ASYMPTOTIC NORMALITY OF BISPECTRAL ESTIMATES!

By Joun W. Van Ness

Stanford University

1. Summary. The work presented here is a continuation of that presented in
an earlier paper, M. Rosenblatt and J. Van Ness [15], in which the basic prop-
erties (unbiasedness and consistency) of certain estimates of the bispectrum and
bispectral density are discussed. (The bispectrum can be thought of as the
Fourier transform of the third-order moment function of the process.) The
present paper is concerned with the asymptotic distribution of these estimates.
One would expect that under certain regularity conditions these estimates would
have distributions which tend to complex normal distributions. The following
develops two different sets of such conditions either of which suffice. The first
set involves a uniform summability condition on the first six cumulants of a
sequence of processes obtained from the original process by projecting it onto
a certain sequence of Borel fields. The second, and much more intuitively mean-
ingful, set involves the strong mixing condition (see Rosenblatt [11], [12];
Kolmogorov and Rozanov [6], and Volkonskii and Rozanov [18] e.g.).

The calculations in the earlier paper were carried out for the continuous
parameter case; here we restrict ourselves to the discrete parameter case.

For reasons for interest in polyspectra see, for example, Rosenblatt and
Van Ness [15]; Hasselmann, Munk and MacDonald [4]; and Brillinger [2].

2. Introduction. Let {X;}, ¢ = 0, &1, &2, -- - , be a discrete parameter real-
valued random process. For our purposes we take {X,;} to have mean zero and
finite sixth-order moments and to be sixth-order weakly stationary so that for
all ¢,

EX: = O,
(2.1) EX X, = meo(t, t + v) = r(v),

EXtXt+y1 Xt+y5 = me(t, t + Viy * t + Vs) = 7'6(111, ,V5).

In addition we require 7(») and r3(v1, v2) to be in [; with the spectral distribution
function, F()), of the process absolutely continuous with a continuous density,
f(\). Then’
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1258 JOHN W. VAN NESS

(2.2) r(v) = [I.e”f(N) d);
(2.3) FON) = (20)7 22, € ().
Similarly define the bispectral density function as
(24) g, M) = (21)7" 21, irai<eo €XD (—T1M — imahe)7s(v1 , 2)
and assuming g(A\1, A2) € Ly,
(2.5) ra(v1, ) = [T 20 exp (v + m)g (s, As) dha dha -

This is the harmonic representation of the third-order moment function under the
above assumptions.

Since the process is real, the following symmetries occur in the third-order
functions: ‘

(2.6) r3(vi, ve) = 13(va, ) = r3(—v1, v2 — v1),
(2.7) g\, M) =g, M) =g\, =M — Ne) = g(—N, —Ng)-

The symmetries (2.6) imply that r3(»1 , »2) is completely specified over the entire
plane by its values in any one of six sectors. Similarly g(A; , A2) is, by (2.7) and its
periodicity, completely specified by its values on any one of the twelve sectors
(including boundaries) shown in Figure 1.

It is well known that the random spectral measure dZ ()\) associated with the
spectral representation of { X} has its second-order moments related to F(\) and
its third-order moments related to G(A;, A\2):

Further, in the real representation of the process,
X, = [§ costndZ;(\) + [7 sin i\ dZa()),

the expectation of dZ;(\) dZ;(N) dZr(N\s);1,7,k = 1, 2; are related to the real
and imaginary parts of G(A1, ;) (see Rosenblatt and Van Ness [15]).

3. Estimation. The estimate discussed here is the same as that introduced in
the earlier paper, i.e., one based on the third-order theory analog of the periodo-
gram. Thus given observations, z;, for 1 < ¢ £ N we first choose a natural esti-
mate for r3(v; , v2)

(3-1) PN(VI ) V2) = ]V_1 ZteDN(vl,v2) Lt t4v1 Lt4vy

where Dy restricts . , ¢y, and 1., to the domain in which they are known (see
[15]). Replacing r3(v1, v2) in (2.4) by px(v1, 1), we get an estimate of g(\; , \g),

(3.2)  gv(M, ) = (21)7 2t il v €XP (— v\ — wahg)pw (w1, 7).

However, as discussed in [15], this estimate is not consistent and must therefore
be weighted in the form

(3.3) gn (W) = [Zo [T W(pa, ue)gn(ur s po) dpua dus
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Fig. 1

where W (u1, pe) is for example a “bispectral averaging function” deﬁnedfiin [15]
or, if one wishes an asymptotically unbiased estimate, a sequence of weight func-
tions { Wx(u1, u2)} can be used so that for example

(34) gv'(M, M) = ff-w flr Walps — M, pe — No)gu(pa, po) dps dps .

As N increases the Wy narrow the region averaged over tending to give asymp-
totic unbiasedness. The rate at which Wy concentrates must be slow enough to re-
tain the consistency.

The problem of asymptotic bias and consistency was treated in [15]. There suffi-
cient conditions on the process and the sequence of weight functions { Wy} for the
desired properties are obtained. The main conditions employed were summability
conditions on the first six cumulant functions of the process. If s;(v1, - - - , v;) are
the jth order cumulant functions of the process (see [15]), then the following rela-
tions hold in our case (see Stratonovich [17], Chapter 1, and Leonov and Shiryaev
[7] for a discussion of cumulant functions):

my(vn1) = s1(n1) = 0;
ma(v1, va) = 8o(v1, v2);
ma (v , V2, V3) = 33(1’1 y V2, "3);

(3.5)  ma(vr, -+, va) = sa(vr, -+, va) + {s2(v1, v2)8(vs, v4)}5;
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me(v1, -+, ) = Se(v1, -+, ) + {8s(v1, va, v3)ss(vs, v5, v6)}10
+ {s2(v1, va)sa(vs, -+, vs)}1s + {s2(v1, v2)
-82(v3, va)Se(¥s 5 6)} 15

where the notation {-}; denotes the sum of all j different terms obtained by inter-
changing the arguments of the terms in brackets (the order of the arguments of
the s; being immaterial). (See Tables I, IT and III in [15].) Thus

m4(1’1 y "ty V4) = 84(V1 y Ty 1/4) —+ 82(1/1 , 1/2)82(1/3 , V4)
+ 82(1’1 , V3)32(V2 , V4) =+ 82(111 , V4)82(1/2 , Va).
Due to stationarity, we write

sa(t, ¢+ v) = &(v),
(3.6) : -
ss(tyt+ v, oo, t+ws) = E&(v1, -+, 7s).

Then the conditions used are that £(v1,ve,vs) e 1(Rs) and &(v1, -+ ,v5) e L(Rs).
As mentioned in [15], normal processes, linear processes and K-step dependent
processes all satisfy this requirement.

4. The bispectral density estimate. The asymptotic distribution will be dis-
cussed not for the general form (3.4) but for a subclass of such estimates. To de-
scribe these estimates, first define Ay and By such that Ay = By " is a positive
integer and By — 0 and By'N — « as N — . We should note that we only need
that ByN — o te get the statements of Theorems 1 and 2 (and Theorem 5 of
[15]) but if we want the density estimate to be consistent we need By’N — .

DEFINITION 1. A real function, w(y: , ¥2), is called a symmetric bispectral esti-
mating kernel if’

(i) for any € > 0, there is an M1(e) such that for all M > M, and uniformly
inN > M,

BN2 Z Z(l’lv”z)EDIMAN wz(BNﬂl , Bavs) < €

(i) w(yr, y2) = M1 < o forall —w <y, y: < o;

(ii1) w(y1, y2) = w(ye, 1) = w(—y1, y2 — ¥1) (same symmetries as those of
rs(vi, v2));

(iv) for any € > 0, there is an M2 (e) such that for all M > M, and uniformly
inN > M and in »; , .

By Z|v2|>MAN |w(v1, Byve)| < ¢

(v) for all fixed numbers a and b, any fixed M > 0, and for any ¢ > 0 there is
an No(e, M, a, b) such that for all N > Ny,

-~ #Denote by Oya , the j-dimensional hypercube centered at the origin with sides of
length 2M parallel to the j axes. The dimension, j, will be obvious from the context. Also
let O’y denote the complement of O in R; .
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BN2 |Z|v1|,|v2|gMAN w(BNVl + BNG, BNVZ)w(BNVI ) Byve, + BNb)
— 2inlimisuay w' (B, Byn)| < e

and

BN |Z|V1|§MAN w(BNVl 3 BNa) - Z|pl|§MAN U)(BNVl , O)I < e.

This last condition is certainly satisfied if w(v; , v2) is continuous.
The estimates we will consider are of the form

(4.1) g™ (O, M) = (20) 7 2011 et v €XD (— i — ihgws)
~w(Byv1, Byva)p(v1, v2).

If we have a function Wx(\1, \s) whose Fourier coefficients are w(Byvy , Byrs)
then, written in terms of W, g»™* has the form (3.4). The rate at which By — 0
governs the rate of concentration of the weight functions.

Condition (iii) of Definition 1 implies that gy*(\1, A\2) has the same sym-
metries asg(\;, \z). It is not a necessary condition but is included solely to permit
more compact statements and preofs of theorems. For a discussion of the non-
symmetric case see [15].

6. Asymptotic normality under a uniform summability of cumulants condition.
Consider a real, strictly stationary process, {X,}, of the following form. Let

n = ("'7"7—17"7077717"')

be a doubly infinite sequence of independent, identically distributed random
variables. We could take the #’s to be uniformly distributed on [0, 1] or normally
distributed. Let T' be the shift operator on 9, i.e., Tn = (-++ , 1m0, m, 72, **+).
Take h to be a Borel measurable function of the doubly infinite vector and define

(5.1) X, = h(T'), t=0,=%1,---.
Also let
(5.2) Xip = EX: | mesy o 5 neral

(ie., X, is the projection of X; onto the Borel field, Bi*%, generated by
Ne—k s *** » Netk) and

r(w'k)(ll) = EX X i ;

&,k )
(5.3) r (1/) = EX:,kX[.i_y,k 5
(c0,%0,k) .
T3 (V1 ) 1'2) = EXtXt+v1Xt+v2.k 3
and similarly define 7,@*P, 7, ®# 0 ploeb L GRED L @@0kER o)

1" FEER  Corresponding to these there are as in (3.5) and (3.6)
£ (), %P (),
(5.4) fs(w'w'k)(h yP2), Ea(k'k'k)(Vl . ).
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,00,00,k) k.k.k .k
E P (o ve, ws), e, B "(v1, v2, 1),

EG(oo,oo,oo,k,k,k)(yl -+, ), and EB(Ic,k.k,k,k.k)(yl’ ce ).

The following theorem then holds.
TueoreM 1. If (a) {X.} is a process as defined above,
(b) EX/” < w, g
(c) all cumulant functions &, -+, &77, &, -+, &7, &, .-, 69779,

B, -, & gre e 1 of their respective spaces uniformly in j,

(d) w(vi, v2) 1s a symmetric bispectral estimating kernel,

(e) for brevity in writing the results, (u1, p2) and (us, ps) are taken in Section
one as shown in Figure 1,
then

N*Bulgn™(p1, m2) — Egn™(p1, u2)]

converges in distribution to a complex normal random variable, X + 1Y, where X
and Y have zero mean, are jointly normal, are independent and have the following
variances:

o (X) = o*(¥) = §(wo/2m)f (u1)f (ua)f (w1 4 pz)

if (w1, pe) lies inside the region ome and not on its boundaries or if we include the
boundaries

(X)) = (wy/2m)f (1) (ue)f (w1 + 12)[88(m1) + 8(we)] + A + B,
o (Y) = A — B,
where
A = 5(wo/2m)f () f(ua)f (1 + wa){[l + 8(ur — p2)[1 + 8(u1 + 2pe — 27)
4+ 6(2m + pe — 2m)] + 46(m)},
3 (wo/2m ) f (1) f () f (pr + p2) {58 (1) + 8(p2)[1 + 8(pr — m)1}.

Here we define

B

w = [[Z0 w(0, ) T, wy = (2 [Z0 (1, v2) dvy dys,
and
8z) =1, . =0,
=0, z # 0.

The proof of this theorem is postponed until Section 7.

6. Asymptotic normality under the strong mixing condition. We now look at
the asymptotic distribution of

(6.1) N*Bylgn™(u1, p2) — Egn™ (1, pa)]
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under the much more intuitive assumption of strong mixing. Let {X,} be a real
6th-order weakly stationary random process which is strong mixing. This means
that the following property holds:

(6.2) SUp: SUPent , pen,, [P(AB) — P(A)P(B)| = ¢(r) =0

as r — . Here M, denotes the s-algebra generated by the random variables
{X|tela, b]}. This can be thought of as a uniform (with respect to time shifts)
asymptotic independence condition.

For such a process the analog of Theorem 1 is the following:

TureoreM 2. If (a) { X} is a real, sixth-order weakly stationary random process,

(b) r(v), r3(v1, v2), &(v1, va, v3), E(v1, - -+, vs) € b of their respective spaces,
g\, Ne) e Ly,

() {X.} satisfies the strong mizing condition,

(d) hypotheses (d) and (e) of Theorem 1 hold,

(e) thereis some & > O such that for ay , By and ox as defined in the proof

[(an'By'o)™ T 220 B (U — 0

then the conclusion of Theorem 1 holds.

(The quantity U;" is defined by (6.11). This hypothesis is derived from
Liapounov’s conditions for a central limit theorem (see Lo&ve [8] p. 275). If
{X,} is stationary then hypothesis (e) becomes E |Us|***/ay’?By""*"* — 0.)

Proor. The random variables we are interested in are

Va = N'Bu(gn™ (1, u2) — Egn™ (1, m2));
(6.3) Re Vi = [By/(2r)’N*] 30, s vsm1 €08 [(v2 — »1)us + (v5 — v1) ]
‘w(By(vy — 1), By(vs — 1) )[ X, X0, X5, — 13(v2 — v1, 93 — 01)],

and Im Vx. In a manner analogous to the characteristic way in which strong
mixing central limit theorems are proved we will break up the domain of summa-
tion into an increasing number of enlarging blocks separated by increasing but
comparatively small distances. To this end denote by [I1 , 5, I5] the parallelopiped
of indices {(v1,v2,v3) | viel1,v2 eIy, vse I3} where I1, I, and I; are intervals.
Next choose sequences {ax}, {8y} and {vx} of positive integers so that

(i) an[By + vl ~ N,
(6.4) (ii) ay, By, v T =,
(iii) v = o(Bw),
then it will be shown that we can replace the sum 3. ,, ;=1 in (6.3) by
(6.5) D D) ;) (]

where b, = [(j — 1)(By + vv) + 1,78y + vv) — v, =1, -+, ax, and
still get the same asymptotic distribution. Having done this, the sum (6.5) will
be shown to be asymptotically normally distributed. It helps to draw a picture
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here of the domain of summation—a cube with sides parallel to the x, y and 2z
axes and of length N — 1. The main diagonal of this cube runs from the point
(1,1,1) to (N, N, N). Then the sum (6.5) is over ay smaller cubes whose main
diagonals lie on the above diagonal and whose sides are of length 8y — 1 and are
parallel to those of the large cube. These smaller cubes are separated by a distance
~YN -

We begin the first step by noting that by the properties of w and the sum-
mability of the cumulants® (see beginning of the proof of Theorem 5 of [15])

cov [V(pr, p2), V(s , pa)]
(6.6) = [By/(2m) 12 ittty sy N Cu(o, o+, v, )
-exXp (—tpw1 — tpgve + Tuavs + tpws)w(Byvi, Byve)w(Byvs , Byvs)
Ama(0, vi)ma(ve, Y)me(y + vs, ¥y + va)}1s + O(By).

Levma 1. If (a) the hypotheses of Theorem 2 hold,
(b) ywBy — © as N — =,
(¢) an’yy/N - 0as N — =,

then

0'2{[BN/(ZW)zN%][ngvzﬂ?FI - Z;‘gl Z[bj(N)ybj(N)vbj(N)I]
exp (—¢(va — v)pu — ©(vs — v1)pe)w(By(v: — v1), By(vs — v1))
(X0 X0y X0y — 73(ve — 01,03 — v1)]} >0

as N — .

Proor. For convenience, suppose ax[By + v¥] = N 4+ v». We prove this
lemma by proving that the variance of the sums over six sets of indices, S;,
-++,Ss, tends to zero. The union of these six sets contains all indices contained
in the first sum above but not contained in the second thus giving the result.
Define

Si = {(v1,02,05) | |12 — vo| > 27w, |o] £ N for all 5},
Sy = {(v1,02,05) | [1n — vs] > 27w, o] < N for all 5},
Ss = {(v1,vs,05) | |2 — vs] > 27w, 05| £ N for all 5},
Ss = {(v1,vs,03) |viec;forsomej =1, -, ay — 1},

4 Here Cy is defined as follows (see Figure III of [15]):

1. construct the set Dy (v, v2) X Dy(vs, vs) = Dn ;

2. take the intersection of this set with the line + — ¢ = y and call that segment Cy ;

3. then Cx(v1, vz, »s, »s, ¥) is equal to the length of the projection of Cx onto either
axis.
Note that Cy can be written out analytically in terms of its arguments but the expression
is cumbersome and not as enlightening as Figure III. Also, 0 < Cy/N =< land Cy/N — 1
as N > o,
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Ss = {(v1,02,03) |[aec;for somej =1, -+, ay — 1},
Se = {(v1,v2,v3) |vseciforsomej =1, -, ay — 1},
where ¢; = [j(By + v¥) — v~ ,7(Bv + v)]. For the first set we have
E|[Bx/(2r)"N') s pyes, [+ 1"
(8.7) = [By'/(20)"] Z0ev Dormwers Dtral.iral s
[w(Bwv1, Byva)w(Byvs, Byvs) exp (ivyn + tvaus — ivsps — vaps)
(Cw/N){me(0, vi)ma(va , y)ma(y + vs, y + va)}1s] + O(Bw)

where By = {(v1, »s) | (v1, »3) e [=N, N] — [—27%y, 27%,]}. By hypothesis
(b) it is readily seen that this tends to zero.

Exactly the same argument holds for the sum over S, .

The variance of the sum over S; is

(6.8) = [By'/(2m)"1 2o 1w15v 2o 61mmers 2owawarers [W(Bavs , Byve)w(Byvs , Byvs)
Ama(0, vi)ma(vs , y)ma(y + w3, y + vs)}1s| + O(Bw)

where

IA
A

R2 = {(Vly V2) l lvll = N; IV2I N; Iyl - V2I > 2_}71\’};
Ry = {(vs, ) | |"3| =N, |V4| =N, |V3 — vy > 2_;7N}

andJas above this also tends to zero. We demonstrate the calculations using the
twelfth term as listed in Table III of [15]. The contribution of this term to (6.8)
iS (lettlngg) =Yy — Vl,ﬁl = 1/1+ V3a,ndi72 = Yy — V1+ vy — 1/4)

S By’ L3115 1. 1921 508 2o rs—ril>zbay

|lw(Bw#s — Byvi, Bupy + Byvs)w(Byrs, Bwva)| [r(@ + s0)r(@)r(9 — 2)|
= 2iltmson [r(y + w)r(y)r(y — »)]

A[By" 2 1vsmrai>2-iqy W (Bavs — Byvy, Byvy + Byw,)]

{[By* 2o tvssaimiuy w'(Bava , B}

which tends to zero by the properties of w, r and vy .
The next domain of summation to be considered is S; . Define

(6.9) @ = [Bx/(2r)'NY Zie;omivam {- -}, J=1 - ,ay — 1,
then
(6.10)  E|[Bx/(2r)'N'] 2o, -} = E| X525 Q% = [ {BIQ, [}
Next
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E|Q;" = (vw/N)By" 2 ps1,-va1<n [W(Buv1, Byva)w(Buavs , Bavs)|
* 2%y [{ma(Ow)ma(vs , y)ma(y + v, y + va)}u| ~ Kvn/N
(K some constant).
Therefore
2B < aw(yvw/N)'K?

which tends to zero by hypothesis (¢).

Sums over Sy and Ss behave the same thus giving the lemma. Q.E.D.

By Lemma 1, it remains to be shown that sums of the form (6.5) tend to a
complex normal distribution in distribution. To do this define

(]j("" = [By/(21)"] Z[bjuw;b,-uw;b,.uv)] {A1cos [(va — v1)u + (v3 — v1)pd]
(6.11) + Ao sin [(v2 — v1)p + (03 — v1)pe]}w(By(v2 — 11), By(vs — v1))
X0 X0y Xy — r8(ve — v1, 03 — v1)]

where \; and A, are any 2 real parameters. By previous results (Theorem 1 and
[15]) we know that since ByfSy — o,

(6.12) limy... o*(U;*/8x') = o*

for x> = Mor + Mo where oz” and o;° are defined as the variances of the
real and imaginary parts in the previous section. Then we show that

2N U /Ny — 25 U,/ (awBn)'on — N (0, 1)

in distribution.
Set

(6.13) Gen(z) = P{UY/(axBy)lor < 2

then by arguments almost exactly the same as those of Rosenblatt [11], pp.
45-46, we see that the distribution we are interested in tends to the convolution,

(614) Gl,N ¥ e Xk Ga)v,N(x)
provided
(6.15) an(2te/6x) ™ (yn) — 0

as N — o where t, = (an/e)’, {~} is a decreasing sequence of positive numbers
with ayxdy — 0, and € is any constant > 0.

Thus if we can choose sequences {ax}, {8x}, {v~} and {éx} such that hypotheses
(b) and (¢) of Lemma 1 and (6.15) hold, we are finished since (6.14) tends to
N (0, 1) provided Liapounov’s conditions are satisfied (see Loéve [8], p. 275).
Hypothesis (e) guarantees these conditions.

Therefore we are finally left with the task of choosing the five sequences
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By,ox | 0 as N — o,
an, By, T © as N—

such that

(i) By'N — o,

(ii) ax(By + vv) ~ N

(iii) vy~ = o(Bw),

(iv) y¥By — =,

(v) aN2'yN/N—> 0,

(vi) aw(2ta/6n)*™¢(vv) — O,

(vil) andy — O.
First choose {By} satisfying (i). Now for example choose éy = ax ° then (vii)
is satisfied. Next choose ay < [—Ilog {('yN)]% for ¢ (vx) < 1 then ay — « and (vi)
is satisfied (see Rosenblatt [11]). We can suppose that {(yy) > yx * for all N.
Choosing vy = By " for some 0 < & < % (iv) is certainly satisfied and so is
(v) since

—log ¢ (vx)Bx""/N < log (By™""")By""/N.

Finally choose B so that (ii) is satisfied and (iii) will be automatically satisfied
and the theorem is proved. Q.E.D.

7. Proof of Theorem 1. Define
(7.1) Vwn = [BN/(2"")2N%] ZI"II:|”2[§MAN exp (—iuw1 — tpve)w(Byvi , Byvs) -
: ZLI (XX 0, X ey, — 13(v1, 12)).

Lemma 2. The hypotheses of Theorem 1 imply that for any € > 0, there is an
M(e) such that for al M > My, N > M;

0'2(VN - VNM) < e

Proor. This lemma is readily proved using the bounds and summability con-
ditions on w and the summability conditions on the cumulants (see Lemma 7 of
[14] for the detail). Recall the remarks leading to (6.6) imply that most terms
are O(By). Q.E.D.

Lemma 2 indicates that the asymptotic distribution in question is the same as
that of Vwux . The second modification is to replace the X; in Vyu by X; i to
get V) . The next lemma shows that this can be done—that o (Vyu — Vﬂ‘},) can
be made smaller than any previously chosen e > 0 uniformly in N for k sufficiently
large (M being fixed).

LemMma 3. The hypotheses of Theorem 1 imply that for every M, e > 0, there is a
ko(e, M) independent of N and a constant K independent of both M and N such
that for all & > ko(e, M);

(Vaw — VE) < e + KBy
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(Note that the conditions are sufficient to remove the KBy term on the bound. )
Proor. Due to the uniform summability conditions on the cumulants, we can
uniformly approximate the appropriate sums in this difference by finite sums.
Then the fact that r (») — r(») and r**® (») — r(») as k — « gives the de-
sired result. See, for example, Chapter VII of Doob [3] on martingales. Q.E.D.
To apply a central limit theorem, write

Ur™ = Re Vigy = N7 20 7,47,
U™ = Im Vity = N 20 2,57,
where
Y&V = [By/(27)"] 21l smay €08 (w1 + pava)
-w(Byv1, Byve) [ X e pX ti9y b X t4vg. 6 — 5% %P (u1, 1))

and Z.%""™ is as above except with a sine instead of cosine. For any two real
parameters, A\; and \g , form

(7.2) Unv(M, Ne) = MUY 4+ MU

with U%Y = N3OV, %Y? 4 0Z,%5Y™). Note that the {U,*™*} se-
quence is a 2M Ay + 2k step dependent process. (See Hoeffding and Robbins
[5].) This prompts one to use the following lemma from Rosenblatt [13], p. 262.

LemMma 4. If (a) {V,(N)} is a sequence of d(N)-dependent strictly stationary
random variables,

(b) d(N) = © as N — «,

(¢) d(N)/N - 0as N — o,

(d) BV < o for some s > 0,

(e) t(N) is an integer-valued function

(i) ¢(N) — 0,
(i) d(N) = o(¢(N)),
(iii) ¢(N) = o(N),

(f) for {r™} the covariance sequence of {(V.™}, 2o pisum ™ =
(X100 . VUN)) as N — <o,

(g) B> 4™ v, WPH/NPUN) (22500 ™) (1 + 8/2) > 0as N — o,
then Y 7 V™ is asymptotically normally distributed with mean zero and variance
2rNhy(0), where hy(N\) is the spectral density of (V..

To apply this lemma to (7.2), put

) BN, M
Vt = Ut( )7

d(N) = 2MAy + 2k,
t(N) = MAY,
5 = 2.

Conditions (a), (b), (¢), and (e) of Lemma 4 are certainly satisfied. Condition
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(d) is satisfied since there is a constant K so that

B[V 2 (ByY/N®) it sivgl say [W(Bwv1, Byws) -+ w(Bwv,, Bwv,)|
-KEX /"
< »'KEX/”2/(NBy")’ < .

Condition (f) involves
(7‘3) le'léMAN2 ‘V‘TV(N)/Z:IVIéMAN2 TP(N)MANZ

= N 2 i suant (W/MANE /N 201 ssage 1™
But,

NY i<uan ™ = N Dt cmayr BV VWY
= [Ba'/(21)"] 2 1v i <aan? 2 ioal.ival <Max
[\ cos (pavs + pave) + Mesin (uw, + pwa)]
(7.4) w(Byv1, Bxva) D sl ival sdy
‘i cos (pws + paws) + Ao sin (pws + pove)]
-w(Byvs , Byvs)
fre(vi, va, vy v + vs, v + va) — 13(v1, vo)rs(vs,v4)]

and this, from earlier results, converges absolutely uniformly in N. Therefore
provided Nhy(0) 5 0 and since |»|/MAy" converges to zero pointwise, (7.3)
tends to zero. Finally condition (g) leads to

(7.5) B2 VT NMAR (X n™)
The denominator ~N "By > by (7.4). Define
D; = 2 i naana V&, 1572 2u;
2uo = largest even integer < MAy'/d(N),
Doy = 0, MAY = 2uyd(N);
= Y minlaay?GuDd] g w) MAZE > 2ued(N);
Diayose = 0, MAY < (2u + 1) d(N),
= YU amn V&, , MAY > (2uo + 1) d(N);
then
MAN ) _ SNwblp 4 Swbp

By Minkowski’s inequality, the fourth root of the numerator of (7.5) is
(7.6) < [B(Z Do) + B3 Do)
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Note that the D;’s in the first term are independent of one another and have zero
mean so that

(1.7) B(X 3 Do) = 23 EDY; .y + 32 1% ED%;, 1ED};,
— 3 1 ED}; \ED3; .
Further
B(ZAMV)! = (ByY/N) 200 tamt it ivg 1 s ay Mot
(7.8) NB{X 0 Xty X iy — 150 (91, 92)]
X kX iy kX taavg e — 1350 (vs, va) 1}

To get a bound on this recall that the X , are k-step dependent and have mean
zero. This implies that each X;, must be within k steps of at least one other
X; » otherwise the expected value of the product is zero. Hence the sum in (7.8)
has many zero terms. The fact that EX/* < « says that all non-zero terms are
bounded. Thus we can get a bound by enumerating the non-zero terms. Look
first at the terms with indices such that all X;’s are ‘“‘tied together,’’ that is there
is no way of dividing the X;’s into 2 groups so that one group of random variables
is independent of the other. It is easily seen that there can be only O(d(N)k™)
number of such terms. One could proceed down the line and look at those groups
of indices such that the X;’s divide into 2 and only 2 independent groups of 2 in
the first group and 10 in the second or of 3 in the first and 9 in the second, etc.;
then go on to the various combinations of 3 groups, 4 groups, 5 groups, and lastly
6 groups. It is seen that the highest order number of non-zero terms occurs when
there are 6 independent groups (implies two X,’s in each group). Here there are
O(d*(N)K®) such non-zero terms. This means that the first term of (7.7) has
O(wuA ") non-zero terms all of which are O(By*/N”), so that the contribution of
it to the numerator of (7.5) is O(Ax*/N*) and comparing this with the denomina-
tor obtain O(Ayx/N) — 0.
The next term in (7.7) is

3( 14 ED3i)’ = O(uo d(N) 2800y ™)
Comparing this with the denominator get
O(Ax' (X n™)/NAV (X ™)) = O((NBy)™) — 0.

The third term of (7.7) is contained in the case just discussed. Thus Lemma 4
applies.

The proof of the theorem is complete except for the evaluation of the variances
and covariances of the real and imaginary parts. Lemma 4 states that

Re Vi + i Im Vi —aise Xu® +iVu® as N>
where X »® and Y® are jointly normal with mean zero and

E(Xx") = oz,
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E(YM(k))2 = UlszI 5
E(Xu®Y%®) = ren .

Ask — o, 0pyr — our, Chur — owr, and Ty — 7a . A lemma is needed to
evaluate oyr , oyr, and i .

LemmMa 5. If (a) h(z), h(x, y) are bounded and their respective sets, Dy and Dy ,
of points of discontinuity have measure zero,

(b) Ax and By as in Theorem 1,

() m, w1, pe are real constants
then (1) By D1 <may Sin vph(Byy) — 0 as N — o,

(2) BNZI,léMAN cos vuh(Byv) — 0 as N — « provided p # 0, £2m, - - - |

(3) By Z|y1|,|,,2|§MAN sin viu1 sin veush(Byvi, Byve) > 0as N — o,

(4) By D11 ival < sy S0 v1p1 €OS vopsh(Bavi, Bavs) — 0 as N — =,

(5) By* 2 1v1,1val <aay COS vip1 COS vauph(Byvi, Byvz) — 0 as N — o unless
w=0,+2r - and ps = 0, 27, - --

Proor. First prove for step functions and then use the fact that any h(zx)
satisfying the conditions of the lemma can be approximated in mean by step
functions. Q.E.D.

The three quantities oy , o r and 7» must be evaluated separately for each of
the fifteen terms corresponding to the fifteen terms, {m»(0, vi)ms (v2, y)ms
(y + v3,y + vs)}15 (see Table III of [15]). This is a very tedious task and will be
illustrated by just one such calculation. More detail may be found in [14].
Consider the é-function as being periodic in 2x. Looking at the calculation of
o for the first of the fifteen terms as listed in Table III of [15] we have the
expression

[B¥"/(20)) 2o ioi1eoe s seay 2o wisw [(N — [y])/N1 cos (vipr + vapsz)
-cos (vsmr + vape)w(Bavi, Bwve)w(Bwvs, Bywa)r(v))r(y — ve)r(va — ;).
This behaves like
[£(0)/(2m)*1BN" 21y, vsl sseay €08 (vips + vapa) €0 (va(ur + pa) + pava)
-w(0, Byve)w(—Byvs , 0)r(v1)7(vs)
using the modified continuity conditions, (v). Using trigonometric identities
this is
[f(0)/(2m)* Zm,,...,,méMAN [cos viu1 COS wops — SIn wius SIn vous]
-lcos va(u1 + u2) cOS vape — sin v3(u1 + p2) Sin vaus]
-Bx"w(0, Byva)w(—Buyvs , 0)r(v1)r(vs)
— [f(0)/(2m)[ X% w(0, ») dv] Dt COS vipr COS wapar(v1)T(vs)
8(p1 + p2)o(u2)
= (w1/2m)f(0)f(u1)f(u2)8(pr + w2)(u2)
by Lemma 5. Q.E.D.
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