ON NONRANDOMIZED FRACTIONAL WEIGHING DESIGNS

By K. S. BANERJEE
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1. Summary and introduction. It is known that, for the estimation of p
individual weights, the optimum weighing design [3] for a chemical balance is
given [4] by a Hadamard matrix X of dimensions p X p, when it exists. If r
rows of X are used for the weighing operations, the resultant design matrix X,
of dimensions r X p will be a fraction of the full design matrix X, and will
necessarily be singular. While it is not possible, with such a fractional weighing
design, to furnish unique and unbiased estimates of the individual weights, it
may be practicable, however, to afford a unique and unbiased estimate of a
linear function of the weights.

In a recent paper, Zacks [6] has considered questions of admissibility of “ran-
domization procedures” for such fractional weighing designs and has indicated
a few basic results in this direction proceeding on the same lines as followed in [2].

We furnish, in this paper, some results of connected interest with respect to
such fractional weighing designs without resorting to any randomization pro-
cedure in the selection of rows of the full design matrix X. Apart from this con-
nection, the results are expected to have an importance of their own. We have
spelled out here the structure of the estimate of the estimable linear function
along with its variance, bringing out the connection of this variance with the
variance as obtainable with the full design matrix. And, in the process, it has
been indicated, in relation to the fraction used, to what extent we can afford to
be arbitrary in the selection of the components of N\, which enters into the es-
timable linear function \,'8, , where A, and 8, are p X 1 column vectors represent-
ing the coefficients and the weights respectively. We have shown that, depending
on )\, , we can obtain, with a fraction, the same precision for the estimate without
having to perform all the weighing operations as required in a full design matrix.
In such situations, repetitions of the fraction would lead to increased precision
as compared to the adoption of the full design matrix.

2. The statistical model and the characterization of classes of estimable linear
functions under fractional weighing designs. In general, results of N weighing
operations fit into the linear model Yy = X8, + ey, where Yy isan N X 1
random observed vector of the recorded results of weighings; X = (x4;),¢ = 1, 2,
.-+ ,N,j=1,2,-+- p,isan N X p matrix of known quantities; z;; = +1, — 1
or 0, if, in the 7th weighing operation, the jth object is placed respectively in the
left pan, right pan, or in none; 8, is a p X 1 vector (p = N) representing the
weights of the objects; ey is an N X 1 unobserved random vector such that
E(ex) = 0 and E(evey') = oIy . X represents the weighing design matrix.

It has been stated before that a Hadamard matrix X of dimensions p X p
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(p = N), when it exists, would represent the best possible weighing design [4]
for the estimation of individual weights in a chemical balance. Such a matrix
will be referred to in this paper as the weighing design matrix of full rank (being
denoted by WDFR.). We would consider in this paper the status of its fractions
as weighing designs, consisting of 7 rows (1 < r < p), and shall denote them as
FWD (fractional weighing designs) of rank r.

Partitioning the WDFR as

Xy | Xlz] [Xl]
2.1 X = \ =
(21) [le | Xoo X
where the dimensions of X1, X2, Xo1, Xae, X1, and X arer X7, rX(p —7),
(p—r)Xr,(p—1) X (p—r),rXpand (p — r) X p respectively, and
remembering that XX = pI,, we have
(2.2) XuXs + XX = 0.

When the FWD is chosen as X; of dimensions 7 X p as indicated in (2.1), the
normal equations for the least squares estimates would be given by

(23) S.Bp Xl,Yr )
that is, by

Sui e, _[XuXul XuXe|, _[Xn
e | By = | SRR Bo=|%r | ¥rs
! X12 Xu | X12 Xio X12

where X1 Xu = Su, XX = Sp, ete., and Y, is the 7 X 1 column vector of
the recorded results of weighings obtained from r weighing operations. We shall
assume that Xy , which is of dimensions 7 X r, is of rank 7, and that it is possible
to have such an X1 . Rank of Xy being r would imply that the rank of X, is
(p — 7). In other words, if X711 exists, X5 would also exist, and vice versa.

A general solution of the normal equations (2.3) would be given by

(24) 6p = BXI’Yr + (Ip - H>ZP7

It

where B is a g — inverse of S, and Z, is any arbitrary vector. To get B and H,
we would apply the method of “sweep-out” [5] to the matrix S and apply the
same operations to a unit appended matrix, until S reduces to H and the unit
matrix to B. Defining S~ = P'A,”P, Where PSP’ = A, , we shall have, as proved

in[l], H= BS = 88§, and Hy;, = —Py1, where H and P have the following
forms:

| I- ‘, Hy, I.1 o :I
(25 n-[pe] r-la

From (2.2) and the above, we shall have H;, as given by
(2.6) Hp = —Xn(Xz)™
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It is well known that when, in general, a design matrix X is not of full rank, an
estimable linear function will have a unique solution, if and only if there exists
a solution for b, in the equations Sb, = A, . It is also known [5] that Ap B, will
be unique for all 3, satisfying 88, = X1'Y,, if \,/H = A,. In fact, any of these
two conditions would imply [1] the other. In this note, however, we shall use the
latter condition for unique estimability, since from this condition, we can con-
veniently find A\, as given by

(2-7) I-‘P’H = )\P,J
where u, is any arbitrary vector. (This result was indicated by Dr. S. Searle of

Cornell University. The proof is simple and straight forward, and follows readily
from the fact that H is idempotent.)

3. Least squares estimators of estimable linear functions under FWD. If
Ay B, is estimable, the unique estimate will be given by

(3.1) NS XY, = MNXRY,,

where \, represents the first » components of A, .

The above result can be easily obtained from (2.5) by performing the required
multiplication with 8™, and bringing in the condition that A, H = A, . The
variance of the estimate will be given by

(3.2) V(NBo) = ™NSN = o\ S1iA, .

Results (3.1) and (3.2) indicate that the last (p — r) components of \, will
not enter into the expression of the estimate or its variance, whatever may be the
estimable linear function \,’8j .

As all possible linear functions will not be estimable in a FWD, a question
arises as to the extent of freedom of choice of the components of A, . This is
answered by the following theorem:

TuroreM 1. If the rank of the FWD matrix as given by X1 is r, the first r com-
ponents of \p, \r, can be chosen arbitrarily, the latter (p — r) components being
fized by the relationship, — Xz Xahs = Ap_r .

Proor. From (2.7), we have

where u, can be chosen arbitrarily. Thus, we have g, = ., and H Tobr = Np—r,
where u, denotes the first » components of u, . Hence, we get

(3.3) — Xz Xahr = Apr .

The above result indicates that we have a choice as to the selection of the first
r components of \, . The latter (p — r) components will be fixed by (3.3).

We prove below a theorem on estimability of an estimable linear function in
the situation when the FWD is augmented by the inclusion of an additional row
of X.
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TueorEM 2. If an FWD is augmented by the inclusion of an additional row of
X, the linear function, which is estimable under the FWD with rank r, will still be
estimable under the augmented FWD with rank r + 1.

Proor. In the FWD with rank r, the unique estimability of the linear function
is characterized by the equation,

(3.4) ng)\p_,- + X21)\r = 0,

where the first » components of A, are arbitrarily chosen, and the latter (p — r)
components are determined by (3.4).

Let an additional row be added to the FWD raising the rank from r to (r 4 1),
and let the matrices Xz and X correspondingly change to X3, and X31 respec-
tively. Also, let the p components of \, be partitioned into sets of ( 4+ 1) and
(p — r — 1) components.

If equations (3.4) are written in full, the first equation dropped, and the value
of the (r + 1)th component of )\, is taken as given (which step is also otherwise
consistent, because the rank of the augmented matrix is now raised to r + 1)
along with the first » components of A, , equations (3.4) will reduce to

(3.5) XoAp—r1 + XA = 0.

From (3.5) we see that the linear function would be estimable under the aug-
mented design and that the values of \,—,_1 will be determined by A\r41 .
In the next theorem, we indicate a result on the variance of the estimable

linear function.

THEOREM 3. If \,'B, is estimable under a FWD of rank r (1 < r < p), then
the variance of its least squares estimator is equal to the variance of the least squares
estimator of \,'8, under a WDFR.

Proor. The variance of the estimate is given by (3.2) and is equal to

SN, = o\ (X1 Xn) A
(3.6) = N7 + p X XX ao) " Xaa]\,
= NN A N X (XX 2) " X\

Again, variance of this estimate as obtained from WDFR is
Uzp—l[)\r’ : )\;;—r] [Xér_]
D—T,

(3.7) = p N T =N Xn(X)7] ['"‘-ﬁc;"i,]

—LA22

azp_l)\ ,,'7\,,

= A+ A X Xg Xog) X M.

(8.6) is the same as (3.7)

If any row of X is )./, the variance will be ¢*, independent of r. This would
give an invariance for the variance in respect of such estimable linear functions.
Thus, this theorem shows that we cannot alter the variance of the estimate of such
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estimable linear functions by altering r in the FWD. That is to say that the
variance remains unchanged even if r is increased to » -+ 1, the estimable func-
tion still remaining estimable as per Theorem 2.

4. Selection of rows. When all the components of A, are arbitrarily preassigned,
the condition for estimability (as distinguished from unique estlmablhty) is given
by X'b, = \,, and the corresponding estimate is given by b,’Y, . From this, we
get b, as given by

(4.1) by = p X\,

However, A\, may be such that some of the components of b, are zeros. Let us
suppose, that the first » components of b, are non-zeros, and the latter (p — r)
components are zeros. In such a situation, the last (p — r) components of Y,
will not enter into the estimate, as the corresponding b-coefficients are zeros.
Thus, the design matrix will necessarily be fractional. The last (p — r) zero-
components of b, , as obtained from (4.1) give rise to the condition

[Xa1 ¢ Xoo [f_'] =0

P—T,
or,
(4.2) —XnXuhr = Apyr .

We note that (4.2), which gives the relationship among the components of )\, ,
is the same as (3.3) and that, in such a situation, the resultant weighing design
is fractional with rank r. Under these circumstances, therefore, we may adopt, as
detailed in the foregoing sections, a FWD of rank r to derive the advantage of
the same precision for the estimate as obtainable from WDFR without actually
adopting the full matrix for the design.

If the fraction of rank r is repeated, we shall have the same prec1s1on repeated
each time. Thus, when the fraction r is such that mr = p, where m is a positive
integer, it mlght be desirable, for increased precision, to have the same fraction
repeated m times in preference to the adoption of the full matrix for the design.

In this context, the interested reader may refer to Zacks’ paper [6] which deals
with randomized procedures for estimating any given linear function of the param-
eters 8, . In some special cases, the optimal procedures studied by Zacks are non-
randomized and are the same as those studied in the present paper, although the
two papers treat two different problems.

6. Concluding remarks. Results presented in this paper would indicate that
non-randomized fractional weighing designs may be fruitfully used for the esti-
mation of certain types of linear functions with the same efficiency as is available
under the full design. The fraction to be adopted has however to be adjusted in
accordance with the vector of coefficients, A, , of the linear function.
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