STATISTICAL PROPERTIES OF THE NUMBER OF POSITIVE SUMS

By MicHAEL WOODROOFE

Stanford University

1. Introduction and summary. Let X, , ---, X, be independent random vari-
ables having a common, continuous distribution function (df) F and define

(1.1a) Sk = 8i(X) = 2 haX;, k=1,--,m,
(1.1b) Sy =8v(X)=2ievX;, G=VCHL -, n}
(1.1¢) My = Mu(X) = 2 f-1€(Sk),

(1.1d) No = Na(X) = 2 vege(Sv),

where X = (X, -+, X4), eis the indicator function of (0, » ), and & denotes
the empty set. Recently, Kraft and van Eeden [9] have pointed out that since

(1.2a) P(M, = k) = 4 (22, =0, ,n,
(1.2b) P(N,=k) =2, k=0,---,2" — 1,

if F is symmetric about zero (in the sense that F(z) = 1 — F(—zx), —o <
z < »), both M, and N, may be used to test the hypothesis Hy which specifies
that F is symmetric about zero. They also considered the consistency of such
tests. The present paper gives some further sufficient conditions for the con-
sistency of tests based on M, and N, and computes a measure of their asymptotic
relative efficiency with respect to each other. The latter, of course, involves
finding the asymptotic distributions of M, and N, under a sequence of local al-
ternatives. In a final section the asymptotic properties of some confidence inter-
vals and point-estimates based on M, and N, are considered.

The alternatives of interest specify that X is stochastically larger than a sym-
metric random variable in the sense that

(1.3) F(z) £ G(z), —o <z < o, F#(q,

for some G which is symmetric about zero. The tests considered will be denoted
by ¢. and 8, and reject for large values of M, and N, respectively.

It should be noted that (1.2a) does not require the continuity of F; in fact,
none of our results in Sections 2 and 3 which concern only M, or ¢.q do.

2. Consistency. It is shown in [9] that neither ¢, nor 6, is consistent when
F has derivative
(2.1) F'(z) = 1/7(1 + (z — u)b), —0 <z < ®,
where 4 > 0. In this section we remark that the tests will be consistent against
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alternatives F for which (1 — F(z) + F(—=z)) — 0 as x — . Indeed, the con-
dition is necessary and sufficient for the weak law of large numbers to hold—i.e.
for [(1/n)S. — ua| — 0 in probability asn — « with

(22) pn = [ZoxdF(z) = n(F(n) + F(—n) — 1)
— [3 (F(z) + F(~2) — 1) da.
(See [5], p. 232.) If, in addition, F satisfies (1.3), then the integral on the right-

hand side of (2.2) is negative and bounded away from zero for n sufficiently large
so that u, = p > O for n sufficiently large. It follows that P(S, > 0) — 1 as

n — o and therefore that
(2.3) (1/n)E(M,) = (1/n) i1 P(8: > 0) — 1,
27"E(N,) = 27" 2 i ()P(Sy > 0) — 1

asn — . Since (2.3) clearly implies the consistency of ¢, and §, , theassertion
is established.

3. Asymptotic distribution of M, . For each n let X, , ---, Xnn be inde-
pendent random variables having a common df F, (not necessarily continuous)
for which

(3.1a) pn = [ xdF,(z) = w4+ o(n ™,

(3.1b) ol = [ dF(z + pn) — o, 0<d < o,
(3.1¢) Jie12ent 2* dF(z + pn) — 0, forall > 0,

asn— . Forn =12, -.- let

(8.2)  Sw = 25X, k=1,-,m 80=0,

(33) Xa.(t) = 1/n'e)S; if k—1=nt<k k=1 --,n—1

(1/n*)8m if 1— (I/n) St=Z1,
(34) Xo(t) = W(t) + ut, 0=st=s1,

where W (t) is a separable Wiener process with parameter 1. Denote by D the
complete metric space whose elements are equivalence classes of functions de-
fined on [0, 1] which have discontinuities of the first kind only (the reader is
referred to [12] for a discussion of this space and its properties) ; and let @, denote

the distribution induced in D by X,(t) forn = 0, 1, --- . If we now define a
functional L on D by
(3.5) L(f) = [se(f(2)) dt = m(F7(0, »)), feD,

where e is as in (1.1) and m denotes Lebesgue measure, we have
LemMa 3.1. L s continuous almost everywhere with respect to Qo .
Proor. Let C denote the subset of D consisting of those f ¢ D which are con-
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tinuous; it is well-known that @o(C) = 1([3], p. 393). Since m(f*(0)) = 0 for
all f and

(3.6) Jm(F7(0)) d@o = [3Qu({f: 7(2) = 0}) dt = 0,

it is clear that the set C; = {f& C: m(f*(0)) = 0} also has Q,-probability one.
And if foe D, n = 1, and f, — f e C1 in the topology of D as n — «, then by
Theorem 4 of Appendix 1 in [12] it follows that f,(Z) — f(f) as n — « for each
te (0, 1). Since m(f(0)) = 0, e(fa(t)) — e(f(¢)) asn — « a.e. with respect
to Lebesgue measure on [0, 1], so that by Lebesgue’s bounded convergence
theorem L(f,) — L(f). QED

Lemma 3.2. Let (3.1) be satisfied. Then for 0 < y < 1,

lim P(Mn(Xn1, -+ 5 Xan) = yn) = Qu({f: L(f) = y}).

Proor. (3.1) implies that (1/n'¢)S, is asymptotically normal with mean uo ™
and variance one ([8], pp. 101-103). Thus, in view of the facts that X1, -+ - , Xua
are identically distributed for each n and that the discontinuities of X,(¢) are
equally spaced for each n, it follows from Theorem 3.2 of [12] and the ensuing dis-
cussion that @, — Qo weakly as n — . The present lemma, is therefore a direct
consequence of the previous one and the definition of weak convergence. QED

The significance of Lemma 3.2 is that in order to compute the asymptotic dis-
tribution of (1/n)M,, for all sequences of df’s satisfying (3.1), it suffices to do so
for one. A particularly simple sequence is obtained by letting Y1 = ¢ with prob-
abilities (1 & u/nle)/2 respectively. Moreover, each of the finite sets of random
variables Y1, - - - , Y., may be extended to be an entire sequence of independent,
identically distributed random variables Y1, Yas, « -« ([3], p. 71). Having done
this, let Mux = My(Ya1, -+, Yar) fork = 1,2, -+ and n > p*/o*. Then, as is
shown in [2],

(3.7) P(Mu = j) = P(Mnj = §)P(Mag—p = 0),

forl1 £ j < kandn > 4’/¢’. The virtue of (3.7) is that the factors on the right
may be related to known first-passage time probabilities.
LemMa 3.3.If 0 < p < n'c and k = 2, then

(i) P(Mu = k) = p/nle + Daisea (G + DCHIA — 4*/nd®) /4,
(il) P(Mu = 0) = [(1 + u/n%) /2] iz (5 + 1) — 4¥/no’) /4T

Proor. Let p(n, k) denote the probability that the first passage through 4o
by the partial sums S,;,j = 1, 2, - - - , takes place at time &k and notice that the
event M,; = 0 occurs iff there is no first passage through +¢ by time k. Since
u = 0, there is a first passage wp one so that

(3.8) P(Mu. = 0) = 2 jmpap(n, j).

On substituting for p(n, 7) its value, as given for example in [4], p. 323, and sim-
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plifying, one proves (ii). (i) follows by a similar argument after conditioning on
X:.QED
Lemma 3.4. Let k, = k.(y) be the greatest integer in yn forn = 1,2, --- . Then

(3.9) limn! D gjsn, G+ DT'CHIA — 4¥/n)/4)
= (m)7 [y wtexp (—u'w) dw

uniformly in y on compact subsets of (0, 1).
Proor. Since the detailed proof of Lemma 3.4 is both routine and tedious, it
will be omitted. Notice, however, that if  ~ wn asn — o, then

(3.10) G4+ DT = w¥/n) /4 ~ (r) ' exp (—u'w).
Forp = 0and 0 < y < 1, define
(3.11) Fysm) = Bm)7 [Jpw ™ exp (—p'w) dw
g(ys w) = w21 — y5 ) + f(y; wWf(1 — y; )3

and foru < Oletg(y;pu) = ¢(1 —y; —p),0 <y < 1.
TaEOREM 3.1. Let (3.1) be satisfied. Then for 0 < y < 1,

i P(Mu(Xa1, -y Xan) < yn) = [Eg(w; po™") du.

Proor. By Lemma 3.2 it suffices to establish the limiting relation in the special
case that X,1 = Y, for n > u’/o”. If u > 0, then it follows from the preceding
two lemmas, (3.7), (3.10), and (3.11) that lim, P(Mn = ka(y)) = g(y: uo)
uniformly in ¥ on compact subsets of (0, 1). Thus we obtain

(3.12) lim P(nys < Mun < nye) = [ g(w; pe ") dw

for 0 < y1 < 92 < 1; and by Lemma 3.2 we may let y1 — 0. For ¢4 < 0 the
theorem follows from the obvious analogues of Lemmas 3.3 and 3.4 and the argu-
ment given above. QED

COROLLARY 3.1. Let we = 1 — (sin (wa/2))* where a is the limiting size of ¢n .
Then Ba(uo™") = (def) im E(pn(Xn1, <+, Xun)) = [, g(w; po™") duw.

Proor. Let a,’ be the least positive integer for which ¢, = 1if M, > a,’. Then
it follows easily from the are sine law, which is a special case of Theorem 3.1, that
@' /n— wa asn — o . Corollary 3.1 is an easy consequence. QED

4. Asymptotic distribution of N, . The main result of this section, Theorem
4.1, depends on a combinatorial lemma which is an easy extention of the lemma in
[9]. The following notation will be used. Let ¢y, - - - , . be rationally independent
(i.e. linearly independent with respect to rational coefficients), positive real
numbers. Then the subsets of {1, - - -, n} may be so labelled that

(4.1) 0 = Syw(t) < -+ < Svem(t)

where Svy(t) = D_jvt; for V # & and Sz(t) = 0. Define vectors
e = (e, "+, €m),t=1---,2" by



NUMBER OF POSITIVE SUMS 1299

(4.2) e; = +1 if  jeV(@), j=1,---,n,
= —1 if  jeV(@), j=1,---,n,
and let te; = (ent1, - , €mta).

Lemma 4.1. Let Sp(te;) = D1 eijt; and let No(te;) = Zy,ég e(Sy(te:;)) for
i=1,---,2". Then Sp(ter) < -+ < Sultemn),and N,(te;) =< — 1,4 =1, ---,2"
Proor. The first assertion follows from

(43) Sn(téi) = 2SV(;)(t) - Sn(t), 7= 1, e ,2n.

The second may be established by defining a one-one correspondence V «> V' of
the power set of {1, - - - , n} with itself for which Sy (te;) > 0iffp = 2, -- -, 4.
Such a correspondence is

(4.4) V=V it VCV(®©)
Vi=V AV(®G otherwise
where A denotes symmetric difference. Its properties are easily checked. QED

Lemma 4.1 will be used as follows: Let (3.1) be satisfied with each F, con-
tinuous and let

(4.5) Tow=Tu(Xn1, -+, Xun) = (an1‘7 ) lXﬂnl)

forn = 1,2, --- . Then given T, = ¢, the co-ordinates of which will be rationally
independent wp one, N, will be k or more iff S,, exceeds its kth largest possible
value. Thus §, is equivalent to a test which has been known long enough to be in
advanced textbooks on statistics and is known to be most powerful against
normal shift alternatives among all unbiased tests of Hy . (See, for example, [6],
pp- 203 and 281, and [10], p. 206.) The following theorem extends results given
in [6]:

Tueorem 4.1. Let (3.1) be satisfied with each F. continuous. Then
lHm P(Na(Xn1, -+ Xun) < 942") = ®(2, — no 1), 0 < y < 1, where ® denotes
the standardized normal df and z, = " (y).

Proor. Let [-] denote the greatest integer function and let ¢, (¢) be the [y2"]th
largest value of (1/n'0)S,, given T, = t. Then by Lemma 4.1

(4.6) P(Na(Xn1, -0y Xan) < [yzn]) = P((l/n%a)S,m =< ¢(Thw))

forn = 1,2, --- . Since (3.1) implies the asymptotic normality of (1/n%)Sun
with mean po " and variance one ([8], pp. 101-103), it clearly suffices to show that
¢.(T,) — 2, in probability as n — <. This is established in [6] under more re-
strictive regularity conditions than we are assuming. That these regularity con-
ditions are unnecessary follows from Theorems 4.1 and 4.2 of [6], Chapter 7 and

LemMmA 4.2. Let Wy, Wa, -+ and Wy, Wy, -+ be independent sequences of
mutually independent, identically distributed random variables which are also inde-
pendent of Xu1, -, Xon for everyn and let P(Wy = £1) = 3 = P(Wy = £1).
Then (3.1) implies that for — o < w,w' < »

!

lim P((1/n%) 27 WiXa; < w, (1/ne) 27 WiXa = w') = &(w)d(w).
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Proor. Let a and b be real numbers, @’ + b* 5 0, and let Y,; = aW,X,; +

WX, j=1,---,n,n =12 ---.Then Yau, -+, Y. are independent
and identically distributed for each n and
(4.7a) E(Y.) =0, n=12 ---,

(470) Var (V) = (@@ + )P+ 0(1)) as n— .
Moreover, if ¢ > 0 and we let ¢ = ¢/(|a| + |b]), then
(4-8) flylgeni ?/2 dP(Ynl é y) é (lal + |bl)2 Jllz[ge'ni .’E2 an(x)

which is 0(1) as n — « by (3.1¢). Since (4.7) and (4.8) imply the asymptotic
normality of (1 /nle) > 71 Y.; with mean zero and variance a* + b%, the lemma
follows from the arbitrariness of a and b. QED

CorOLLARY 4.1. Let o denote the limiting size of 6,. Then vo(uo™') =
(def) im E(8,(Xn1, -+, Xnn)) = 1 — ®(21-0 — po b).

b. Asymptotic efficiency. In this section we compute a measure of the asymp-
totic relative efficiency (ARE) of ¢, with respect to 8, . This measure is not the
usual Pitman ARE; it is the square of the ratio of the slopes of the limiting power
functions 8, and «, at zero. This ratio tends in a rather imprecise way to measure
the same limiting ratio of sample sizes as does Pitman ARE. Formally, the meas-
ure is

(5.1) eff (@) = [(8/0)Ba(1)| u=ol’/[(8/31) ¥a ()| ueel’

where 8, and v, are as defined in Corollaries 3.1 and 4.1 respectively and the right-
hand derivative is understood in the numerator.
Lemma 5.1. For 0 S p S 1land 0 < y < 1, (8/30)f(y; v)| vmp exists and s
bounded in absolute value by one. The right-hand derivative is understood at u = 0.
Proor. For 0 < u = 1 the lemma is obvious. At 4 = 0 a change of variables
shows that as v — 0,

(f(y;v) — f(50)) /v = (8m) 7 [apw ¥ (exp (—w) — 1) dw
(5.2) — (8m) 7 [T (exp (—w) — Dw ™ dw
= —2m)} [fwtexp (—w) dw. QED
An application of the product rule to (3.11) now yields the facts that

(0/3v)g(y; v)| omu exists for 0 = u < 1 and 0 < y < 1, is dominated by an in-
tegrable function of ¥, and at p = 0 assumes the values

(5.3) (3/30)g(y; 0)| o = (2m)H((1 — )~ = y7)

for 0 < y < 1. Thus we may calculate (3/0u)B(u)| u=0 by simply integrating
(5.3) from w, to one. Since the denominator in (5.1) is clearly &' (21_.)*, we have
proved

TuEOREM 5.1. Let w, and 2, be as in Corollary 3.1 and Theorem 4.1 respectively.
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Then
eff (a) = (2/m)((1 — wa)? — (1 — we}))?/®' (21-)".

REMARK. eff (a) may be calculated from readily available tables. Some typical
values are eff (0.01) = 0.22, eff (0.05) = 0.34, and eff (0.10) = 0.43.

6. Confidence sets and estimation. An hypothesis testing problem which is
different from that considered in the Introduction is the following: For u real let
F, be the class of all continuous df’s G which are symmetric about u (in the sense
that G(p + z) = 1 — G(p — z), —0 < z < ) and suppose that F, the

common df of the independent random vgmriables X1, -+, X, is known to _be in
F=U{F,: —o < u < o}, Define X = Se/k, k=1, , n,and Xv =
Sv/e(V),V # &, where ¢(V) denotes the cardinality of V and let

(6.1a) Xay> > Xy,

(6.1b) Xvay > -+ > Xy s

be their ordered values. (Notice that the definition of V' (¢) in (6.1b) differs from
that in (4.1).) It is merely a matter of translation to see that the random vari-
ables

(6.2a) Mu(u) = Mo(X;0) = D pae(Xi — u),
(6.2b) Nu(u) = No(X;0) = Dvege(Xv — n),

may be used to test the hypothesis H, which specifies that F ¢ §, against alterna-
tives which specify that F ¢ §,° = U{F, :v 5 u}. Specifically, the tests, which will
be denoted by ¢.(x) and 8.(u), accept H, iff a, < M.(p) < m» — a, and
bn < Na(p) < 2% — (b, + 1) respectively. We require a, and b, to be integers
and consider only non-randomized tests. Thus if « is the size of ¢.(u), we find

(632) 1—a=Plan < Mu(p) <n —an) = P(Xp—sn < 1 < Xiapy)
if F &5, ,s0that [X a1 , X(ay) is a 1 — a confidence interval for u. Similarly,
if @' is the size of 8,(n), then
(6.3b) 1 —a' = P(by < Na(p) < 2" — (bu + 1))
= P(Xvery = 1 < Xvop)

if Feg,.

While the procedure for obtaining confidence intervals from hypothesis tests
has been known for a long time, a method for obtaining point-estimates from non-

parametric tests has only recently been proposed by Hodges and Lehmann in
[7]. When applied to ¢, and 8, , their method produces the estimates

(6.4a) fn = med (X, -, X,),
(6.4b) i = Xvery,

respectively.
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The asymptotic distribution of the confidence intervals’ end-points (6.3) and
of the estimates (6.4) may be obtained from Theorems 3.1 and 4.1 provided that
F ¢%, and

(6.5) [(x — w)dF(z) = ¢’ < .

THEOREM 6.1. Let j ~ Bn as n — « and let F ¢F, satisfy (6.5). Then for
—o <y< o,

lim P(n} (X — u) < 9) = [§g(w;yo™) dw.

Proovr. There is clearly no loss of generality in assuming that x = 0. In this
case the hypotheses of Theorem 3.1 are satisfied with X, = Xi — yn

k=1,---,n,n=1,2, .-, for any fixed y. Therefore
P(W'Xy < y) = P(Ma(yn™) < Bn) + o(1)
(6.6) = P(Mn(XnI’ e ,Xnn) <,3'n)-|-0(1)

— [§g(w; yo™) dw

asn — . QED

COROLLARY 6.1. lim P(n}(fin — u) < y) = f; g(w: yo ) dw.

ProoF. Let n = 2m; then it suffices to show that n*(X m — Xmsn) — 01in
probability as m — «, and as above, there is no loss of generality in assuming that
uw = 0. If ¢ > 0 is given, then by Theorem 6.1 there exist zo, and no for which
P(n} IXwl = z0) < ¢/2 for n = no and k = m, m + 1. Thus letting
x; = —xo + je/3forj =1, -+, [6xoe ] + 1, we find

(6.7) P (X — Xeman) > €) < 22 P(Ximany <2 < Xmy) + ¢
= Zi P(Mn(x/"'—%) =m) + e

Since (1/n)M,(z;m") has a continuous limiting distribution for each j (see
(6.6)), the corollary follows. QED

Similar considerations lead to

THEOREM 6.2. Let j ~ 82" as n — « and let F ¢, satisfy (6.5). Then
W (Xvgy — n) is asymptotically normal with mean o2,_s and variance o".

COROLLARY 6.2. n'(fi,’ — pn) is asymptotically mormal with mean zero and
variance o°.

The final topic to be considered in this paper is the asymptotic behavior of the
length L, = (Xve,) — Xve—sy) of the confidence intervals (6.3b). It will be
shown that under regularity conditions n'L, converges in probability to 202;_a/
asn — o« where @ = lim b,27"*" is the limiting size of 8,(u). A similar analysis
has been made by Lehmann [11] for confidence intervals obtained from the
Wilcoxon Test; the methods employed here, however, are essentially different
from those of [11].

The regularity conditions which will be needed are (1) that F ¢ ¥, and

(6.8) [(x = widF(z) = 7 < o
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and (2) that the sequence of sample means be asymptotically efficient among all
unbiased estimates with respect to the family of measures induced by the trans-
lates of F. More specifically, (2) states that if

(6.9&) an(xl, e ,xn) dF(xl"‘ 0) e dF(xn - 0) = H+ 0
for all 8 and all n, then
(6.9b) lim inf n Var (W,(Xy, -+, Xa)) = o

where o” is given by (6.5).

LemMA 6.1. Let j ~ Bnasn — » --- . Then (6.8) implies the existence of a con-
stant B for which P(n* | v — u|l > y) = By~ uniformly in y > 0 and n suffi-
ciently large.

Proor. Again there is no loss of generality in assuming that u = 0. In this case
we have for n sufficiently large

P(iXvy > y) £ P(Na(yn™) 2 2" + 1)
(1/82")E(Na(yn™))

(1/827™) Dokt (1)P (S > ykn_%)
(1/827") Ty (2) (b + Ko*)y ™'k *n’

which does not exceed 48(7 + ¢*)/8y". A similar argument yields the same bound
for P(n*Xv; < —vy). QED

COROLLARY 6.3. lim n’E(X v — u) = o215, and lim n Var (Xv¢) = o’

THEOREM 6.3. Let (6.8) and (6.9) be satisfied and let b, ~ a2" " asn — . Then
n'L, converges in probability to 2021_q2 as N — ©.

Proor. It is easily seen that (X v,y + Xvans,)/2 satisfies (6.9a); therefore

(6.11) lim inf n Var (Xye, + Xvesy) = 40

Expanding the left-hand side of (6.11), we find from Corollary 6.3 that
lim n Cov (Xva, , Xvan-sy) = o, thus implying that lim n Var (L,) = 0; and
since b, ~ a2" " asn — o« by assumption, Corollary 6.3 implies lim n*E(L,) =
2031—0:/2 . QED
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