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0. Introduction and summary. The present study is concerned with the prop-
erties of a test statistic proposed by H. Chernoff and S. Zacks [1] to detect shifts
in a parameter of a distribution function, occurring at unknown time points be-
tween consecutively taken observations. The testing problem we study is con-
fined to a fixed sample size situation, and can be described as follows: Given ob-

servations on independent random variables X, - - - , X, , (taken at consecutive

time points) which are distributed accordlng to F(X; 0 ), 0, ¢ for all

i =1,-.-+, n, one has to test the simple hypothesis: Hy: 6, = -+ = 6, = 6
(6o is known) against the composite alternative:
Hy:0p= -+ =0, =0

Onpr = +++ = 0, = 0o + 0; 6> 0,

where both the point of change, m, and the size of the change, §, are unknown
m=1,--+-,n—1),0< 8§ < .

A Bayesian approach led Chernoff and Zacks in [1] to propose the test statistic
T, = >3 iX.., for the case of normally distributed random variables. A
generalization for random variables, whose distributions belong to the one param-
eter exponential family, i.e., their density can be represented as f(z; 6) =
h(z) exp Y1 (0)U(z) + ¥»(0)], 6 ¢ @ where ¢1(6) is monotone, yields the test
statistic Tn = 1=t tU(z:1). In the present paper we study the operating char-
acteristics of the test statistic 7, . General conditions are given for the conver-
gence of the distribution of 7, , as the sample size grows, to a normal distribution.
The rate of convergence is also studied. It was found that the closeness of the
distribution function of T, to the corresponding normal distribution is not satis-
factory for the purposes of determining test criteria and values of power functions,
in cases of small samples from non-normal distributions. The normal approxima-
tion can be improved by considering the first four terms in Edgeworth’s asymp-
totic expansion of the distribution function of 7, (see H. Cramér [2] p. 227).
Such an approximation involves the normal distribution, its derivatives and the
semi-invariants of T, . The goodness of the approximations based on such an ex-
pansion, and that of the simple normal approximation, for small sample situ-
ations, were studied for cases where the observed random variables are binomially
or exponentially distributed. In order to compare the exact distribution functions
of T, to the approximations, the exact forms of the distributions of 7, in the bi-
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nomial and exponential cases were derived. As seen in Section 4, these distribu-
tion functions are quite involved, especially under the alternative hypothesis.
Tables of coefficients are given for assisting the determination of these distribu-
tions, under the null hypothesis assumption, in situations of samples whose size is
2 = n £ 10. For samples of size n = 10 one can use the normal approximation
to the test criterion and obtain good results. The power functions of the test
statistic 7', , for the binomial and exponential cases, are given in Section 5. The
comparison with the values of the power function obtained by the normal ap-
proximation is also given. As was shown by Chernoff and Zacks in [1], when X is
binomially distributed the power function values of 7', are higher than those of a
test statistic proposed by E. S. Page [5], for most of the m values (points of shift)
and & values (size of shift). A comparative study in which the effectivenes of
test procedures based on 7', relative to those based on Page’s and other procedures
will be given elsewhere for the exponential case, and other distributions of practi-
cal interest. ’

1. Bayes procedures for the exponential family. Let X; , - - - , X, be a sequence
of independent random variables, whose density functions belong to the one
parameter exponential family,

(L.1) f(z;0) = h(z) exp [{1(6)U(z) + ¥1(6)], e

where ¥1(0) is a monotonically increasing function of 6.

We further assume that ¢1(0) and y»(6) have finite derivatives on 2. The
problem is to test the simple hypothesis that all random variables are identically
distributed, with 8 = 6, (known) against the composite alternative that at some
point 7 (unknown) a shift has occurred at the value of the parameter. That is

(12) Ho 101 = e = 07,, = 00 (00 iS known)
H1:01="'=0m=00; 0m+1=“'=0n=00+6, 0<5
m is unknown (m = 1,2, --- ,n — 1); 8 is unknown, 6, + 6 £ Q.

Following Chernoff and Zacks [1], we derive a test statistic for the given prob-
lem, according to the following Bayesian approach. Consider the point of change
m as a realization of a random variable M, having the following prior density.

(1.3) Muy(m) = (n—1)7" if m=1,2---,n—1
=0, otherwise.
The marginal likelihood function of the sample, under the alternative H, is
(1.4) fal@s, @0 300,0) = [T[ish(Xs)- (n— 1)™ 2050 exp [ 227 n(Xo, 60)]
-exp [ 2 femi1 n(X: 5 00 + )]

where 7(X; ;0) = ¢1(0)U(X:) + ¢2(8), 0 £ Q. Since the derivatives of ¥1(8) and
¥»(6) are finite on Q one can write, in a close neighborhood of 6, ,

(1.5) 2(Xi; 00+ 8) = n(Xi;00) + o' (X:;6) + 0(8),
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forall ¢ = 1, - -+, n. The marginal likelihood function under H, is then,
(16) Ai(X1, -+, Xus 00, 8) = [ h(X0) exp [1(Xs 5 60)]
(n = D7 0L+ 8 2w (25 80)] 4 0(5), asd—0.
It follows that the likelihood ratio can be expressed, as § — 0, by
(L7) L(X1, -+, Xa300,8) =1+ [3/(n =11 (60) 215 iU (Xep1)
+ 83y’ (80) + 0(3)

since the likelihood function under H, is given by the left hand factor of (1.6).
A Bayes procedure for testing H, against H; is to reject Hy, whenever the likeli-
hood ratio is larger than a suitably chosen test criterion (which depends on the
loss function and the prior probability that H, is true). Thus, since ¥;(6)
is monotonically increasing, a Bayes test statistic for the above problem is
T, = 2 15 4U(Xep1). Ho is rejected whenever T, is'larger than a suitable test
criterion. We notice that:

(i) T is a linear function of the sufficient statistics of the underlying dis-
tributions, namely U(X:), ¢ = 2, .-+, n.

(ii) T, is independent of X, since the distribution of X; is known.

(iii) The last observations attain a higher weight than the first ones. The
weights assigned to the observations depend upon the prior distribution chosen
for the point of change, M. The statistic T, = 2.1 iU(X +11) is derived under
the assumption of uniform prior probabilities for the possible values of /.
If we assign to the values of M arbitrary prior probabilities, ITy(m), m = 1, - - - ,
n — 1; then a similar analysis will yield the test statistic 7,” = D77 wi(r)-
U(Xiy1) where w,—1(m) « 1 and wi(r) « Y oy My(m) = P[M < 4. That is, the
weight assigned to U(X 1) is proportional to the prior probability that the shift
in 6 occurred before the (¢ + 1)st observation.

(iv) All the procedures based on the test statistics 7,,™ are admissible. They
all maximize the derivative of the average power when 6 = 0.

(v) The test statistics 7™ can be obtained also by assigning the amount of
change, 9, a prior exponential distribution over [0, ] with expectation 1/¢.
The likelihood ratio (1.6) becomes then, as t —

L(Xy, -, X,;60,1)
(1.8) et I (m)[1 — (1/8) D femian’ (X5 00)]" + o(1/2)
1+ (0 (60)/8) T Mar(m) S omis U(X) 4 (8'(80)/8) + o(1/1)
L4+ (%' (60)/) T, 4+ (2 (60)/t) + o(1/1).

Since the expectation of the exponential prior distribution, 1/¢, approaches zero
when t — « we obtain by the present Bayesian approach the same test statistics
as by the former one. This shows that the test statistic 7', is robust with respect
to the prior assumptions according to which it is derived.

I

I
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2. The asymptotic distribution of 7, . The exact distribution function of
T, = > #5'iU(X.;1) is very complicated in many cases where U(X) is not
normally distributed. The asymptotic distribution of 7', is, however, under very
general conditions, a normal distribution. The following theorem specifies these
conditions.

THEOREM. Let X, X, , - - - be a sequence of independent random variables, having
the corresponding cdf’s F(X; 60:),0:; eQforalli = 1,2, --- . If
(2.1) E{lUX)]} S M < o, foralli=1,2, ---
and
(2.2) Var,, {U(X:)} = € > 0, foralli =1,2, ...
then,

(2.3) liMusw P[(Tn — E(T,))/(Var T,)} £ 2] = &), —0 < 2z < o

where ®(-) is the standard normal integral.

Proor. Let B:(6:) = Ep{|U(X:) — E,U(X:)’}. Condition (2.1) im-
plies that the sequence {8:(4:)} is bounded. Condition (2.2) implies that
liMy e D i ¢* Vary, {U(X:)} = . Finally, since

(24) limpw (2= 8%8:(6:))}/ (X tes 4 Varg, {U(X0)})}

< lim,.,, O(n™°) = 0,
all the Liaponnoff’s conditions are satisfied, and by the central limit theorem
(see M. Fisz [4], p. 202) (2.3) holds.

3. The rate of convergence of the distribution of 7', to the normal distribution.
As proven by H. Cramér [3] Ch. 7, Theorems 24, 26 if Y, ¥, , - - - is a sequence
of independent random variables such that, all the expectation of Y, V,, ---
are zero, and their third absolute moments are finite then,

(3.1) |Fu(2) — @®(2)] < Clog n 2 im E|Y /(2 imwed)l, —o <2< o

where C is a constant independent of z and n, where ¢.* denotes the variance of
Y, (1 =1,2 -..); and where F,(2) is the cdf of the standardized random
variable Z, = 2.7 (Yi — EY,)/( Y i)’ For the present problem, define
Vi =1U(X:) — E,U(X:)] (4 =1,2, ---). Under Conditions (2.1) and (2.2)
one obtains,

(32) 2Di7B|U(X:) — Ein(Xi)|3/&Z¢"=1 ¢ Van [U(X))! = 0(n™)

as n — o. Hence, from (3.1) and (3.2), the rate of convergence of P[(T, —
ET,)/(Var T,,)} < 2] to ®(z) is like that of n™* log n to zero, i.e.,

(3.3) [Fu(z) — ®(2)| = O((In n)/n%), asn —> oo-

This could be, however, a slow rate of convergence. A better approximation to
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the distribution of Z, , for moderate sample sizes, can be attempted by the ex-
panding of the distribution function F,(z) in the form,

(3.4) Fo(2) = ®(2) + 2 ain™ 201 (—1)"70;,3 " (2)] 4+ Rin(2)

where ®(z) is the vth derivative of ®(z); Cj. are polynomials of the semi-
invariants of T, ; Ri.(2) is the remainder term (see H. Cramér [2] p. 228). For
most practical purposes it is sufficient to consider expansion (3.4) up to k = 3.
Denote by urn the kth central moment of T,, and let yi. = uin/(usa)?,

You = ﬂ:n/ (;u;",n)2 — 3 (the coefficients of asymmetry and kurtosis). Expansion
(3.4) is then,

(35) Fn(Z) = <I>(z) — (71,n/3!)q>(3)(2) + (72,7»/4!)@(4)(2)
+ (1071,,/61)8(2) + Rs(2).

The order of magnitude of the remainder term is B;.(2) = On™*) asn — «
(see H. Cramér [3] Theorem 26).

The coefficients vi,, and 2, depend on 6, the point of shift m, and the size
of the shift 5. Under conditions of the hypothesis, H,, the coefficients v;, and
v2.» depend only on 6, . We denote these coefficients, under the hypothesis H, ,
by 7(0) and 'y(o) and determine them according to the formulae:

(36) 7im = 3[B(n — Dn/2(2n — 1)P{u™(U(X))/[ue*(U(X))]}

and

(3.7) i = $[(3n(n — 1) — 1)/(n — )n(2n — 1)]
[us*(U(X)) /™ (U (X)) =

where u,*(U(X)) designates the kth central moment of U(X). Numerical analy-
sis shows that, for almost all values of n, one can approximate vy, and vz, by

(3.8) P9 >~ 1.3 (U(X))
and
(3.9) v =~ 1.8y (U(X))

where v.(U(X)) (¢ = 1, 2) are the coefficients of asymmetry and kurtosis of
U(X). Thus, for further numerical analysis we shall use the following approxi-
tion to F,”(z) (the distribution of T, under H,)

(3.10) F,O(2) = &(z) — (1.3/n")7:(U(X))[®?(2)/31]
+ [(1.8/n)v(U(X))[@“ (2) /4] + (17/n)7v(U(X))[®® (2)/61].

Denote by F,*(z) the right hand side of (3.10).

In the rest of this section we study numerically the goodness of the normal
approximation ®(z) to F,*(z), in small sample situations, under binomial and
exponential distributions. It is assumed that no shift in the parameter 6, occurred.
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(1) The binomial case. We study the binomial case where the observed random
variable is assigned the values 41 or —1 with probabilities p and 1 — p respec-
tively. This case is under consideration, for example, in a nonparametric sign
test.

The density function of X can be written as,

1—z)/2

(1+z)/2(1 _ p) ) zr = +1

flz;p) =p
= 0, otherwise.

Or, in the exponential form:
flz;p) =exp{illnp —In (1 —p)la+ ilnp + In (1 —p)}}, == =1
=0, otherwise.

Therefore, the test statistic is 7, = D i5 X:41. The kth central moment of
X is given by the formula u* = 2*p(1 — p)[(1 — p)* ' — (=p)* ™, k = 0, 1,
2, -+ - . The coefficients of asymmetry and kurtosis are, in the present binomial
case, v1 = (1 — 2p)/[p(1 — p)l' and v» = ((1 — p)* + p*)/p(1 — p) — 3.
The distribution of X is closest to a normal one when p = .5. As p grows from
.5 to 1.0 the coefficient v; is decreasing monotonically from zero to — «. The
coefficient of kurtosis v, increases monotonically from —2 to «. We conclude that
the normal approximation ®(z) to F,*(z) becomes less and less effective as p
approaches 1 (or zero). Table 3.1 represents some numerical comparisons of
®(2) to F,*(z). We expect F,*(z) to be very close to the exact distribution
of Z, .

The following conclusions can be drawn from the present table:

(i) When p = 0.5 the normal approximation to the distribution of 7', under
H, is good even in a small sample of size n = 5; and is certainly an excellent ap-
proximation if n = 10.

(ii) When p is as large as 0.9 the normal approximation requires a large sample.
Even in the case of n = 20 the normal approximation might not be good enough.

TABLE 3.1
Values of F,.*(z) — ®(2) in the binomial case; n = 5,10, 20; p = 0.5, 0.9
n=235 n =10 n =20
2 1 — &(z)

p=05 p =09 p=0.5 p =09 p =05 =09

2.326 0.010 0.004 0.043 0.002 0.023 0.002 0.018
1.960 0.025 0.002 0.074 0.000 0.043 0.000 0.028
1.645 0.050 —0.002 0.079 0.000 0.052 0.000 0.028
1.282 0.100 —0.010 0.055 —0.004 0.031 —0.002 0.018
0.674 0.250 —0.016 —0.083 —0.008 —0.048 —0.004 —0.025
0.000 0.500 0.000 —0.104 0.000 —0.072 0.000 —0.051
—0.674 0.750 0.016 —0.007 0.008 —0.016 0.004 —0.017

—1.282 0.900 0.010 0.003 0.004 0.011 0.002 0.008
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TABLE 3.2
Values of Fn*(2) — ®(2) in the exponential case; n = 5, 10, 20

3 1 — &(z) n =235 n =10 n =20
2.326 0.010 —0.024 —0.018 —0.014
1.960 0.025 —0.018 —0.014 —0.012
1.645 0.050 —0.022 —0.016 —0.012
1.282 0.100 0.008 —0.004 —0.004
0.674 0.250 0.038 0.028 0.020
0.000 0.500 0.078 0.054 0.038
—0.674 0.750 0.030 0.020 0.012
—1.282 0.900 —0.052 —0.028 —0.016

(ii) The exponential case. If the distribution of X is exponential with intensity
A, 0 < N < . The test statistic is also 7, = #2iX:41 . The coefficients of
asymmetry and kurtosis under H, are independent of-\ and are equal to y; = 2
and v; = 6. The goodness of the normal approximation depends only on the
sample size n. In the following table the deviations of F,*(z) from ®(z) are given
forn = 5,10 and 20. F,,*(2) is given by the righthand side of formula (3.11).

As seen in Table 3.2, the normal approximations is very ineffective for small
samples. Even samples of size n = 20 are not large enough for this purpose and it
is suggested that the approximating formula in small sample situations will be
according to (3.10), when substituting v; = 2 and v, = 6,

(3.11) F,”(2) =~ &(2) — (0.433/n)3 (2)
+ (0.450/n)8® (2) 4 (0.094/n)3® (2).

A similar approximation for the case of a shift occurring after the mth observa-
tion will be given in Section 5.

4. The exact distributions of the test statistic T, in the binomial and expo-
nential cases. In the present section we present the method of derivation and the
formulae of the exact distributions of 7', , under H, and under H, . These formulae
are basic for the computations in Section 5.

(1) The binomial case. As in the previous example we consider here the binomial
case where X has the density

f(@;p) = p™2P1 — p)7 &= 1
=0, ' otherwise.

Let X1, ---, X, be a sequence of independent random variables having the
above binomial distribution with parameters p;, - - - , p, respectively. Consider
the hypothesis Hy : p1 = -+ = p, = %; and the alternative H, : p; = -+ =
Pm = %, Pmt1 = *++ = P, = % + 8, where m (unknown) represents the point of
shift, and & represents the amount of shift, —1 < 6§ < 1. Let G(Tﬁ’o) (u) designate

the generating function of 7', , under H; , where § = % + 4. It is easy to prove that,
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G0 (w) = T G’ + 37 H IS ' + (1 — o))

(41) = [(1 . 0)n-m/(2mun(n—1)lz)]
I (14 W) TTE=a (L + (6/(1 — 6))u)
forallu 0,0 <0 <1,m =1,---,n — 1. Let G, () denote the generating

function of T, , under H,. We have,
(42) @GR = 2P I (0 + w7 = [1/@ O TS 1+ o)
for u = 0.

The probability density function of 7, under H, is obtained from the co-
efficients of the polynomial expansion of G(To,;"‘)(u), at u = 1. Define

(4.3) B (s) = T (1 + s TT= (1 + as?)

_ n(n—1)/2
- r=0

b.(a, m)s"

where a = 6/(1 — 6), s = ’. The polynomials A™% (s) éan be easily determined

according to the following recursive formula :

(44) hl(ci'la)(s) = hk(m'a)(s)[l + ak+1.msk+l]7 k = 17 27 e
where
(4.5) MmN =14+s, if m=2
=1+ as, if m=1
and where
(4.6) Gim = 1, if t1=m—1

= a, if t>m — 1.

The following example illustrates the use of the recursive method to obtain the
density of T, . Let n = 5 and m = 2. According to (4.4)-(4.6)

BP(s) =1+ s+ (1+ s)as” + (1 + s + as®* + as’)as’®
+ (1 + s+ as® + 2as’ + as* + &%° + a’s®)as’
14 s+ as’ + 2as° + 2as* + (a® + a)s® + 24%° + 2d%" + o%°

+ &%’ + a%".

Il

Accordingly, the density of T is obtained by substituting ¢ = 6/(1 — 6) in
h%? (s) and multiplying the coefficients of s by 4(1 — 8)°. Thus one obtains:

t‘—m'—s’—él—z; -2 0

PeOTy = ¢] ’ 31 —6)

31—00 | 30 —0)2 | 61 -0 | 6L —0)2 | 3001 —0)

I R A N

PeO[T; = ] ‘ 62(1 — 6) l 6%(1 — 0) ( 30%(1 — 0) 36° 36°
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TABLE 4.1
The frequency function 2”“1]’;(:,) (t) for the symmetric binomial case n = 2(1)10
¢

n

0(1(2(3|4|5|6|7|8|9(10{11[12]13|14|15]16/17|18|19|20]21|22
2 1
3 1 1
4 2 1 1 1
5 |2 2 2 1 1
6 3 3 3 2 2 1 1 1
7 5 5 4 4 4 3 2 2 1 1 1
8 |8 8 8 7 7 6 5 5 4 3 2 2
9 (14 13 13 13 12 11 10 9 8 7 6 5
10 23 23 22 21 21 19 18 17 15 13 12

¢

n

23(24125(26{27(28(29(30(31(32{33(34({35|36(37(38{39|40(|41({42|43|44|45
2
3
4
5
6
7
8 1 1 1
9 4 3 2 2 1 1 1
10 (10 9 8 6 5 4 3 2 2 1 1 1

Obviously, when § = % (no change) the density of T, is symmetric about the
origin. In Table 4.1 we give the density of T, for § = % and for n = 2(1)10.
(ii) The exponential case. Without loss of generality assume that 6, = 1;i.e.,

fx‘ﬁ(x; 00) = e—a:’ X ; 0

=0, z <0.
We derive now the distribution of 7, = 25 ¢X:;; under the null hypothesis,
Hy.Let Y, =X,y (¢ =1, ---,n — 1). The distribution law of Y is the ex-
ponential with intensity <. The density of T, is obtained from the density of

T,_1 by a convolution with the density of ¥,_; . Accordingly, if £,‘”(¢) denotes
the density function of T, under H, we have,

4.7) £00) = [§f21/(n = D] exp [=[1/(n — D)I(t — )] dy,

where %) = ¢, 0<t < 0;n =23, ---.
It is simple to prove then, by induction on 7, that the density function of T,
is,

(48) fn(O)(t) — Z;’z;ll kn_l,je_(llj)t, 0

IIA
A
8
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TABLE 4.2
The coefficients kn—1,; of the density of Ty tn the exponential case, 6 = 1,
n = 2(1)10
J
n
1 2 3 4 S 6 7 8 9
2| 1.000
3(—1.000 | 1.000
4| 0.500 |—2.000 | 1.500
5|—0.167 | 2.000 [—4.500 2.667
6| 0.042 |—1.333 | 6.750 |—10.667 5.208
71—0.008 | 0.667 |—6.750 | 21.333 | —26.042 10.800
8| 0.001 (—0.267 | 5.062 |—28.444 65.104 | —64.800 23.343
91 0.000| 0.089 |[—3.038 | 28.444 |—108.507 194.400 |—163.401 52.013
10| 0.000 |—0.025 | 1.519 (—22.756 | 135.634 |—388.800 | 571.905 |—416.102(118.625
where the coefficients k,—;,; (j = 1, --- ,n — 1) are determined recursively by
the formula,
kl,l = ].
(4.9) koj= —ko;/((vfj)—1), 7=1,2,---,v— 1lforallv =2,3, ---
Koo = — 2 =1 oy -
We notice also that since [o f,,(o)(t) dt = 1 for all n, one gets the identity,
Y ajke,; = 1foralln = 1,2, . The coefficients k,_;,; of the density (4.8)

are given in Table 4.2 for n = 2(1)10.
We derive now the density function of T, under the alterative hypothesis.
This density function will be denoted by £, (t), m = 1,2, ---, n — 1 and
0 < p < = ;where p is the intensity parameter of the n — m last random vari-
ables. Write T, = T + Tam, where Th—p = 2 rom iX:41. The density func-
tion of T, is £, " (¢). Let fr_n(t; p) denote the density function of T _,, .
By a backward induction on m we prove that
(4.10) fan(t;0) = 2 7mkn_mi(p) exp {— (p/7)1}, 0=t=w
where the coefﬁcients ki _m.i(p) are obtained by the recursive formula,
nemm(p) = = 2 iom1 jha-m-1.4(p)/( — m)

(4-11) n—m,y‘(P) = .ﬂcn—M—l,i(P)/(j - m)’ j=m+1, - ,n—1
Kia-1(p) = p/(n = 1). |

Finally, since T, and Ts_,, are independent, the density of 7, is

5P @) = [0S (a2 (0 — ) du

(4.12) = 505 G/G = p)knwi(p)e P — €7, ifm =1
— T=_11 n—l (@]/(,7 _ ZP))km—l . j(p)[e (Dt __ —(ll'i)t],

if2=m=n-—1L
The cdf i (t) is obtained easily from (4.12) by integration.
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6. Exact and approximate determination of the critical level and power function
of the test based on 7',. Exact determination of the critical level of the test
based on T, and of its power function is very easy in the case of normally dis-
tributed random variables (see H. Chernoff and S. Zacks [1]). This task becomes
much more involved when the observed random variables are not normally dis-
tributed. The question is whether one can obtain fairly good results by using
normal approximation even in small sample situations (samples of size n = 5
orn = 10)? In the present section we perform several numerical comparisons of
the exact and approximate power functions for the binomial and exponential
cases.

5.1. The binomial case. Suppose we want to test the hypothesis Hy :6; = -+ - =
6. = } against the one-sided alternative H, : 60, = -+ =0, = %, 0pyy = - -+
6. = 3+ 6,0 < 6§ < } (m unknown). The exact test criterion for the procedure
based on T, , for a given level of significance, «, can be found from the exact
density of 7', . For values of n = 10 we can get it directly from Table 4.1. For
example, if n = 10, and & = 0.05 the hypothesis H, is always rejected if Ty =
29 and rejected with probability 0.075 if Ty = 27. If Ty < 25 the hypothesis
H, is not rejected. If « = 0.01, H, is rejected whenever Ty = 39; rejected with
probability 0.06 if Ty = 37 and is not rejected if Ty < 35. Denote by C, the
value for which Hj is rejected w.p.1 if T, > C., and let v, be the probability of
rejecting Hoif T\, = C, . Then, the power of the test is

(5.1) Bum(8) = ¥aP ™ [Ts = Cal + L ivc, P™P[T, = ]

where P™?[T, = {] is the density of 7, under H, .
A normal approximation to C, is obtained by solving the equation

(5.2) a=1—&C,/(n(n —1)(2n — 1)/6)}

where C, denotes the approximate critical level. Whenever T, = C, the hy
pothesis H, is rejected. According to (5.2) the approximate critical level is,

(5.3) Co = Uran(n — 1)(2n — 1)/6]*

where U, denotes the (1 — a)thfractile of the standard normal random
variable. If one uses the critical level C, the level of significance actually attained

I

TABLE 5.1

Approzimate critical level C, and attained level of significance & in the
binomial case, n = 5, 10

0.01 0.025 0.05 0.10
& 5 0 0 0.063 0.125
10 0.006 0.020 0.049 0.102
Ca 5 12.7 10.7 9.0 7.0
10 39.3 33.1 27.8 21.6
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TABLE 5.2

The exact power function Bn..(0) and its normal approximation Brm (8) for
the binomial case, n = 10

0
m 0.6 0.7 0.8 0.9
a=001|a=005 |a=001 |a=005 |a=0.01 |@a=0.05|a=00|a=005
0-1 .0.0354 | 0.1320 | 0.1011 | 0.2846 | 0.2458 | 0.5172 | 0.5242 | 0.7960 | exact
0.0336 | 0.1281 | 0.0845 | 0.2640 | 0.1820 | 0.4773 | 0.3738 | 0.7916 | approx.
9 0.0343 | 0.1293 | 0.0962 | 0.2751 | 0.3232 | 0.4981 | 0.5050 | 0.7724 | exact
0.0328 | 0.1257 | 0.0807 | 0.2555 | 0.1706 | 0.4598 | 0.3446 | 0.7676 | approx.
4 0.0298 | 0.1150 | 0.0748 | 0.2282 | 0.1663 | 0.4059 | 0.3366 | 0.6608 | exact
0.0287 | 0.1139 | 0.0640 | 0.2168 | 0.1232 | 0.3749 | 0.2224 | 0.6274 | approx.
6 0.0207 | 0.0951 | 0.0384 | 0.1647 | 0.0655 | 0.2665 | 0.1050 | 0.4087 | exact
0.0227 | 0.0949 | 0.0417 | 0.1585 | 0.0674 | 0.2461-| 0.0968 | 0.3741 | approx.
3 0.0143 | 0.0709 | 0.0196 | 0.0955 | 0.0256 | 0.1237 | 0.0324 | 0.1555 | exact n
0.0159 | 0.0723 | 0.0224 | 0.0975 | 0.0284 | 0.1247 | 0.0320 | 0.1539 | approx.

is not « but some & close to . In Table 5.1 the values of & and C, for some values
of a, and samples of size n = 5, 10 are given. The values & were determined by the
exact distribution of T, under H, .

We see that the normal approximation is poor for a sample of size as small as
n = 5, but is sufficiently good for sample of size n = 10 (compare with exact
values for n = 10 and o = 0.01, 0.05 which are given above).

The normal approximation to the power function 8,,.(8) is given by,

Urw — (20 — 1) ({’%7;_:%)*(1 - %)‘I

m(m —1)(2m — 1) t
[40(1 —0) ey (L - %0 —o))}J

where 6 = 1 4 6. In Table 5.2 we compare the exact power function and the
approximate one for a sample of size n = 10, and levels of significance o = 0.05,
0.10. As seen in this table, the normal approximation is quite good in all the range
of 8 values when the level of significance is & = 0.05. When « is 0.01 the normal
approximation is not effective for large values of 6 and small m’s (see for example
m = 2 and § = 0.9). In such cases we can try to improve by adding to (5.4)
an extra term from expansion (3.5). '

5.2. The exponential case. The exact critical level C, for rejecting the null
hypothesis H, in the exponential case is the root of the equation

(5.5) St ke %l =

where k,_y,; are the coefficients of ¢~*? in Expression (4.8), recursively defined in

(4.9). Here we test the hypothesis that 8, = 1 against the alternative that after
the mth observation § = p < 1 (the expected value of X is larger than 1). Hy
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is rejected whenever T, > C, . C, is the (1 — «)th fractile of the distribution of
T, under H, . If one wishes to test H, against the alternative that p > 1 then the
critical level will be the ath fractile of the distribution of T, , say C,’, and H,
is rejected whenever T, < C,’. Two sided critical levels can similarly be found for
testing against a two sided alternative. A graphical solution of Equation (5.5)
can be used. This will always yield a satisfactory degree of accuracy. We shall
consider here a normal approximation to C, and a Newton-Raphson one cycle
correction of the normal approximation.

It is easy to verify that the normal approximation to the critical level of T,
(testing against p < 1) is,

(5.6) Co = tn(n — 1) + Upalin(n — 1)(2n — DL
This approximation yields, in samples of size n = 5 and 10, the following actual

levels of significance, & (determined according to (5.5)).

TABLE 5.3

Levels of significance & attained by the normal approximation in the
exponential case

n
0.01 0.025 0.05 0.10
& 5 0.0297 0.0454 0.0686 0.1065
10 0.0235 0.0458 0.0730 0.1397
C. 5 22.7 20.7 19.0 17.0
10 84.3 78.1 72.8 66.6

As Table 5.3 shows, the normal approximation (5.6) to the critical level of the
test in the exponential case is unsatisfactory. There is not much difference in the
goodness of the normal approximation between samples of size n = 5 orn = 10.
The value of C, obtained by (5.6) can be used as initial solution of (5.5)
and then corrected according to the Newton-Raphson’s method. A one-cycle
correction of C, leads to the formula:

(57) Ca* = CYa + [Z;':lljkn—l,i exp {-éa/]} — o
[Zln;ll kn_1,; exp {_éa/]}]—l

In a two cycle approximation the value of C,* will be substituted in (5.7) for
C, to yield C.**, etc. In most applications a one cycle correction of C., will be
sufficient. In the following table we present a one cycle correction of the approxi-
mation given in Table 5.3.

As seen in Table 5.4 the one-cycle Newton-Raphson’s correction of the normal
approximation is very effective, even in samples of size n = 5. We propose, there-
fore, that the critical levels will be determined, in the exponential case, according
to Formulae (5.6) and (5.7).
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TABLE 5.4

Levels of significance o* and critical levels Co* attained by a Newton-Raphson
correction of the normal approximation in the exponential case

o

n
0.010 0.025 0.050 0.100
a* 5 0.0152 0.0292 0.0522 0.1002
10 0.0135 0.0279 0.0516 0.1002
C.* 5 25.57 22.76 20.22 17.27
10 91.09 82.94 75.73 67.45

The exact power function, 8,,.(p), when the critical level is C, is given, accord-
ing to (4.21), by

Bam(p) = P™P[T, = €1 _
(5.8) = D ki o [/ (G = ip)plkm_m,;(p) exp {—(p/7)Ca"}
— D kv exp {— (1/3)Ca™} 2075 [5/(5 — 0) n—m.i(p)

whenever m = 2; and a simpler expression is found for the case of m = 1. The
computation of 8, »(p) according to (5.8), might often be too difficult and time

consuming. Since B, »(p) =1 — F (T';"’ )(C,*) we can approximate this power func-

tion according to (3.5). The expectation and variance of T, under H, are:
(5.9)  E{T.|m, o} = (1/p)lIn(n — 1) — (1 — p)gm(m — 1)]
and
(5.10) Var {T.|m, p} = (1/p")[fn(n — 1)(2n — 1)
— (1= p)gm(m — 1)(2m — 1).

Using semi-invariants one can easily prove that the coefficients of asymmetry
and kurtosis of 7', under H, are:

3(6)1(n — 1)*n* — (1 — p*)(m — 1)*m’
m—1ECn—1) — 1= p)m@m — 1)(2m — 1)}

(5.11) 71 (Tw | m, p) =1
n
and

TABLE 5.5
Power function of T's in the exponential case, for n = 5, m = 2, « = 0.05

Power function

P exact approximation (5.13)  normal approximation
0.8 0.1162 0.1377 0.1196
0.6 0.2770 0.2864 0.3188
0.4 0.4448 0.5038 0.5948
0.2 0.6068 0.7964 0.8305
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(5.12) vo(Tw | m, p)
n(n —1)2n — D[Bn(n — 1) — 1]
_ 108 =1 = p)mlm — 1)@2m — DBm(m — 1) — 1]
Tt — DE@r—1)— 1= pYm(m — 1)2m — 1)]?

Sl(lbs‘)mtuting (5.9)-(5.12) in (3.5) we obtain the following approximation for
" (),

P9 (1) = {T|m,p}
() = q’([Var T, [m, o] 1*)

- 3.

(5.13) - —71(T | m, p)-2% ([Var TT]]r:zn o} i*)
72(T ] m, p)Q(” <[V3;I' TT l anp ]})
1 9 6) - Tn l my P}
+ 5 (Talm, ) ([Var T, [m, p}]%>'

In Table 5.5 we compare the exact power function of 7, in the exponential
case, to the normal approximation and to the Approximation (5.13). In this
example we treat a very small sample size, n = 5.

As seen in the present table Approximation (5.13) yields results which are
generally closer to the exact values of the power function than those obtained
by the normal approximation. We expect that in samples of size n = 10 the
Approximation (5.13) will be very effective. In situations of very small sample
size it is not difficult to determine the exact values of the power function 8, (p)
from Formula (5.8).
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