(4.4) Cy = N7 2005 w0, 2)gu (X, @) du(a).

To complete the proof of (4.1) it suffices to show that Cy = ¢(fv, pv). Let
gx = gu(Xe, )1, where 1 is the vector of 1’s in E™ and let ws (v) denote the
m-vector (wy(1, z), -+, we(m, z)). Then, with Y5 = 2 sm1 €, (Yo = 0 and
e = (8, -+, 8:m)), we can express using (3.6) the integrand of the kth sum-
mand of (4.4) as

we (0, 2) g (Xa, @) = (eng, wi' ()
= (Wfr — Yrafia, wi (2)).

By rearranging the order of summation in (4.4) we obtain from this equality
and (4.4),

(45) Cx = N7 205 [ (@), w' (€) — wiaa(z)) du(z)
+ [ (pafn (@), wy' () du(x).

But the kth summand of the first term on the right-hand side of (4.5) can be
written as (see (3.2), (3.3), and (3.4)),

k f 2 (o (@), LYta(Fes prs @) = ta(frsn, Praa, 2)}) du(e)
= ko(e, pr) — (e, Do, t(oaa, prn))},
which by (3.5) is non-positive. Hence, by (4.5) we have
Cx = [ (pafn (), wy'(2)) du(z)
= [ 2= (pafn(2), LY (fy , px s @) du(z)
= ¢(fv, pr),

where the last equality follows by (3.3) and (3.4). This completes the proof of
(4.1).
To obtain Inequality (4.2) observe that

Wi (Ok 5 ©)fo, (2) = wea (Or, 2){for () — gu( X, )} + wea (6, ) g (X, 2).
This equality, when averaged on k, yields by (4.3) the equation (4.2) with
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inequality replaced by equality and ¢(fv , px) replaced by
(4.6) Dy = N7 20 [ weea(6r, 2)ge(Xi, @) du(z).
But the integrand of the kth summand of (4.6) can be written as
Wi (Ox, )ge(Xn , €) = (engs’s wis(2))
= (Yife — Yiafirr , Wi (z)),
which by a rearrangement in order of summation and (4.6) yields
Dy = N7' 200 [ (Wi (), wia(z) — wi (2))du(x)
+ f(pzvfzv(w)y wy' (z))du(x)
= N7 25 kr(fe, pe, t(ir, pea)) — (i, 2}

+ ¢(fN ’ pN)

Thus, by (3.5) applied for each k in the first term of the above we see Dy =
¢(fx , pv) and (4.2) is proved.

The following lemma is a generalization of Lemma 2 of [22] to uniformity on
an index set ©.

Lemma 4.2. Let (S, @) be a measurable space upon which is defined a class
{Py| 60 £6} of probability measures. Let {Yi(6)} = {Yi(6, s)} be a martingale
sequence of real-valued random variables for every 6 ¢ © and define o (6) = Var
(V(0) — Yia(0)}, k=1, Yo(8) = 0. For every 0 € O, let {bx(6)} be a sequence such
that by, < bi(8) = Br, where by T . If there exists a finite positive constant C

independent of 0&© such that
(4.7) > (ol (0)/bi2(0)} < Cfor0eo
then,

by (0)Yn(0) —as. O and uniformly in 0eO. (p-uniformly in the
(4.8) sense of Parzen [16), that is, Polby *(8)Yx(0) = € for some N = Ny
— 0 uniformly in 60 as N — «).

Proor. Define X;(0) = Yi(0) — Y3a(0), k = 1. By the martingale property
E[X:(6) | X1(6), - -, Xx1(0)] = O a.s. for every 6 £ ©. Use the extended Kol-
mogorov inequality (Lo&ve, [13], C, p. 386) in the proof of Theorem 16A in
Parzen [16] in place of the Kolmogorov inequality, take EX,(6) = 0 therein
and obtain by 2(0) D -1 Xi(8) = by '(0)Yx(6) — O a.s. and uniformly in
0e0O.

Hereafter, when talking about a.s. (or in probability) uniform convergence of
sequences of r.v.’s {¥;(6)} we shall always mean p-uniform strong (or weak)
convergence in the sense of Parzen [16] as in (4.8) above.

Lemma 4.2 yields the following result to be used in connection with Lemma
4.1 for proving later results.

Lumuma 4.3. Let t* = {t.*} be a strategy sequence defined by (3.7). Then,
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(4.9)  N'(log N) 7 Zy(0x , Xx) —4.s. 0 (P) and uniformly in 6 £ Q,

where Zy(8y,Xy) = Wx(8, t*) — N7 D i Elwis(6s, Xx)|Xil, where
Wy (0, t°) is defined by (2.5).

Proor. Fix 0 ¢ Q. Define Yy = NZy(0x, Xy). By the definition of wy_;(6
X) (see Lemma 4.1), we have Yy = Yy_; + w1 (0y , Xv) — Elwy_1(0x, Xn)
| Xx—1). But by the smoothing property of conditional expectations E[wy_; (6w,
XN) I Yl y "y YN—l] = E[E[wN_l(ON ) XN)|XN_1]|Y1 y Tty YN_]_]. Hence, E[YN ,
Yi,+,Yya] =Yya,N = 1,and Yy = Yx(0) is a martingale for each 6 ¢ Q.
Noting that |Yx(0) — Yx_1(0)| < 2L*, we can apply Lemma 4.2 with by(6)
=lktloghk k =2b(0) =1,and C = (2L*)*{ D res (klog’k)™ + 1} to obtain
N~* (log N)™'Y»(8) — 0 a.s. (P) and uniformly in 6 & , from whence (4.9)
follows.

In addition to Lemmas 4.1 and 4.3 the following inequalities are utilized in
later proofs. As a direct consequence of (3.3), (3.4), and (3.5) we have a.e. P,

20 (L o (@) = F@)))a(f , px , 2)du(z)
(4.10) < ¢(fv, pv) — ¢(f, px)
= J 200 (I, pn(f(@) — F@))ta(f, o, @)dp(2).
Since the ¢;’s are probabilities on © and thus bounded by 1, we see that (4.10)
jmplies a.e. P,
(411)  o(fx, pv) — ¢(f, pr)|
< 2imn 2050 |L(6, d)| S Ipwolfro(2) — fo(@)}|du(z).
With the aid of results given in this section we now pass to consideration of the
discrete case.

5. The discrete case. In the discrete case the class @ is taken as @, of Section
3. Thus fo(z) = Pr{X = o} and 0 < fo(2) = 1, D_aex fo(z) = [fo(x)du(z) = 1.
In order to arrive at the strategy sequence t* = {t;*} defined by (3.7) we need
only specify the sequence g = {gr(u, )} of estimators. In the discrete case we
take
(51) gk(uy (IJ) = g(u; (B), k= 1,2, -,
where g(u, ) = 1 or 0 as u = z or u ¥ z. Then, the sequence g satisfies the
necessary conditions of Section 3 since g(u, ) = 0, is measurable on € x <X,
2 e g(u, @) = 1(fgr(u, z)du(z) = 1) for ue X, and gis(z) = Eog(X, z) =
fo(x) < o a.e.u. Furthermore, from this last equality we have by (3.6) fie(z)
= {kpro} ™ D_k_y86,09(X,, x) the kth stage empirical distribution of those ran-
dom variable X, which are distributed as Py, satisfies.

(5.2) Efw(z) = fo(x), 2e%,0=1,---,m.

That is, fe(z) = {fu(x), -+, fim(x)}, is the kth stage unbiased estimate of the
vector of probabilities f(x) = {fi(z), -+, fn(z)} for all z & X.
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Henceforth, in referring to the discrete case we shall always take g (u, x) as
in (5.1) to define the sequence strategy t* = {t,"} of (3.7). The following theorem
holds.

TreoREM 5.1. In the discrete case, if Py is non-degenerate and Y g | fo(x)}
< = for each 6 ¢, then the sequence t* = (t*} of (3.7) satisfies |Rx (0, t*) —
o(f, pv(8))| < ¢'N™* where ¢’ is independent of 6 & Q.

Proor. Observe that by definition of wy_1(6x , Xi) in Lemma 4.1, we have

(5.3) Ry(0,t*) = N D E{E[wi1 (6, Xz)|Xsal}.

Hence, by Lemma 4.1 the result will be proved if we appropriately uniformly
bound the terms EAy and E{¢(fv, pv) — ¢(f, px)} from above and below and
EBy from above.

By unbiasedness of g(X; , ) and independence of X; and wy_1(8;, ), &k = 1
we have

(5.4) EAy = 0 uniformly in 0¢ Q.
Similarly, (5.2) and the upper inequality of (4.10) imply
(5.5) E{¢(fv, px) — o(f, pn)} £ 0 'uniformly in 0¢cQ.

Thus, (5.3), (5.4), (5.5), and Lemma 4.1 complete the proof if we find positive
constants a; and «a; independent of 8 ¢ Q such that (i) E (6w, pa) — o, px)}
> —a;Ntand (ii) EBy £ aeN 2.
(i) Note that for 0 ¢ Q, z ¢ X, we have
(5.6) Elfws(2) = fo(2)[ = (Npx) "Eo{g(X, z) — fo(2)}®
= {(Npwo) fo(x) (1 — fo(x)).
In Inequality (4.11), interchange of the order of integration and the Schwarz
inequality combine with (5.6) to yield
Elo(fv, pa) — ¢(fs pw)| S N7 2000 2000 [L(6, d) [phogs

where g5 = D we o) (1 — fo(x) )} The finiteness of ¢o for 8 £ Q follows from
the summability assumption on fyf(z). Uniformity in 6 ¢ Q follows from the
Schwarz m-space inequality applied to the above to yield

(5.7) Elp(fx, px) — o(f, )| < N,
with as = D i |[L%ll, ¢ = (@1, -+, gm). Thus, (i) is proved.
(ii) To bound EBy observe that (3.7), (3.2) the definition of wy(8;, z) (see
Lemma 4.1), and our use of bracket notation for characteristic functions yields,
Hwe1(8r , ©) — wi(6s, 2)}gu(Xx , 2)]
(58) = |2ae Lot gu(X, ©)ta(fis, Dr1 s )ta i, D1, )|
= D |Loy lgp(Xi, )= Ly g (Xi, ) < 2051 L5} g.(X,, 2) < 0].

Fix 0, d, d’, (d # d'), k such that 6, = 6 and x. Apply the Berry-Esseen normal
approximation in the form of Lemma 2.1 to the sum of the (k — 1)p;_s 4 vari-
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ables Sy_19 = D o1 Ly 80,09(X,, ) in the E;_, integral of the characteristic
function on the right-hand side of (5.8) for fixed X, ,» < k, 6, 5 6. Since the
sum S, of independent and identically distributed random variables falls into
an interval of length |L¢*|g(X:, ) < L when this characteristic function is
one and has variance s;_1,4(2) = |Lo™ [*(k — 1)pr_v.fo(z) (1 — fo(z))}, we have
the Berry-Esseen bound if pi_1,6 > 0, [Ls™| > 0, and 0 < fy(z) < 1 given by

(5.9) Eia[—Li"g(Xi, 2) = 203 L5V 9(X,, 2) < 0] < {se-16(x)} ™,

where v = L(21r)_* 4 28, 8 the Berry-Esseen constant. Hence, with the conven-
tion that y/0 = o« for y positive real, (5.8) and (5.9) imply

E|lwi1(6x, ) — we(0, 2)|g(Xs, x)

(5.10) = s L™ [minfy (z), vsits,0(x)fo(x)}
< n(n — min{Lfe(2), v{(k — Dpese} {fo(@)/(1 — fo(e))}}
Summing (5.10) on all 6§, = 6, followed by summing on 8 = 1, --- , m yields

after interchanging integration on E and summation on z,
E[By| = 2 e N7 200 Elwis (8, ) — wi(6s, 2)|g(Xs, @)
< n(n— 1) 2. 20(N7 205 min{Lfi(x), v(j — 1)~

(5.11) {fo(2)/1 = fo(x)}}})
<nm—1) Xg{mL maxy fo(z)N ™" + min{L max, fs(z),
vang(%)}}

where () = > pm {fo(2)/1 — fo(z)}? and ay = N7 200G — 1) < 2N
by (4.10) of [27].

Finally, observe that ) .o maxs fo(z) < m and ¢o = Y e ¢(z) is a finite
constant by non-degeneracy of Py and summability of fi(z) for all 6 ¢ Q. Hence,
by (5.11) we have

(5.12) E|By| £ n(n — 1){min{mL, 2vqeN "} + m’LN"}

from whence (ii) follows. This completes the proof.

THEOREM 5.2. In the discrete case, if Py is non-degenerate and Y ue {fo(z)}
< o for each 0 £ Q, then the sequence t* = {t.*} of (3.7) satisfies N* (log N)™*
(Wx (0, t*) — ¢(f, pv(8))} —p 0 uniformly in 6 & Q.

Proor. By Lemmas 4.1 and 4.3 it suffices to show that (i) N* (log N) ™Ay
— 0 in probability and uniformly in 6 ¢ , (ii) N* (log N)™ By — 0 in probability
and uniformly in 8 ¢ @, and (iii) N* (log N) ™o (fv, px) — ¢(f, pv)} — 0 in
probability and uniformly in 6 ¢ Q. Markov’s inequality (Logve, p. 158) to-
gether with (5.12) implies (ii), and with (5.7) implies (iii). To obtain (i), define
Yy = Yx(0) = NAy, and observe that for N = 1, Y, = 0.

E[YwsY1, -, Yra]l = Yy
+ B{ D eex wv—a (0w , 2){foy (z) — ¢(Xnw, )} (Y1, -+, Yiva}.
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Use Fubini’s theorem for conditional expectations to interchange E[ |Yi,
-+, Yy] and summation on & in the above to obtain by independence of X
and Yy, -+, Yy, and unbiasedness of g(Xy, ) that Yx(0) for each 6 ¢ Q
is a martingale sequence with |¥;(8) — ¥;_1(8)| < 2L*. Hence, by Lemma 4.2
with by(8) = N*log N, N = 2, we obtain {N* log N}7'Yx(8) = N* (log N)™
Ay — 0 a.s. and uniformly in @ ¢ , from whence (i) follows. This completes
the proof. '

We remark that in the above proof the convergence in (i) was strong (with
probability one) convergence and that with care and (4.11) the same can be
shown for the convergence in (iii). Hence, Theorem 5.2 would hold strongly if
in (ii) we could show that N* (log N)™'By — 0 with probability one and uni-
formly in 6 ¢ Q. However, this we were unable to do, thus requiring weak con-
vergence in Theorem 5.2.

It is easy to see that the condition D .fs(z) < o« of Theorems 5.1 and 5.2
is satisfied when & is finite or when Py is a lattice distribution on the real line
having finite second moment.

The following theorem shows that the assumption of summability of fi(z)
on & may be dropped to obtain a result of lower order convergence. ‘

TuEOREM 5.3. In the discrete case, if Py is non-degenerate for each 0 & Q, then the
sequence t* = {t,*} in (3.7) satisfies Wy (0, t*) — ¢(f, px(8)) — O in probability
and uniformly in 0 & Q.

Proor. In view of Lemmas 4.1 and 4.3 and the proof of (i) of Theorem 5.2
it suffices to show (i) By — 0 in probability and uniformly in 6 ¢ Q and (ii)
é(fx , px) — ¢(f, pv) — 0 in probability and uniformly in 8 ¢ Q.

To verify (i), note that in (5.11) non-degeneracy of Py for 6 ¢ @ furnishes
limy{ang(xz)} = 0 for all x ¢ . Thus, since min {L max, fo(x), yang(x)} is in-
dependent of 8 ¢ Q and bounded by L > my fo(z), the bounded convergence
theorem applied in (5.11) yields E|By| — 0 as N — c uniformly in 6 ¢ Q. Mar-
kov’s inequality now completes the proof of (i).

To verify (ii), observe that for each z ¢ &, 6 € Q, the quantity pye{fxe(z) —
fo(x)} is the average of N independent random variables Yis(0, ) = 8g,0{g (X ,
z) — fo(x)} where Yio(0, x) is uniformly bounded in 8 and % and hence by Theo-
rem 15A of Parzen [16] (or Lemma 4.1), pxe{fve(x) — fo(2)} —as. 0 uniformly
in 0 ¢ Q for each z & %. Thus, pe|fve(x) — fo(z)| < 2 implies supy Epe|fre()
— fo(x)| > 0 as N — o« for z ¢ X and is, for all N, bounded (by unbiasedness
of fxe(x) in (5.2)) by 2fe(x), which is summable on . Hence the bounded con-
vergence theorem implies
(5.13) D eex EpNolfNo(x) — fo(z)] —0
uniformly in 6 ¢ @ as N — . Using Markov’s inequality, (4.11) and Fubini’s
theorem to obtain

6E[|¢(i‘1\r ) pN) - ¢(.f7 pN)l g €] El¢(i‘N7 pN) - ¢(f7 pN)'
nL* 20 2 esr Bpaolfro(z) — fo(=)],

we see that (ii) now follows from (5.13). This completes the proof.

=
=
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By boundedness of Wy (0, t*) — ¢(f, px(0)), we have

CoroLLARY 5.3.1. In the discrete case, if Py is non-degenerate for each 6 ¢ Q,
then the sequence t* = {t,*} satisfies Rx(8, t*) — o(f, px(0)) — O uniformly in
0¢cQ.

We now turn our consideration to the continuous case.

6. Estimation in the continuous case. Estimation of Lebesgue densities has
been treated for ¢ = 1 by Parzen [15] and for ¢ > 1 by Cacoullos [3]. The follow-
ing is due to them and is stated here as Lemma 6.1. Let u = (ua, -+ -, u,) de-
note a point in £? and [{(u) du indicate integration with respect to g-dimensional
Lebesgue measure for integrable ¢.

Lemma 6.1. Let K(u) be a Borel function on E* such that

(6.1) sup.|K (u)| < o,

(6.2) JIK(w)| du < o,

(6.3) , Lim o yvoof| ef|*| K ()| = 0.

Let ¢(u) be a Lebesgue-integrable real-valued function on E* and define
(6.4) (@) = b K (T w) ¢ (x — u)du
where {hi} is a sequence of numbers with

(6.5) limg A = 0, hie > 0, he | .
Then for every x € C({), the continuity set of ¢,

(6.6) limy, & (x) = ¢(x) [K(u) du.

In particular, of

(6.7) Ku)z0 and JK(u) du =1
then for x € C(§),

(6.8) limg ¢u(z) = ¢(x).

We now define the sequence, g = {gr(u, z)}, of estimators of the densities
fo(z) for the continuous case by taking,

(6.9) ge(u, z) = b K™ (z — u)),

where K (u) is a Borel function on E? satisfying (6.1), (6.3), and (6.7) and {hs}
is a sequence for which (6.5) holds. Then the sequence g satisfies the necessary
conditions of Section 3 since g,(u, ) = 0, is measurable on E* x E? and

(6.10) fge(u, z) de = [h 'K (b *(x — u)) do = 1 for u e E%

Furthermore, Lemma 6.1 guarantees by (6.8) that the estimators g:(u, x) are
asymptotically unbiased in the sense that as k — o

(6.11) gro(2) = Boge(X, ) = [ 'K (™ (x — w))fo(u) du
= [l 'K (he"w)fo(z — u) du — fo(z) a.e.n,
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since C(fs), 0 ¢, has its complement of u(¢g-dimensional Lebesgue) measure
zero by the assumptions imposed on the class @, .

Having specified the sequence g = {gi(u, z)} of estimators (via the kernel
function K(u) and (6.9), we see that (3.6) specifies the sequence t = {fi} of
estimators of f = (fi, - - - fw) used in definining, via (3.7), the strategy sequence
t* = {t."} for the continuous case. Although the sequence t* depends on the ker-
nel function K (u), we suppress this dependence assuming that for the remainder
of the paper a fixed kernel K (u) satisfying (6.1), (6.3), and (6.7) has been cho-
sen. For possible choices of K (u) see Table 1 of [15] for ¢ = 1 or Table A of [3]
for ¢ > 1. With the sequence t* so specified we examine its convergence properties
in the next section. Before doing so however, we state the following consequence
of Lemma 6.1 which is given for general densities in [15] (Theorem 2A) and in
[3] (Lemma 2.1 and Corollary 2.1).

LeMMA 6.2. Let « = 1 and let (6.5) hold. Then, gi(X, x) where X is distributed
as Py , 0 ¢ Q, satisfies

(6.12) limy h® P Eogi® (X, ) = fo(x) [K*(u)du.
for x & C(fs). In particular, for x & C(fs), we have,
(6.13) limi b Vo{ge (X, @)}} = fo(z) [K*(u) du,

where Vo{h(X)} represents the variance of the r.v. h(X) under Py .

Having specified the form of the estimating sequence g in the continuous case
and given certain properties thereof, we now examine the convergence properties
of the resulting procedure sequence t*.

7. The continuous case. The following measure theoretic lemma will be
found useful in the sequel.

Lemma 7.1. Let (', &, u') be a measure space upon which are defined sequences
of integrable functions {m} and {¢x} such that |m(x)] = [¢o(2)] aen. If m — 1
in measure and ¢ — ¢ tn mean, then n, — 7 tn mean.

Proor. Noting that for F e, v (F) = [elm| du’ = [rlte] du’ = wie(F), the
result follows from Theorem C, p. 108 of Halmos [8].

Let {h} be a sequence satisfying

(7.1) limy, khy'? = .

TuroreM 7.1. In the continuous case, the strategy sequence t* = {t.%), defined
by (3.6), (3.7), and (6.9), with {h,} satisfying (6.5) and (7.1) and K (u) satisfy-
ing (6.1), (6.3), and (6.7), satisfies Wx(8, t*) — o(f, pn(8)) — 0 in probability
uniformly in 0 € Q.

Proor. By Lemmas 4.1 and 4.3 it suffices to prove that Ay, By and
{6(fv, px) — &(f, pv)} — O in probability and uniformly in 6 ¢ Q. We show
more by verifying (i) Ay — 0 with probability one and uniformly in 6 ¢ Q, (ii)
{6(fw, pv) — ¢(f, pv)} — O in probability and uniformly in 6 ¢ @, and (iii)
By — 0 in probability and uniformly in 0 & Q.

(i) Observe that since [fs(z) dv = [gw(z) de = 1, gre(x) given by (6.11),
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Scheffé’s theorem (Scheffé [23]) and (6.11) imply maxy [|fs(x) — gee(z)| da
— 0 as k — . Hence, boundedness of wy_;(6; , «) by L* and Toeplitz’s lemma
(Logve, [13], p. 238) yield.

N7 200 Jwia(Be, %) {fo,(2) — gioy(2)}de
(7.2) : < L*N7 3 maxg [|fe(x) — gre(e)| da
— 0 as N — o uniformly in 6 ¢ Q.
Note that the left-hand side of (7.2) differs from Ay by the term
(73) Ay = N7 2005 fwia (6, 2){Eogr(X, 2) — gu(Xe, @)} da

where Y’ = NA,' is seen to be a martingale sequence by arguments similar to
those used for Yy = NAy in the proof of (i) of Theorem 5.2. Hence, since |V (0)
- Yk_1(0)| < 2L%, (¥ = 0), we have by Lemma 4.2, (log N) ™ N4y —.. 0
uniformly in 6 &£ Q, from whence (7.2) and (7.3) imply (i).

(i) By deﬁnition of gr(x) in (6.11) we have for 0 ¢ Q,

supy [|pwo{ Efvo(2) — fo()}|dw
(7.4) = supg [N 285 dulgue () — fo(2)}| do
= N7 204 flgu(@) — fola)| da
— 0 as n — o uniformly in 6 ¢ Q as in (7.2).

Next, observe that by Fubini’s theorem, we have

(7.5) supo E [|pwolfwo(x) — Efwe(@)}| dz = [m(z) da
where,
(7.6) two(z) = supg Elpwelfae(z) — Efwe(2)}].

But by the Schwarz inequality, independence of the X;, and monotonicity of
the {h}, we have
two(z) = supg (N Dok dueVolge(X, 2)}}?
= (Nh)HNT 20 W Vio{gu(X, )}
Hence, by (7.1) and noting that (6.13) and Toeplitz’s lemma imply
N7 204 hVolgu(X, 2)} — fo(z) [ K (u) du,

for x € C(fs), we have

IIA

(7.7) tvo(z) > 0forallz e C(fy) as N — .

We combine (7.7) and Lemma 7.1 in the following manner: note that gxe(z) =

N7 2 g(@) — fo() aen (for all z e C(f,) whose complement has Lebesgue
measure zero) ; and that by Scheffé’s theorem we obtain gxs(z) — f5(z) in mean
from whence Lemma 7.1, ¢wp(x) = 2gm(x), and (7.7) implying ¢x(xz) — 0 in
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measure (actually a.e.) yield {xe(z) — O in mean. Hence, by (7.5) and (7.6),
we have as N — «©

(7.8) supg E [pxolfre(z) — Efwe(z)| dz — 0.
Finally, by Markov’s inequality we have

eE[ld’(fN ’ PN) - ¢(fa pN)l 2 e] = E|¢(.fN7 pN) - ¢(fa pN)l)

from which (4.11), (7.4) and (7.8) yield the desired result (i) after bounding
the integrand on the right-hand side of (4.11) by
pwolfwe(z) — Efws(2)| + prolBfwe(z) — fo(@)].

(iii) By Markov’s inequality to prove (iii) it suffices to show that uniformly
in0eQ,
(7.9) E|By| > 0as N — .
To do this we shall make use of Inequality (5.8) which holds for the continuous
case also. In (5.8) fix 6, d, d’, (d # d'), k such that 6, = 6 and . Apply the
Berry-Esseen normal a,pprox1mat10n of Lemmia 2.1 to the sum of the (k — 1)px_1,6
variables Si_1,6 = S 30,9Lo '9,(X, , x) in the E;_; integral of the characteris-
tic function on the right-hand side of (5.8) for fixed X, , v < k, 6, 5 6. Since the

sum Si_1,6 falls into an interval of length |L lgk (X, ) when this characteris-
tic function is unity and has variance |Ls™|’si_1,(8, z) with

(7.10) si10(0, ) = 2351 80,0Ve(95(X, @),
we have by Lemma 2.1, if px_1,0(8) > 0, and |Ls"*| > 0,
(7.11) Eual—Li¥gu(Xe, ®) = 255 Loy g.(X,, z) £ 0]
< 2n) (X, 2)821,0(0, ) + 2B4-1,6(8, )

where,

(7.12) Ceo1,0(0, 7) = Se21,0(0, T)$i1,0(0, T),

with

(7.13) Ceo10(0, ) = D=t 80,0E0)g,(X, ©) — gu(z)[.

Noting that (7.11) is always bounded by unity and summing first on % such
that 6, = 6, and then on d, d’, d = d’, we have by (7.11), (5.8), and the defini-

tion of By,

(7.14) E[By| = n(n — 1)L 25~ [{ans(8, z) + ane(8, 2)} do

where

(7.15) axe(8, 1) = N7 D0 spemin{gre(z), (2m) si21,0(8, 2) Bogi’ (X, %)}

and,
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(7.16) an(8, ) = N D31 Saegke (@) min{1, 28k-1,0(6, )}

with ¢1,6(0, ) given by (7.12) and y/0 = o« for y positive and real.

In finding the limit for the right-hand side of (7.14), fix 6 and let ¢ > 0 be
given. Fix z ¢ C(fy). By Lemma 6.2 and (6.11) there exists a ko' (x) = 1 such that
for k = ko' (x),

(7.17) [V olge (X, 2)} — fo(z) [K*(u) du| < ¢
and,
(7.18) E7 D v lgwe(z) — fo(z)| =

Furthermore, we see that (6.11) and Lemma 6.2, imply that as N — o,
(7.19)  ywe(z) = maxr<w gro(z) = v0(x) < 0,

(720) ywo(z) = maxe<y {WEagi’(X, 2)} — 7' (z) < o,

(7.21)  Ywe(z) = maxigy (W Bolge(X, ) — gu(@)[} =" (2) < o,

since, for fixed z & C(fy), {vne(2)}, {vwo (%)}, and {vwe()} are monotone bounded

sequences.
Let Fo(e) = {z |fo(x) [K*(w) du = 2¢. Assume @ ¢ Fo(e). Then for all k& =
k' (z), (7.10), (7.17), and monotonicity of the ki imply,

(7.22) 2000, %) = D vy 0,001 {fo (@) K (u) du — ¢
= D ke Oo,0h e

Let ko (8) be the first subscnpt in the sequence 6 = {6;} such that 6, = 6. De-
fine ky = max{ks () + 1, ks"(0) + 1}. Then, as N — o, we have by (7.22),
(7.20) and monotonicity of the hz ,

N7 D0, B605m0,0(8, %) Eogil (X, )
(7.23) S (Nha®) (T h®) o (m) 2oieny So,08 2ovmear @) O0,8)
= (Nha®) 7 () 2yx0 () — 0,
where the last inequality follows from (4.10) of [27] implying that
(7.24) Sy Bl Dby S0,0) T S D (J— )T S 2N?
and convergence follows from (7.1) and (7.20). Also, note that as N — o, (7.19)
implies
(7.25) N7 D Soegr0(x) < ko (@) (N ywo(2)) — 0.

Since (7.15) is bounded by the sum of (7.25) and (27)* times (7.23), and since
the bounds on the extreme left-hand sides in these two equations are independent
of 0 £ Q, we have proved that,

(7.26) limy {supg axs(8, )} = 0 for z € Fy(e) n C(fo).
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Now assume z ¢ Fy' (¢), the complement of Fy(e). Then, (7.15) and (7.18)
imply for N = k' (z),

(7.27) supg ane(8, ) = N7' 2 iei guo(@)

< e+ fola) < e(1+ 2{[K'(w) du}™),
from whence it follows by arbitrariness of ¢ and (7.26) that
(7.28) limy {supg axe(0, )} = 0 for z & C(fs).

Similar to (7.23), we have (7.12), (7.13), (7.22), and (7.21) combining to
yield, for « & Fg(e),

N7 2 ik, doebe-10(0, @)

< (h2e DN Doik, Soel D vmier 80,0 ch1,0(0, 2))
(7.29) = (h1qé—1 *71,(19(:13) (N Bat®) ™ D kg o6t ZI:;Ilco’(z) 50,,0}—% Zlu:i 86,0

S (') mo(@)2(Whe') ™

+ (Nh™) 7 (R ™ 80,0) Dty Ogol D ke @ Go,0) )
where the last inequality is via (7.24). Observe that
(5™ 80,0) ks dogal Db S0,0) F <l (2) 22355 < Bhe' (2).

Thus, (7.29) yields
(7.30) N S, bk 0(0, T) < 3(h ") yms(w) (Nhx')H1 + k' (@) N7
—0as N — o, for z &£ Fo(e) n C(fo),

where the convergence follows from (7.1) and (7.21). Since (7.16) is bounded
by the sum of (7.25) and 28 times (7.30) with the upper bounds in these two
equations being independent of 0 ¢ Q, we have

(7.31) limy {supg axe(0, €)} = O for z & Fy(e) n C(fo).

On F¢ () use (7.27) with axe(8, ) replacing axe (0, z) to obtain by an argument
similar to that yielding (7.28),

(7.32) limy {sup, axe(8, )} = 0 for & £ C(fy).
Next, observe that
(7.33) sup {awe(8, 2) + axo(8, )} = 2gve(2),

where g?;a(x) = N7 D3 gis(x) converges a.e.u to fy(x) by (6.11) and Toe-
plitz’s lemma. But by Scheffé’s theorem since g;g(:c) is a density this implies
gws(x) — fo(z) in mean. Hence, Lemma 7.1, (7.28), (7.32), and (7.33) and the
fact that by assumptions on the class @ the Lebesgue measure of C'(fs), the
complement of C(fs), is zero we have

(7.34) supg|{ows (0, ) + awe(0, £)} — 0 in mean.
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Equations (7.34) and (7.14) yield (7.9) uniformly in 8 ¢ Q, which by Markov’s
inequality completes the proof of (iii).

The theorem is thus proved by (i), (ii), and (iii).

Boundedness of Wy (0, t*) — ¢(f, px(0)) yields,

CoROLLARY 7.1. In the continuous case, if the assumptions of Theorem 7.1 are
satisfied, then the strategy sequence t* = {t,*} satisfies Rn(0, t*) — &(f, pn(0))
— 0 uniformly in 0 & Q.

8. Final remarks. We make the following remarks.

If we let the 6; be independent identically distributed random variables with
Pr{6, = 6} = &', & = 0, D 5 & = 1, then the results of this paper are closely
related to the “experience theory” work of [4], [10], [24], and [29]. Specifically,
replace ¢ (f, px(0)) by ¢(f, £), £ = (&', -++, £n' ), inall theorems and interpret
in probability statements of Theorems 5.2, 5.3, and 7.1 with regard to the in-
finite product measure P = X5_1P:’, where P, is the joint distribution of
(6 , X) which for each k is i.i.d. with density £9'fo(x). Then since E{¢(f, px(0))
— ¢(f, £)} is of O(N™*) (see proof of Theorem 6.1 of [27]) the thus modified
Theorems 5.2, 5.3, and 7.1 yield “weak” experience theory results with unit
delay time. Compare, for example, Spacek’s theorem in [24] and its improved
version Theorem 2 in [10] as well as the more general results given by Theorem
9.2 of [29]. What distinguishes our work from these results is that we have not
required full knowledge of the distributions. Under the assumption of ii.d.
6’s this paper (for unit delay time) can thus be viewed as a generalization of
experience theory from known to unknown distributions. However, we are able
only to obtain weak convergence results rather than strong convergence.

For a more detailed discussion of experience theory see [4], [10], [24], and [29].

Under the assumption of randomness of the 6;’s, Theorems 5.1, 5.3.1, and 7.1.1
are interesting to compare with the “empirical Bayes” approach in [11], [18],
[19], and [21], which study convergence to Bayes risk of the kth component risk
rather than average risk. In particular, the ‘“non-parametric” results of Johns
[11] examine empirical Bayes procedures for unknown distributions (discrete
and continuous case).

In a repetitive statistical game against an opponent, the sequential strategies
t* of this paper permit the statistician to take advantage of player I (Nature)
if he does not play a minimax strategy, even when player II (statistician) does
not know I’s class of pure strategies (in this case the class ®@). However, player
I may “control” his average loss about ¢ (f, £') = v, the value of the game, where
¢ is the maximin strategy for I, by choosing the 6’s independently according to
£. Yet player IT is protected in this case since t* asymptotically “controls” in
probability the average loss (Theorems 5.2, 5.3, and 7.1) about v also. Blackwell
in [2] and [3] and Katz in [12] have considered this phenomenon of controlling
play in general finite repetitive games.

Again from the game theory point of view Theorem 5.1 (or Corollary 7.1 for
lower order) has its analog for more general games in Theorem 4 of [6]. However,
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in the case of statistical games this theorem would require that the densities f =
(fr, -+, fm) be completely specified. In order to obtain Theorem 4 in [6], Han-
nan introduces the idea of playing, at stage k, Bayes against a random perturba-
tion of the (k — 1)st stage empirical distribution of player I’s moves. This ran-
domization is necessary since merely playing Bayes against p,_;(0) at stage &k
will not guarantee that the Nth average payoff risk) is asymptotically equiva-
lent to the Nth stage empirical Bayes risk ¢ (px(0)). In our case, this randomiza-
tion is furnished by the estimator sequence f.

9. Acknowledgment. The author wishes to thank the referee for pointing out
changes which considerably improved an earlier version of the paper.
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