MONOTONE CONVERGENCE OF MOMENTS IN AGE
DEPENDENT BRANCHING PROCESSES
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1. Introduction. Let Z(f) be the number of cells at time ¢ of a branching
process starting at ¢ = 0 with one new cell. Let N(¢) be the total number of such
cells born by time {. Each cell has lifetime distribution function G(t) with
G(0) = 0. At the end of its life the cell disappears and is replaced by k cells with
probability px , k = 0, 1,2, - -+ , where p, = 0 and _reopx = 1. Each cell has
lifetime distribution function G(¢) and proceeds independently of the state of the
system, and identically as the parent cell. Such a process, for this general G, is
called an age-dependent branching process and is extensively treated in [1].

Define h(s) = D ropss’. For B'(1) = m > 1, there is an increasing population
with probability one. For this case, by use of Smith’s key renewal theorem, it is
shown ([1], Ch. 6) that for [¢ udG(u) < =, ast—> o,

(1) E[Z(t)] ~ K, exp (at)
(2) E[N(t)] ~ K,y exp (at)

where K, , K; and « man be evaluated.

Necessary and sufficient conditions for the monotone convergence of
E[Z(t) exp (—at) and E[N(¢)] exp (—at) were given in [2].

It is the purpose of this note to show that for m > 1 that

(3) M,(t) exp (—nat) T d, < o, for n = 2,

where M (1) is the nth factorial moment of Z(¢). This will be done by exhibiting
the monotone nature of the solution of an integral equation in Section 2, a special
case of which determines the corresponding monotone behavior in (3), as is given
in Section 3.

2. Integral equation. A special case of the following theorem was given in [2].
TaEOREM. Let Q(t), defined on the positive axis, satisfy the following equation

(4) Q1) = [TI(f(t — w) + b(u)Q(t — u) + k(u) + Ut — u)lg(u) du

where f, b, k, I are non-negative functions defined on the positive axis with f and 1
non-decreasing, f + b < 1, and g s a probability density strictly positive on the
entire positive axis. Then Q(t) is non-decreasing.

Proor. Let {X}7 be independent and identically distributed random variables
on the positive axis, each with density g(u). Let S, = 2.1 Xi, n = 1. Let
Y:=k(X;),Z; =1t — S;) and let N(¢) = max {n: S, < t}.
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Let
(5) W(t) = 2850 (Vi + Z) TTE (f(t — 85) + (X)) and
(6) Q(t) = E[W (1)),

where D iy = 0 and J[%: = 1 by convention
Then one may write, following a suggestion of Prof. R. Pyke,

(7 W(t) = Y1+ Zi+ Wit — X)[f(t — X1) + b(X)]

where W and W, are independent and identically distributed. From (7) it is clear
that (6) is a solution to (4).

To show uniqueness, let A(2) = |Qo(¢) — @Qu(¢)| be the absolute difference of
two solutions to (4). Then clearly h(¢) < f3 h(t — u)g(u) du. Suppose 0 < a; =
Supo<: <1 (). Then it follows that a; < a;G(l) < a;, a contradiction. Hence (6)

is the unique solution to (4) and the result follows.

3. Monotonicity of normalized moments.

THEOREM. Let m > 1 in a simple age-dependent branching process defined in the
introduction. Then, defining o« > 0 by m f o exp (—au)g(u) du = 1, where
g(u) = G'(u) exists a.e., it follows that M,(t) exp (—nat) is monotone increasing
to a finite limit as t — o for all n = 1 if in addition,

g(u) > a[l — G(w)llm — 1] for w = 0.

Proor. The theorem holds for n = 1 by the theorem in Section 3 of [2]. Let
F(z,t) = E[s°®]. Then ([1], Ch. 6)

F(s, 1) = s(1 = G(t)) + Joh(F(s, t — u))g(w) du.

By successive differentiation, for n = 2, M,(t) exp (—nat) = M,*(t) satisfies
an equation of the form

M(t) = [0 landn®(t — u) + ka(t — u)lgn™(u) du

where g¢,*(u) is a density (different from g¢), and where 0 < a, =
m fff exp (—aun)g(u) du < 1 and k. is a positive, increasing function. The
theorem of Section 2 establishes the monotonicity.

By induction and use of approximations by writing f Sha(t — w)gn™(u) du =

& 4 [ty ka(t — u)ga*(u) du for some 0 < vy < 1, it is established that
limae [ 6 ka(t — w)gn™(u) du T ¢, < o, since by [2] and the integral equation for
M(t), it is readily seen to hold for n = 1, 2.

That M.(t) exp (—nat) T d. < © forn = 2 now follows by standard Abelian
and Tauberian theorems on p. 182 and p. 192 of [3], respectively, or directly by
Lemma 4, pp. 161, 163 of [1].

4, Remarks. By differentiation of
Elexp (sZ(1))] = R(s, t) = exp (s)(1 — G(t)) + [¢h(R(s, t — u))g(u) du
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a sufficient condition that E[Z"(¢)] exp (—nat) be monotone increasing for n = 2
may be obtained similarly, although it will be of more complex form than the
simple condition given in Section 3 for the factorial moments. It would be of
interest to determine when the condition in Section 3 would suffice for the
monotone increase of the normalized moments E[Z"(t)] exp (—nat), n = 2.
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