SOME PROPERTIES OF STATISTICAL RELIABILITY FUNCTIONS

By Siv CarLssoN AND ULF GRENANDER

University of Stockholm

0. Summary. Networks with independent components are considered. Assum-
ing all components to have a probability p of functioning we study the properties
of the reliability function R(p) that the network functions. In particular, we
investigate networks of high order. It is shown that an arbitrary (randomized)
network can be approximated by a pure one with an approximation error of
the order n~. Bounds are obtained for the maximum difference quotient and
derivative of the first and second order of R(p). As a corollary we obtain an
asymptotic result concerning the best possible approximation of a function of
Lipschitz type by reliability functions.

1. Introduction. Consider a network 9t consisting of n components. To the
7th component we associate a variable z; which takes the value 1 or 0 according
to whether this component functions or not. The vector z = (21, 22, @3, « -,
Z,) can then take 2" different values. To each such value belongs a probability
o(x); ¢ is called the structure function of the network. If ¢ takes only the values
1 and 0 we speak of a pure network, otherwise of a randomized network.

In this paper we shall only deal with networks consisting of independent com-
ponents, all of which have the same probability p of functioning. No doubt this
is a severe restriction but this special case, that has received a good deal of at-
tention in the literature, still presents a number of open questions. Once the
probability distribution of the stochastic vector z has been specified we can form
the reliability function R(p) = E¢(x). When designing the wiring diagram of a
network the resulting R(p) will have to be taken into account. This aspect of the
design problem should be put into correspondence with the technological and
economic background.

Starting from n components with the above properties one may ask what
reliability functions can be realized by choosing among the possible networks
that can be formed from these components. Given a certain real valued function
f(p),0 = p £ 1, how well can it be approximated by a reliability function asso-
ciated with a network of size n? To make this question precise we must specify
in what sense the approximation should be understood, e.g. in the sense of uni-
form convergence. Some simple results in this direction are given in Sections 2
and 3. Theorem 2 gives a fairly obvious characterization of what functions can
be represented (exactly) as reliability functions. It would be useful to have ac-
cess to more explicit criteria.

The study of reliability functions can be said to have started in the pioneering
work by von Neumann (1956) and Moore-Shannon (1956) in which the funda-
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STATISTICAL RELIABILITY FUNCTIONS 827

mental importance of the problem was made clear. These early works contain
much valuable information and should be read by anyone interested in the mathe-
matical theory of reliability. They also contain a description of the technological
background that motivates the mathematical problem. An important step for-
ward was taken in Birnbaum-Esary-Saunders (1961) as well as in Esary-Proschan
(1963).

Suppose, in a given context, that one has been led to certain desirable properties
for the reliability function. Is it possible to realize these properties for networks of
fixed order n? It seems natural to consider this as an approximation problem and
in this paper we shall take this as a starting point. It will depend upon the prac-
tical set up which properties should be considered as desirable and the result
will vary from case to case. It is believed that very often one will look for re-
liability functions that are as steep as possible in some sense. There is a meaning-
ful analogy with the OC-curve in statistical quality control, and, while we will
not pursue this idea any further in this publication, the reader is referred to a
paper by Ajne and Grenander dealing with this.

We must specify what steepness properties of the reliability function we will
use. We shall work both with the difference quotient [R(z + h) — R(x — h)]/2h
and with the first two derivatives R'(z) and R” (). Of course, one may be in-
terested in other steepness criteria, but as long as these are linear functionals it
seems possible to deal with them by methods similar to that employed by us.

The randomized networks are certainly mathematically convenient to handle.
In the literature, von Neumann (1956), one can find statements indicating that
random wiring: diagrams also present real advantages. However that may be, it
has seemed necessary to investigate how well a randomized network can be ap-
proximated by a pure one in terms of their reliability functions. This is done in
Theorem 1.

2. Approximation by pure networks. First we need an expression for R(p).
By definition R(p) = E¢(z). Let l(x) = the number of components function-
ing. We have

Ep(z) = D im0 Dsiim=rd(2)p"(1 — p)" ™.

Let
Ak = Zx;l(x)=k¢(x)~

Since 0 = ¢(x) =< 1, and since the sum consists of (;) terms, we have 0 < A,
< (#). When ¢(z) is a nonrandomized structure function, 4; is an integer. We
call z a path of size 7, if () = 1 and I(z) = <. Then Ay is the number of paths
of size k. Even if ¢(x) is randomized we call A; a pathnumber of size k. That is,
R(p) = i Ap*(1 — p)"™, 0 = Ax = (¢). If we define relative pathnum-
bers B, by By, = Ai/(%), then we have

R(p) = 2 k= Bu(i)p"(1 — p)"" = EBx,

where Bk is a real number, 0 £ Bx < 1, and K is binomially distributed (n, p).
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It is easy to derive an asymptotic expression for the smallest error, when a
reliability function of a randomized structure is approximated by one of a non-
randomized.

TrEOREM 1. Let R(p) be a reliability function of a randomized structure func-
tion corresponding to a network with n components. If Ay = 0 or 1 and A, = 0
or 1, then there is a reliability function Ri(p), of a monrandomized structure, so
that Ri(p) approximates R(p) uniformly. In fact |R(p) — Ri(p)| s dominated
by max, 3 D i p*(1 — p)"F ~ (2ne)”"

ProoF. R(p) = D i Ap*(1 — p)" ™, 0 = Ax = (}'). Define (4x) to be the
integer closest to A . Then we can take Ri(p) = Do (Ax)p*(1 — p)" . But

[R(p) — Ru(p)| = 2 im0 |4 — (A)p"(1 — p)™™
5 Ay — (Anlpt (L = p)
2L (L — )"
3p(1 — p)* — p"(1 — P)I/(1 — 2p).
Write f.(p) = [p(1 — p)" — p"(1 — p)1/(1 — 2p). f.(p) is symmetric about
p = 3. We will find an asymptotic expression for M, = maxXo<p<ifa(D).
Given ¢ > 0, we can find 6 > 0 such that (1 — 26)™" < 1 4 e After this we
keep € and § fixed. Divide the interval [0, 1] into two parts: [0, §) and [5, ).
When p ¢ [0, 8), nfu(p) = np(1 — p)"/(1 — 25), and when p e [, 3], n-fu(p)
=n 2051 —-p)" s 2E (1 -1 -0 =nn—-1)1 - 8"
Let

Al

I

ga(p) = np(1 — p)*/(1 — 28), for0 = p <,
=n(n — 1)1 — &))", fors < p =i

n-M, = max ¢g.(p). We want to find maxq <, <3 g»(p), when n tends to infinity.
Let 7 be so large that (n + 1)™ < 8, then maxy <p<s ga(p) = (1 — 28) 7+ (1 —
(n+ 1™ and (1 — 2071 — (n + D)™™ > an — 1)(1 — 8)" for
n sufficiently large, that is,

limy. MaXy <p<y gu(p) = (1 — 26) €™
We have n-M, = n-fu(n™") and
My - fa (™) =
limpae {[(1 = 27)" = (07)"7(1 = n7)]/(1 = 2/n)} = €.
This gives us
¢ < lim inf, M, £ lim SUPnow My < (1 — 28) "¢ < € H(1 + ¢).

Since e is arbitrary we have limy. n-M, = ¢, and max, 3 Dz p"(1 — p)*™*
~ (2ne)™.

3. Exact representation as a reliability function.
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TueoreM 2. If R(p) s a reliability function of a structure with n components,
and we know the Taylor expansion of R(p), R(p) = a + ap + -+ + aup”,
then the relative path numbers By are given by

B =a + a(})/(T) + a8)/E) + a:(3)/(3) + -+ + aa(3)/ (),
) =04k <n.

Proor. There are By, &k = 1, ---, n, such that R(p) = EBg, where K is a
binomially distributed random variable (n, p). K has the generating function
(¢ + p2)"

We find the factorial moments EK(K — 1) --- (K — v+ 1) = p'n(n — 1)
-++(n — v + 1). If B; has the expression given above, that is

B, = ap + aik/n + ak(k — 1)/n(n — 1)
+ ak(k — 1)(k — 2)/n(n — 1)(n — 2) + ---
+ ak(k —1)---(k —n+ 1)/n!,

then EBx = a0 + ap + ap® + -+ + anp™

As both the Taylor expansion of R(p) and the expansion R(p) = D i B+
(M)p*(1 — p)™ ™ are unique, the theorem is proved. (It is easily seen that the
last expansion is unique.)

Let ®, be the class of reliability functions of randomized structures with n
components. If Ry(p) and Re(p) € ®,, then we can write R,(p) = EB?, v =
1, 2. B, are the relative path numbers, which are real and 0 < B” £ 1.K
is a binomially distributed random variable (n, p).

ais areal number0 < o < 1.

a-Ri(p) + (1 — @)-Ra(p) = aEBx” + (1 — a)EBx®
= E(aBx® 4+ (1 — @)Bs®) = ECx ¢ G,

since Cy is real and 0 = C;, = 1 for every k, that is, C; are relative pathnumbers

for some randomized structure.

Accordingly we have:

REMARK. ®, is a closed convex subset of the set ®, of all polynomials of the
nth degree.

Define linear operators Ly, k = 0, 1, 2, -- -, on @, by

L’ = ()/G).

Then we can state
TaEOREM 2a. If fe ®n and 0 = Lif < 1 for all k, then fe ®, .
Proor. f = ay + ax -+ ax® + -+ + anz” for some coefficients a; .

Lif = a0 + ax())/(F) + @5)/G) + -+ + a@)/R)-

By Theorem 2 we can take By = Lyf, f = 2_ %0 Bup*(1 — p)"*, where 0 < B,
< 1, so that fe®,.
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4. Maximum derivative.
THEOREM 3.
maxy B’ (p) = B1/2p(1 — p) ~ [n/2p(1 — p)]},

where By vs the first absolute moment about the mean of a binomial distribution (n, p).
Proor. R(p) = iz Awp"(1 — p)"™, 0 = 4: £ (7). Then

R'(p) = Lo Aulkp™(1 = p)"™ = (n — )1 — )]
= [p(1 — p)]_l le;o Akpk(]. - p)"_k[k — np).

To get the maximum we take A; as large as possible when k¥ — np is positive
and A as small as possible for ¥ — np negative. So

maxy, B’ (p) = [p(1 — p)I™* Dimtnara (H)P*(1 — )" *(k — np).
Now
2imtna ()P (1 = p)" (ke — np) = — 242 ()p"(1 — p)"*(k — mp),
since the first moment about the mean equals zero. Furthermore
B = Elk — np| = — 2242 ()" (1 — p)"™*(k — np)
+ 2itan ()1 — p)" ™ (k — np).

That is 2 imtsp 1 (£)2°(1 — p)""(k — mp) = 36 and maxy B'(p) = By
2p(1 — p). It is known (see e.g. Cramér, p. 257) that 8, ~ [2np(1 — p)/x]".

6. Maximum difference quotient. The following theorem requires a good deal
of calculation.
TaeoreEM 4. For gwen x and h

lmaxg {[R(z + h) — R(z — h)]/2h} — (2h)7Y| ~ (2mn)H.(z, k)
Al — B /ST — 2)* = B)/(1 — )’ T™Y"", asn— «,

where I stands for the set of all structures of order n and R for the corresponding
reliability functions, 0 < ¢ < 1, h > 0,z 4+ h = 1,2 — h = 0, fu(x, h) is
uniformly bounded for all n, and

c=1log[(1 —z+h)-(1 —z—h)"]/log[(1 —z+ h)
=2z =~ (x+h)(x—hn)7T
Proor. [R(z + k) — R(z — h)]/2h = (2h)7" 2iw0 Bi(P)ex ;
a=@@+hnA—-—z—-n""—(@—-n"A—-—2z+n""
= (@ -1 —-z+mn"
Al 4+ R)/(@ = WI(1 — 2 — h)/Q — 2+ )] —1}.
Now fi = [(x 4+ B)/(x — B)I*-[(1 — x — B)/(1 — x + h)]"™* increases mo-
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notonically as k increases, fo < 1 and f, > 1. This implies that there is a k = k&,
such that ¢, > O when k& = k;and ¢; < O when k < k; .

To obtain maxy {[R(x + h) — R(xz — h)]/2h} we have to take B; = 0, when
¢ < 0, and By = 1, when ¢, > 0. We get the maximum when the reliability
function is a binomial sum, truncated at some appropriate k.

Now we want to find k, . We think of £ as a continuous variable for a moment,

¢ = 0 when
{l+n)/(x=m]-[QA—2z+h)/1—-2—m}

11—z —h)/(1 — 2+ h)]" =1;
therefore
k=mnlog[(1—2z+h)(1—2—h)7]/logl(x+ )z — k)

1—z4+hr1—-—z—h"

Accordingly &, is of the form [cn] 4+ 1, where ¢ is a real number, 0 < ¢ < 1.
([x] means the largest integer smaller than z). It can actually be shown that

x — h <c¢ <z 4 h If for given  we regard ¢ as a function of h, then we
have to show

(@ —h)log {[(1 —z +R)/(1 — =z — h)]-[(x + h)/(z — h)]}
(1) <log[(1 —z+h)/(1 —z — h)]
< (z+h)log{l(1 —z+h)/(1 —x—h)][(=+h)/(z— k)]
for h > 0. Let
gi(h) = (x — h)log{[(1 — = + h)/(1 — = — h)]-[(z + h)/(x — h)]}
—log[(1 —=z + h)/(1 —=z — h)];
g:(h) = (z + h)log {[(1 —x + R)/(1 — 2 — h)]-[(x + h)/(z — R)}}
—log[(1 —2 4+ h)/(1 —x — h)].

As is easily seen :(0) = ¢2(0) = 0, and g, (k) < O for b > 0, g2'(h) > 0 for
h > 0. That is, the inequalities (1) are shown.

We shall now analyse sums of the form D fu4 (F)p*(1 — p)™ ™.

(a) ¢ > p. We can use a theorem due to Bahadur, that states: Let B,(k; p) =
2 (NPT ¢ =1 = p, 4u(k; p) = DTG+ D/ + 1 — (04 1)-
pl,andx = (k — np)/(npq)’. If np = k S nand £ — «©,as n — «,then B,(k;
p) ~ A.(k; p).

In this case we have

Bn([cn] + 1, p) ~ ([0n?+1)p[cn]+1qn_[cn]—1+1
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Write [en] + 1 = en + 6., where 0 < 6, = 1. Then we have
(en + 6, +1)/(en + 6.+ 1 — np — p) ~¢/(¢c — p),
and by using Stirling’s formula
(o, )P g™~ (20m) (1L — )/ (p/) Mg/ (1 = T4
(1 — ¢)/eq)™
Consequently
Ba([en] + 1, p) ~ (2m) e(1 — &) (e — p) 7 (p/)™
fg/(1 — " p(1 — ¢)/cgl”™
(b) ¢ <.
oiiiema (£)P°(1 — =1- 2 @ra-p™
=1— Dl ion (,,)(1 - p)k "k =1 — Bu([m)] + 1, 9),

whered =1 —c—n'and 6, =1 + nc—[nc] =2 — 6. If ¢ > g,
B.([c'n] + 1, ¢) has an asymtotic expression analogous to (a).
Now we are able to calculate

(2) St (D@ + B)*A — & — 1) — (& — B)* (1 — & + )"

for large n. Write = for this expression.
Assume 7 to be large enough to fulfill 7~ ' < hande < z + h — n". Then

s = (2){1 — Bu(l¢n) + 1,1 — 2 — h) — Bu(len] + Lz — h)} ~ (2n)7,

sinced =1—c—n"'>1 —z—h+nt—n'=1—2—handc>z —h.
We want to analyse the difference between maxg {[R(z + h) — R(x — h)]/2h}
and (2h)™. We have

maxg {[R(z + h) — R(z — B)/2k} — (2h) 7| = Ba(le'n] + 1,1 —z — h)
+ Bn([cn] + 17 T — h),

where ¢ = {1 + log [(z + h)(z — B /log[(1 — z + B)(1 — x — BN
But

Ba(ldn] + 1,1 — z — h) ~ (2m) (e + w7 (1 — ¢ — )P
(x+h—nt— )1 —2—h)/(1 —c— nHeOt
(z + h)/(c +n "
11—z =Rk (e+n)/A—c—n)(z+RI
~ (2mn) (1 — )@ +h — )
1 =z — B/ — et
(x4 B)/d™e (1 — & — h)e/(1 — o)(@ + BT,
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and . .
Ba(len] + 1, 2 — B) ~ (2an) He(1 — ¢)f'(c — « + k)™
(= — B)/™I(1 — & + B)/(1 — o)I"*"
qx =B = ¢)/e(1 — z + B)]™.

Asyinptotiéally B.([¢n] + 1,1 — 2 — k) and Bn([m] + 1,z — h) are of the
same magnitude, since

(1 —2—1)/A —z+ W]z + h)/(x.— h))

=exp {(1 —¢)logl(1l —ax—h)/(1 =24+ h)]+clogl(z+ h)/(xz — R)]}
{- log [(z + h)(z — h)7']

= exp 1log

() Ty s IOl
1 +1log [(z + R)(= — k) /log [1 — . + B)(A — & — h)7]

+ log [(& + ) (z = h)™]
T+ log [(@ + W@ — hyJ/log [A — z + WA — z — k)1

= exp (O)V =1
Accordingly,
maxy, {[R(z + h) — R(z — h))/2k} — (28)7'| ~ (2mn)7[(1 — ¢) /o

LI = B/ — )t = B/ - o

{@+m"(1— 2 — )™/ (@ +h—c)
+ (x — "1 —z+ 87"/ (c —x+ h),

falz, h) =[(1 — o)/ (=@ + W)L — 2 — B)'™/(z + h —0)

‘ + (x—h)"1 =+ h)™"/(c—zx+h)
and this expression is evidently uniformly bounded in n.

6. Maximum second derivative. We now derive a similar result for the second
derivative as for the derivative.

THEOREM 5. maxy R’ (p) ~ cn/p(1 — p), where ¢ = (2/me)} = 0.48394.

PrOOF. R(p) = D i Axp*(1 — p)" . By using Leibniz’s formula for deriva-
tion we have

R'(p) = Zio Aup*(1 — p)""k(k — 1)/p" — 2(k/p)(n — k)/(1 — p)
+ (n—k)(n —k —1)/(1 — p)7]
= (p°¢") ™ Doieo Asp*q"*P(k),  whereg = 1 — p, and
P(k) = k' — k(¢" + 2npg + (2n — 1)p°) + n(n — 1)p’
=1 — k(g + (2n — 1)p) + n(n — 1)p’
= (k — np)" + p(k — np) — kq.
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In order to get the maximum of R”(p) we must know where P (k) changes its
sign. We have
P(0) = n(n — 1)p* 2 0,
P(n) = (ng)* + png — ng = (ng)* — ng" 2 0,
P(k) =0 when k' —k(g+ (2n —1)p) + n(n — 1)p* = 0.
The two roots are
ki =np + (¢ — p)/2 — [(p — )" + 4npal'/2;
ks = np + (g — p)/2 + [(p — )" + 4npgl'/2.

The calculation above implies that P(k) > O when k < k, and k > k.. Write
b(k; n, p) = (£)p"¢" ™. As before we get the maximum by taking 4: = (&),
when P(k) > 0, and Ax = 0, when P(k) < 0.

Max R"(p) = (9°¢) " 24 P(k)b(k; n, p) + 2i-parsr P(k)b(k; n, p)}
= (P') 7 Lo P(k)b(k; m, .p) — D iZ%hia P(R)b(K; n, p)}
= (V') 'npg — qup — 2ty P(k)b(k; n, p)]
= _(p2q2)-—1 Zl[sk=2[]k1]+l P(k)b(k; n, p).

Now we want an asymptotic expression for >k 11 P(k)-b(k; n, p). Write
2 = (k — np)/Inpgl. For [ke] + 1 < k < [ks] we have

£ = (¢ — p + 26.)/2lnpgl! — [1 + (p — @)°/4npgl’ < m
< (¢ —p— 20,")/2lnpgl" + 11 + (p — ¢)*/4npgl* = &,

where 0 < 0,) < 1,0 < 6," < L.
Let F.(z) be the distribution function and ¢.(xx) the frequency of the stochastic
variable X = (B — np)/ [npq]*, where B is binomially distributed (n, p). We

have
nP(k) = 07 (k — ki) (b — k)
n (@ lopgl — (¢ — p)/2 + [(p — @) + 4npgl'/2)
i fnpgl! — (¢ — p)/2
— p — ¢)* + 4npgl'/2)
pg(z — 1) + o).

i

I

So
Wt M a P(R)-b(k; m, p) = pgr b1 () — 1)ga(aw) + o(n™).

Write
xz—l, for -1 =<z =1,

= 0, forzx < —landz > 1,

I

f(z)
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then
2% (@ = Dga(m) = [Zuf(z) dFa(2)
+ [& (@ — 1) dF.(z) + [ (&® — 1) dF.(z).

F(x) tends to ¢(x), the normal distribution function, when = tends to infinity,
by the De Moivre-Laplace’ theorem, and f(x) is continuous. This implies that

2w f(2) dFu(z) — [Zw f(z) dp(x), asn — oo, Furthermore [3 (2% — 1) dF,.(z)
— 0 asn — o, since |& + 1| < 2/[npgl® when n > some ng, and z* — 1 tends
to 0 when z is between £ and —1. In the same way ﬁ* (@ — 1) dF.(z) — 0,
as n — oo, That is

Lt oo 77" D140 P(R) -b(k; m, p) = pg- [21 (2 — 1) do(a).

It can also be shown that this convergence is uniform in p, when
pe(3 — ¢ % + ¢) for an arbitrary e satisfying 0 < ¢ < 3. Observe, e.g., the
following: F,. ,(x) is as before the distribution function of a standardized bi-
nomially distributed (n, p) variable. Then

Fus(e) — ¢()| < C-[(p'q + ¢'p)/(pg)™"]-log n/n’,

where C is an absolute constant. (See, e.g., Cramér: Random variables and
probability distributions, p. 78). This together with integration by parts gives
us
|[4 (@® — 1) dFa(z) — 21 (2" — 1) de()|

= [ 20¢(2) de — [1120F.(2) da| < 4C[(p'q + o'p)/(pg)*"]-log n/n,
so that the convergence of ffw f(x) dF,(z) is uniform in p. We have thus the fol-
lowing asymptotic expression for max R” (p):

maxy, B’ (p) ~ (n/pg)- [21 (1 — &%) dg(2),
which yields uniformly in p when pe (3 — ¢, 3 + ),
L — 2 de(x) = — [ 4" (2) dv = [2/me]’ & 0.48394.

COROLLARY. Let f be an arbitrary function satisfying |f(z) — f(y)| < M|z — y|.
If for every n, f can be approximated uniformly by a reliability function, R, , of
order m, in such a way that |R, — f| < A/n, then A = M*[2xe]’/2".

Proor. Write

g(z) =0, for0 =2 =< 3,

= Mx — M/2, for 3 <z 1.

[N

Choose
f(@) = g(@), if g(z) =1,
=1, if g(z) > 1
Apparently f(x) satisfies |f(x) — f(y)| < M|z — y|. The second order difference
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quotient is then at z = 1, if Az =
(A% 82" omg = [fG + €) — 2/(3) + G — ©))/é = Me/é = M/

For every = and hence especially for + = } we have |A’f/Az® — A’R,/A2’| <
4A/né, if R, is a reliability function satisfying [R, — f| < A/n. As is easily
seen (A’R,/A2")—3 = R," (% + 0), where |6] < e. Write L = [2/re]’. Then we
have for large »n, by Theorem 5,

L-n/(} — 6") ~ maxq R (3 + 0)
= |(A'R./ AT o] = [(AY/ D)oy + 8] = M /e — 6,

where |§| < 44/né’. Hence In/(+ — 6°) = M/e — 44 /né. We are allowed to
choose ¢ = a/n. For the present, o is regarded as an arbitrary positive real
number.
For 7 > 0 arbitrarily small we can choose n > ng(a) so that 4L < L/(% — 6°)
< 4L + 1, since .[6]- < a/n. Then the inequa,lity becomes 4L + n = M/a —
44 /o’ that is A = L(Ma — (4L + 5)a’). Now maxeso (Ma — (4L + 5)a’)
M2/4(4L + 7). Accordingly, A must be =M*/16(4L + 7), and since 7 is
arbitrary, 4 = M?/16-4L = M*/2"-[2re].
It should be pointed out that the bound obtained in this corollary is prob-
ably far from the best possible one. For example, if f is approximated by Bern-
stein-polynomials we have

|Ea(f(k/n)) — f(2)| < Ea lf(k/n) — f@)| = ME. [k/n — z|
MIE.(k/n — ) = Mlz(1 — 2)/n]) < (M/2) n%
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