INEQUALITIES FOR LINEAR COMBINATIONS OF ORDER
STATISTICS FROM RESTRICTED FAMILIES

By Ricuarp E. BArLow' AND FRANK PROSCHAN

Unaversity of California, Berkeley, and Boeing Scientific Research Laboratories

1. Introduction. In this paper we present some results of theoretical interest
concerning order statistics and their spacings from certain restricted families of
positive random variables. Applications to life testing are discussed in a separate
paper [Barlow and Proschan (in process)].

For a specified continuous distribution @ for which G(0) = 0, we consider
the family & of distributions such that for F in & and F(0) = 0, G_'F is star-
shaped or convex on the support of F. Distributions related in this way by con-
vexity have been studied by Van Zwet (1964). It is known that F(0) = 0,
G(0) =0, and G'F convex imply G~'F starshaped. [Bruckner and Ostrow
(1962).]

If G is the exponential distribution, then G™'F convex where finite is equivalent
to F having an increasing failure rate (i.e., F is IFR). G~'F starshaped is equiv
alent to F having an increasing failure rate average (i.e., F' is IFRA) [Birnbaum,
Esary, and Marshall (1965)]. G'F concave on [0, » ) is equivalent to F having
decreasing failure rate (i.e., ¥ is DFR).

If G is the uniform distribution, then G™'F convex on the support of F is
equivalent to F having an increasing density. If F(G) denotes the gamma dis-
tribution with shape parameter a(8) with a > 8, then G'F is convex on [0, )
[Van Zwet (1964)]. The Weibull family is similarly ordered, as may be readily
verified.

Comparisons for linear combinations of expected values of order statistics
from F and G are obtained when G—'F is starshaped. In addition, stochastic
comparisons for linear combinations of order statistics are obtained when G~'F
is convex as well as when G™'F is starshaped.

Specializing to the case where @ is the exponential distribution and F is IFR
or IFRA, stochastic comparisons are made for the “total time on test,” which is
of interest in life testing. Bounds on the expected values of order statistics are
also obtained for this case.

Finally, we investigate the preservation of certain class properties under the
operation of taking order statistics.

2. Preliminaries. Throughout this paper we adopt the following notation and
assumptions. Let X(Y) have distribution F(G). We assume that F(0) =0 =
G(0), and that F and @ are continuous. We also assume that the support of F is

Received 8 April 1966.

1 Research partially supported by the Office of Naval Research Contract Nonr-3656(18)
with the University of California. Work completed while the author was a Visiting Re-
search Associate at Boeing Scientific Research Laboratories.

1574

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to &)

&2

The Annals of Mathematical Statistics. MINORY

www.jstor.org



INEQUALITIES FOR ORDER STATISTICS 1575

an interval, possibly infinite, and that @ is strictly increasing on its support. We
use F for 1-F and G for 1-G.

A function ¢ is starshaped on [0,b), 0 < b = o, if ¢(ax) < ap(x) for
0=a=10=z<b (or equivalently, if ¢(x)/z is increasing for z in [0, b));
and ¢ is convex on (a,b), —© S a<b = o,if plar + (1 — a)y] < ap(x) +
(1 —a)p(y) for0 =a=1,a<z y<b. Then on [0,d), convex ¢ such that
¢(0) = 0 are starshaped.

The following properties of IFR (DFR) distributions will be needed [cf.
Barlow and Proschan (1965), Chapter II]. If F is IFR (DFR) and

G(z) = 0, z <0,
=1—-¢", z=0,
then

(i) G7'F is convex (concave) where finite (on [0, ©));

(ii) Fu(z) = [F(x + u) — F(u)]/F(u) is increasing (decreasing) in u = 0
for all z = 0 whenever the denominator is nonzero;

(iii) G'F (F'G) is starshaped where defined (on [0, ©));

(iv) [F(z)F " is decreasing (increasing) in z = 0.

Let Xin £ -+ £ Xpp (Y1n £ --- £ Y,,) denote an ordered sample of size
n from F(@); define Xo, = 0(Yo, = 0). We drop the second subscript when
there is no danger of confusion. We use the term increasing (decreasing) for
nondecreasing (nonincreasing). We use the notation = (=) for “stochastically
greater than” (“stochastically less than’’) and =, for “stochastically equivalent
to”.

Finally, we use repeatedly the relationship (G 'F(X31), -+, G F(X,)) =
(Yly e )Yn)'

3. Inequalities in the case of starshapedness. In this section we consider pairs
of distributions F and @ such that G'F is starshaped on the support of F. We
shall obtain a stochastic comparison between linear combinations of order
statistics X1, £ -+ £ Xpofrom Fand Vi, £ -+ £ Y, from G. To do this we
first present some basic inequalities for starshaped functions. For further dis-
cussion and extension of Lemmas 3.1 and 3.3, see Barlow, Marshall, and Proschan
(in process). We shall find it convenient to define A; = D= a; , where through-
out the a; represent real numbers.

Lemma 3.1.

(3.1) (Dt aws) £ D a1 aid(@s)

for all starshaped ¢ on [0,b) and all 0 2z, = -+ S 2, <b for which
0 = D'y aw: <b if and only if there exists k (1 < k £ n) such that 0 < 4, <
. éAké l,omd'whenk<n,fik+1 = e =A_n = 0.
ReEmARk. Note that if (3.1) holds for all starshaped ¢ on [0,b] and all
0Zx £ -+ £z, <b, then it holds for all starshaped ¢ on [0,') and all

0w < - £z, <V, where b’ is any positive number. A similar remark

may be made in connection with Lemmas 3.3, 4.1 and 4.3.
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Proor. Sufficiency. Assume 0 < A; < --- £ A, =1, and when k <mn,
Apypn= -+ =A4,=0.Thena; =0fori=1,2,--- ,k—1,0=a =1, and
when k <n, a; =0 for 1=k +1,---,n. Using the identity Dt e =
> Ai(x:i — i), where zo = 0, we conclude that 0 < D aw: < z . Thus
¢ () /ze = (@) /zifors =1, -+, k — 1, and ¢(z) /s Z ¢( D aws)/ 2, ai -
Hence {5 (—ai)a: + 2ot awdo(e) /o = 25 (—a)¢(w:) + ¢( 2 as),
or mb(ai) = 25 (—a)p(z:) + (2 aws).

Necessity. Letd(z) =2°,0 =21 = -+ =2y, and @i = -+ = Tp = b <b.
Then (3.1) implies (O 7= a)® £ D 7= aj,sothat0 < A; £ 1fori=1,2,---,n.

Next we shall show that A; > 0 implies A;; < A;. To see this, let
O=z1= - =2; 9 <Tja1 <Tj==xj1=--+ =2, <b. Then St aws =
Z{‘ fi,-(mi - 1121‘_1) = fij_.ﬂ?j__l + /Ij(:c,- - xj_l). Fix X j and choose Zj and z
sufficiently small so that z; 4 < z < ; and D 1 a@; > 2. Let

¢.(z) =0, z <z,
=z, T =z,
a starshaped function. From (3.1),
6.( 2t aw) = Ajwia + Aj(z; — 2i0) £ Ag;.

ThlS 1mphes [ij_j -_ Iij é 0.

Finally, if each A; is zero, the proof is complete. If not, let k denote the largest
subscript 7 such that A; > 0. Assume that A;; = 0 for j <k — 1. We shall
show that this implies A; = 0 for4 < j. Let 2; < 2z £ z;41 and a; be so large that
Zf aixr; = Z’{ fL(xz - xi_l) > z. Then

6.( 27 @) = D1 axi £ D jr A
which impies 2 4 a@; = 2 i Ai(xi — 2ia) + Ajx; £ 0. This in turn implies
A, =0fori=1,2 ---,jsince d;;1 =0and0 < A; £ 1.[]

TaEorREM 3.2. Let G 'F be starshaped on the support of F, F(0) = 0 = G(0).

If there exists k (1 £ k < n) such that

0<Adisdys - 24 =1, andwhen k<n Apa= - =4,=0,
then
(3.2) F(Ot aXs) £ G217 aiYy).
Proor. By Lemma 3.1,
GF(T a:Xs) £ 2v aG@ ' F(Xi) =x 21 0¥ 0

Theorem 3.2 can be used to obtain conservative lower tolerance limits [Barlow,

Proschan (1966)].
To obtain a reverse inequality to that of (3.2) we need the following lemma:

LeMma 3.3.

(3.3) ¢(Z{L air:) = ZI‘ aip(x:)
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for all starshaped ¢ on [0,b) and all 0 <z, < --- S 2, <b for which
0 < D7 aw: < bif and only if there exists k (1 < k < n) such that

z‘iléz‘izé'“%fikél; fik+l="‘=fin=07

or equwvalently, a; = 0 for 1 S i Zk;m=landa;=0fori=k+1,---,n.

Proor. Sufficiency. We may assume z; > 0. Hence
(D1 aw:)/ Dt aws = d(xs) /s

for ¢ = 1,2, .-+, k, since ¢ is starshaped and D% az: = z, . It follows that

k k k k . .

1 awaﬁ(zl Gﬂi)/Zl ax; = Zl a(z:), yielding (3.3).

Necessity. From the proof of necessity in Lemma 3.1 we see that for each ¢,
either 4; <0 or A; z 1. First we claim A; < 0 implies A;4; < 0, and hence
Aip1 =1 implies A; = 1. To see this, let 0 == -+ = 2,3 <, <2<
Ziy1 = +++- = 2, . Choose (z:31 — z;) sufficiently small so that

drtawi= A+ Aip(tip — 2) < 20

We can do this since by assurr_lption A; £ 0. Hence by (3.3), ¢.( Z{’ ax;) =
0= Aiuti, which implies 4.1 = 0. Thus we have shown that for some

EF(OZk=n),Aiz1,--- 42 1§Ak+1§0,:" , A, £ 0.

We claim that we cannot have 4; = 1 and A; < 0 for j > 4. Suppose this
were the case. Choose 0 =23 = -+ =2, <2<Ti=Ca = --» =2;1 <
z;= -+ =2, <b,and (z; — z;) and z in such a manner that

0< Z{‘ 1‘11(2}1 —x) = Az, -+ A-.j(xj —x) < z.
Then by (3.3)
¢ > 1 ax] =0 = Aa; + Aj(z; — ) >0,

which is a contradiction. It follows that Appr = - o= A_n =0.
Next we shall show that A;.1 = 1 implies A4; = A;y1. To see this, let
O=x1=+ =23 <2:<2<&yy1= -+ =2, <b. Then

ditawi=Agi+ Ava(@ip — ) 2 20,

which implies by (3.3) that

é.( Z? a:) = Ag; + Aip (i — ) = Aipina .
This implies A; = Ay . []
From Lemma 3.3 we obtain
THEOREM 3.4. Let G'F be starshaped on the support of F and F(0) = 0 = G(0).
Leta; =2 0 forv=1,2,--- ,n,and a, = 1. Then

(34) (27 aiXs) 2o G201 aiYa).

Proor. By assumption, the support of F is an interval, say [0,b]. When
Dt aX,>b, then F(O 7 a:X:) =12 G(D.7 a;Y,). Consider outcomes for
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which D7 a:X: < b. Apply Lemma 3.3 to obtain
GF(2T aXs) =2 201 a6 'F(X0).

Since )t @G 'F(X:) =s 2t a;¥:, (3.4) holds.

Theorem 3.4 can be used to obtain conservative upper tolerance limits [Barlow,
Proschan (1966)].

The following useful results concerning order statistics are immediate con-
sequences of the theory of total positivity. For definitions, notation, and theory
see Karlin (1964).

LemMma 3.5. Let F; , denote the distribution of the ith order statistic in a sample
of size n from a continuous distribution F defined on (— o, ). Suppose g()
changes sign k times and

h(i,n) = [2w0g(x) dF; ()

converges absolutely. Then

(1) h(Z,n) changes sign at most k times as a function of © = 1,2, - - - , for fixed
n, and changes sign at most k times as a function of n = 1,2, .-+ | for fixed <.
Furthermore, if h(i,n) changes sign exacily k times as a funciion of i(n), then
h(i,n) must have the same (opposite) arrangement of signs in i(n) as g(x) where
x, 1, and n traverse their respective domains from left to right.

(ii) h(n — z,7n) changes sign at most k times as a function of n = 1,2, -+ ;
if h(n — 7, n) actually does change sign in n exactly k times, then the changes occur
in the same order as those of g(x).

Proor. Since F is continuous we may write

h(i,n) = () [Z0 g(2)F* 7 (2) F* () dF (z)
= [% g(2)K(3,n; z) dF (z).

It is easily verified that K(7,n,;z) is totally positive of order « (TP,) in
1=1,2,--- and — <z < ». Also K(z,n;z) is reverse regular of order
©(RR,) nn=1,2--- and —o <z < o and TP, in n=1,2,--- and
— o < g < o, The results follow from the variation diminishing property of
totally positive functions. []

TuEOREM 3.6. Let G'F be starshaped on the support of F and F(0) = 0 = G(0).
Then EXm/EYm 8

(1) decreasing in 1,

(ii) encreasing in n,

(i11) EXn_in/EYs_in 18 decreasing in n.

Proor. Let ¢(z) = G 'F(z). Since ¢ is starshaped, then for arbitrary ¢ = 0,
2 — cp(x) changes sign at most once, and from positive to negative values if at
all. Hence

(3.5) h(i,n) = [3 [z — cp(z)] dFin(x) = EXin — cEYn

changes sign at most once in 7 =1,2,--- (n =1,2,---), and from positive
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(negative) to negative (positive) values if at all by Lemma 3.5. Therefore
[EXn/EY in] — c changes sign at most once in ¢ (n) and from positive (negative)
to negative (positive) values if at all. Since ¢ = 0 is arbitrary, the ratio
EX;,/EY s is decreasing (increasing) in 7 (n).

Again by Lemma 3.5, h(n — 7, n) changes sign at most once inn = 1,2, - - -
and from positive to negative values if at all. By a similar argument as above we
see that EX,_;»/EY,_i, is decreasing in n. []

Choosing G to be the uniform distribution we see from Theorem 3.6 that
(n 4+ 1)EX:./7 is decreasing in ¢ and increasing in n, where X3, < -+ < X,
are order statistics from F, a distribution with increasing density. Choosing G' to
be the exponential distribution, we see that EX /D iey (n — j 4+ 1) is decreas-
ing in 7 and increasing in n, where X, < --- < X, are order statistics from F,

an IFRA distribution.
By using Theorem 3.6, bounds on EX,, can be obtained as follows. Note that

(3.6) EX/EY i £ EXin/EY in £ EXyiia/EY1 piia

the first inequality from Theorem 3.6 (ii), the second from Theorem 3.6 (iii).
Now if EX = EY = 6, then

(3.7) 0EY io/EY iy £ EXin £ 0EY 5u/EY 1 o1

To obtain an application of Theorem 3.6 (iii) we choose G uniform on [0, 1]
and F such that f is increasing on the support of . Then we immediately have
(n4+ 1)EX, ;n/(n —12) decreasing in n =244+ 1(¢ =0,1, ---). This is a
strengthening of the monotonicity result of Corollary 4 of Marshall and Proschan
(1965) which implies as a special case that £X,,/n is decreasing in #n whenever
the underlying distribution F satisfies F(0™) = 0.

We will need the following lemma,:

Lemma 3.7. If Bi/a; is increasing in i (1 £ 4 = n), a; > 0, and B; = 0, then

(i) 2218/ 2.1 aiand

i) 2 =i+ 1B —Bia)/2a(n —i+1)(a; — ai1) are increasing
mr(1=r=n);

i particular,

(i) 2018/ 201 B: = 21 e/ 2t i and

(i) Zd(n—i+1)(Bi=Pi)/ 28 < 20 (0 =i+ Do — acd) / Dfa;

(i) D1 aBe/ 201 B S 201 awi/ D1 o and

(i) 2ofailn — i+ 1) (B — Bic)/ 20 Bi £ 20 ain — i+ Dot — iy)/ D tevs

faZaZ 2.

Proor.

(i) Define ¢(0) =0, y(as + -+ 4+ ;) =B+ - +8: (1 £ 47 = n). De-
fine Y(z) elsewhere on [0, a1 + - 4+ a,] by linear interpolation between suc-

cessive points defined above. Note that

W+ -+ + i) —¥(lon+ -+ + ai)]
a4+ - +a) — (e + -+ + )] = Bi/a
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is increasing in ¢, so that ¢ is a convex function on [0, a; + - -- + «,]. Since
¥(0) = 0, ¢ is also starshaped, i.e. ¢(z)/z is increasing in z. Hence

1”2{ ai]/ Z; Q= ZI B/ ZI a;

is increasing in 7.
’ . r . /—q-—L——“
(i)erteZI (n—z-l—l)(ai-ai_ﬁ =a1—l—- +O£T+C¢r+ e +0£r and
similarly for Y1 (n — ¢ 4+ 1)(B: — Bi_1). The result is geometrically obvious.
(ii) and (ii') are immediate consequences of (i) and (i').

(iii) Let D7 adB:/ Y. Bi — ai/ 2 @il = D¢ a:ids, and note that
2oaidi= (& — @) di+ (6 — as)(dy+ o) + -+ + an(di + -+ + da).

Since ¢jy —a; =20,2 =12 --- , n—1,d+ - +di=0(:=1,2,---,
n—1),anddy + --- + d» = 0, we conclude that Y 1 a:d; < 0.

(iii') is proved similarly. []

To prove the next result, we need to introduce the following concepts:

DEerinITION. A sequence @ = (a1, - -+, a,) s said to majorize a sequence
b= (by,---,b,) (written ¢ >b) if 1= --- =@y, 1= --- Z b, and
Staiz Yibiforr=1,--- ,n—1, while Dy a;= 2_vbi.

This definition differs slightly from that of Hardy, Littlewood, Pélya (1959),
p. 45, but corresponds to the usage of Beckenbach and Bellman (1961), p. 30.

DerintTION. If a differentiable function H(z , - - - , 2,) satisfies

(2: — 2;)(0H /dz; — 0H /dz;) = 0

for all 2, 7, 7, then H is said to satisfy the Schur condition.

We shall use the following theorem (see Ostrowski (1952)):

TuaroreMm 3.8. (Schur, Ostrowsk:). Assume H is defined for 21 = -+ = 2z, and
has partial derivatives. Then H(z) = H(Z') for all z > 2 if and only if H(z)
satisfies the Schur condition.

TureoreM 3.9. Let G'F be starshaped on the support of F, F(0) = G(0) = 0,
and EX = EY. Then

(1) ZAEY/ 20 EX: and 235 (n —i+ 1)E(Y:— Yen)/ 20 (n — i+ 1)
E(X; — X:1) are increasing in r(1 < r = n);

(ii) (BY,,EYyy, -+ ,EYy) > (EX,,EXpy, -+, EXy)
and i (n— i+ 1E(Xi— X)) 2 2i(n—i+ 1D)E(Y:i— Yia) for 1 <
r=mn,

(iii) H(EY,,EY ., --- ,EY,) 2 H(EX, ,EX,1, --- , EX))
if H vs a Schur function;

(iv) Dt aln —i+ DEX; — Xiy) = 2t ain —i+ 1)E(Y; — Yiy)
fozZaz= - =a,.

Proor. Since EY.;/EX; is increasing in ¢ by Theorem 3.6, (i) follows from
Lemma 3.7 (i). Since EX = EY, (ii) follows from Lemma 3.7 (ii). (iii) follows
from (ii) and Theorem 3.8. (iv) follows from Lemma 3.7 (iii). ]
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The following result presented in Hardy, Littlewood, and Pélya (1959),
p. 89, is used to obtain Corollary 3.11.

TaroreM 3.10. If ¢ is convex on the interval I and ¢ >y, where 1, +** , Tn,
Y, Yn belong to I, then Z? ¢(x'&) = Zlyf ¢(y1)'

CoroLLARY 3.11. Let G'F be starshaped on the support of F, F(0) = 0 = G(0),
{2 zdF(z) = [s ©dG(z), and ¢ be convex. Then S EW(EY) = 20 w(EXS).

Proor. The result follows immediately from Theorem 3.9 (ii) and Theorem
3.10.

The following theorem is obtained in Marshall, Olkin, and Proschan (1966).

TaroreM 3.12. If G7'F is starshaped on the support of F, then

() (Xa/ Xy, Xi/ 20 X) <at (Ya/ 22 Yiy o0 Yi/2 Vi)
where (Uy, -+ ,Us) <t (Vi, -+, Va) means > Ui Set 2t Vi for
j=1,---,n—1, while S Us =a 2 i Vi

(i) H(Xa/ 2 Xi, -, X/ 2 Xo) SwH(Yo/ L Yi, oo, Y/ 2 Y0)
if H 1s a Schur function;

(iil) D1 (n — 1+ 1)(Xi — Xia)/XZa 2 i(n—i+ 1)(Y:— Yen)/Y

(iv) (n 2 X2 — X))/ R S0 (W 20 V3= 7)/7%

(v) If, in addition, a1 = -+ = Gn, then

S aXyX 2o 20 a¥ /Y
and
S ain — i+ 1)(Xi — Xea)/X Zae 28 ai(n — i+ 1)(Yi = Yea)/¥

where X = Y8 Xi/nand ¥ = 21 Yi/n.

Proor. By definition G'F(X)/X: = Y//X; is increasing in 7. Hence (i)
follows from Lemma 3.7 (i). (ii) follows from (i) and Theorem 3.8. (iii) is a
consequence of Lemma 3.7 (ii). (iv) follows from (ii) where

H(z, - ,2) =0 D12 — L
(v) follows from Lemma 3.7 (iii). []

4. Inequalities in the case of convexity. In this section we consider pairs of
distributions F and G such that G'F is convex on the support of F and
F(0) = 0 = G(0). This is a strengthening of the starshapedness hypothesis of
Section 3. Our first result has applications to conservative lower tolerance limits
[Barlow and Proschan (1966)]. We shall need the following inequality which is
of independent interest. See Barlow, Marshall, and Proschan (in process) for
further discussion and extensions. Alternative proofs of Lemmas 4.1 and 4.3 can
be given using Theorem 9 of Hardy, Littlewood, and Pélya (1929).

Lemma 4.1. (i)

(4.1) o( 0 ams) — $(0) = 2.1 ado(z:) — ¢(0)]

for all convex ¢ on [0, b) and all 0 S 1 = -+~ <2, <b for which 0 =
Sriami <bifand only if 0 S A S 1fori =12, ,m
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(ii) If (4.1) holds for all @ satisfying 0 < A; < 1,7 =1, ,n, then ¢ is
convex on [0,b).

Proor. (i) Sufficiency. First assume ¢(0) =0 and 0 <A, =<1 for
2=1,---,m Then

S( 21 aw.) = ¢( 200 Au(ws — 2i1))

= DL A — zia)) — d(2 0T A, — 2i))]
(where D o_; = 0). Since the A; are < 1, the last expression is
< Y Afe( 2 Auxs — i) + (25 — 2m)) — $(225 As(es — @)
< LA (@ — wea) + (x5 — 20)) — $( 20 (w0 — @i))]
= 25 Afe(x) — ¢(wi)] = 2 a(z;).

Note that if we let ¢(z) = ¢(xz) — ¢(0) where ¢ is convex, then ¢ is convex
and ¥(0) = 0. Hence (4.1) holds for all convex ¢ on [0, b).

(i) Necessity. Next assume (4.1) holds. Choose ¢(z) = dand0 =2, = --- =
Zjg;x; = -+ = T, = b. Then (4.1) implies (Xt a)’” £ 27 a., so tha
0<4;=1

(ii) Now suppose (4.1) holds for all ¢ satisfying 0 < A; < 1fors = 1,2,

-, n. Then ¢(z) — ¢(0) is convex on [0, b) directly from the definition of
convexity. Hence ¢ is convex on [0, b). []

We may now prove

TaEOREM 4.2. Let G'F be convex on the support of F, F(0) = 0 = G(0), and
0 A, Z1fori=1,---,n. Then

(4.2) F(2o7 aiXs) <. G( 221 aiY),
or equivalently,
(4.3) FIY T AdX: — Xo)] Sa G221 AdY: — Vi)l

Proor. Using Theorem 4.1, we have
GF(Y am) £ S8 a6 F(X)) = 24 @Y.

Thus (4.2) follows.

The equivalence of (4.3) and (4.2) follows from the identity dlaws =
Z{L fL(L - xi—-l)- 0

For specified G, the distribution of G( > 1 a;Y:) may be determined. Theorem
4.2 may then be used to obtain a conservative lower tolerance limit for distribu-
tions F for which G™'F is convex [Barlow and Proschan (1966)].

To obtain a reversal of inequality (4.2) we need Theorem 4.4 below. To prove
Theorem 4.4 we state the following result:

Lemma 4.3.

(4.4) o( Ot aw:) — 6(0) = D1 adé(z:) — $(0)]
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Jor all convex ¢ on [0,b) and all0 S z; < -+ - <z, < b for which 0 £ D 1 axs <
b if and only of

A-I;]-) A-ﬁzl,"',A-k

for some k& (0 = k =< n).

Proor. Sufficiency. We shall prove the result for convex ¢ satisfying ¢(0) = 0.
The more general result then follows immediately.

First suppose )t a&; < z . Then

20 (A — 1) (@i — 2ia) [$(z:) — $(2ia)]/ (s — ic1)
+ (@ — 2.1 ax:)[p(xr) — ¢(Zax:)]l/ (e — Zaxs)
< 2bn (—A) (3 — z)lp(e) — ¢(zin)l/ (@5 — i),

since (a) each ratio on the left is less than every ratio on the right by convexity,
and (b) the sum of the coefficients on the left, » 1 (A; — 1)(z; — 2i4) +
(72 — 2.7 ax;), equals the sum of the coefficients on the right, D m1 (—A4;)-
(zi — %), and (c) every coefficient is positive. After simplification, the in-
equality reduces to the desired result.

Next suppose ) 1 a: > . Then rewrite the inequality above as

20 (A — D) (@ — zi)b(z) — ¢(min)l/ (5 — it)
= {[¢(Caw:) — ¢(m))/ (Cax: — )} (Zax: — w)
+ 20 (A (s — 2)[$(2) — b(@iin)]/ (s — @ia).

The desired result follows by the same arguments as before.
Necessity. Next assume (4.4) holds for all convex ¢. Choose ¢(x) = 2°, 0 =

1%

1, A1 £0,--- 4, =0

Ty = 0 =TT = e = By = b’ < b. Then (4.5) implies (D_? a;)? =
> 7 a;. Thus 4; is either 21 or 0.
Now we show that A; < 0 implies A;4; < 0. Choose 0 = z; = -+ = 2,4 <
T =2<Tipg= - =2, <b,and
o(z) =0 for z <z

= —2z for T = 2.

Suppose A; < 0 and A;y1 > 0. Choose 0 < 2; = 2z < 2y < b s0that 0 <
Z{L a;x; = fo, + Ai+](xi+l —_ xi) é 2. ThU.S ¢(2aix,~) =0 g z‘Ii+1($lJi+1 —_ :Bi)
by hypothesis, which contradicts A;,; > 0.

Finally, assume A;4; = 1. Then A, cannot be < 0 by the result just obtained.
Therefore, A; = 1. The proof of necessity is now complete. []

Using Lemma 4.3 we may now prove

THEOREM 4.4. Let G 'F be convex on the support of F, F(0) = 0 = G(0), and
forsomek(0 =k =n),A;21,i=1,-- k,while A; <0,i =k +1,--- ,n.
Then

(4.5) F(2F aX:) Za G 2T aiY),
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or equivalently,
(4.6) FID 8 Ad(X: — Xen)] 2 G217 Ad(Y: — Vi)l

Proor. Theorem 4.4 follows from Lemma 4.3 in the same way that Theorem
4.2 follows from Lemma 4.1. []

Next we obtain a comparison involving expected values of the order statistics
rather than a stochastic comparison of the order statistics themselves.
TaEOREM 4.5. G 'F be convex on the support of F, F(0) = 0 = G(0),a; = 0
fori=1,---,n,and D i a; < 1. Then
(47) F(21 aBX,) £ G2 a:EY)).
Proor. First using Lemma 4.1 and then Jensen’s inequality, we have
GF(X1 aBX) < 20 aG'F(EX,) £ 237 aBGTF(X) = 20 aiBY.

We thus obtain (4.7). []
This result was noted by Van Zwet (1964) for the case a; = 1 and a; = 0 for
j # 1, without the requirement that F(0) = G(0) = 0. We use (4.7) in Section

6 to obtain bounds on Y ¢ a.EX;.
As another application of Theorem 4.2, we obtain the following inequality on

weighted sums of spacings.
TuroreM 4.6. Let G'F be comvex on the support of F, F(0) = 0 = G(0),
0 =EX =EY,and A; =2 L fori=1,---,r. Then

Pl iAuX: — Xi) 2 2} 2 Po{ D0 Au(Y:i — Vi) 2 7}

forz < gmin (4i, -+, 4,). )
Proor. For ¢ = [min (4;, --- , 4,)]”, by Theorem 4.5

FID 1 cAi(Xi — Xia)] 2 GID i cAi(Y: — Vi)l
It follows that
Po{FIX 5 cAd(X: — X)) 2 FO)} 2 PolGI21 cA(Y: — Yin)] = F(0)}.

By Theorem 7.1 of Barlow and Marshall (1964), p. 1256, F(6) = G(6). It
follows that

FIX L cAd(X: — Xia)] 2 F(0)} 2 PolGI21 cAu(Ys — Yi)] Z G(0)},
implying
Pe{ X1 Ai(Xi — Xia) 2 0/¢) 2 Po{ 21 Ai(Ys — Yioa) Z 0/}
Setting 2 = 0/c < 6 min (4;, - -+, A,), we obtain the desired conclusion. []

5. Inequalities when one distribution is the exponential. We now specialize to
the case G(z) = 1 — ¢~ for z = 0. The following results are motivated by the
observation that in this case the normalized spacings (n — ¢ + 1) (Yin — Yia)
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are independent and identically distributed for< = 1,2, --- ,nandn = 1. Thus
we might expect that the spacings (n — ¢ + 1) (X — Xi1,.) would exhibit
certain monotonicity properties for distributions F such that G'F is convex
where finite (concave on [0, « )). Such distributions F are IFR (DFR).

Tueorem 5.1. If F is IFR (DFR) with F(0) = 0, then (n — 7+ 1)-
(Xin — Xi_1,n) 18 stochastically increasing (decreasing) in n = 1 for fixed 1.

Proor. Assume F is IFR. Let F,(x) = P[X4;m = z] and F.(z) =
[F(zx + u) — F(u)]/F(u). Then

Pl(n — %) (Xiyam — Xin) > 2]
= [C{FJz/(n — D" dFim(u) < [0 {(Fuz/(n+1 =) " " dFiw(u),

since [F(£)]"" is decreasing in ¢ for F IFR. Also since F,(z) is decreasing in u
for F IFR and F;,(z) £ F;,pa(x) for all F, we have by the lemma on p. 52 of
Barlow and Proschan (1965),

[S AP/ (0 + 1 — DR dFiu(u) < [ {Fula/(n +1 = OB dF; ()
= Pl(n 4+ 1 — ) (Xijann — Xinp) > .

All inequalities are reversed when F is DFR. []

CoroLrArY 5.2. If F 4s IFR (DFR) and F(0) = O, then (n — 1+ 1)-
(X — Xiaa) 18 stochastically decreasing (increasing) in ¢ = 1, 2, --- ,n for
Sfized n.

Proor. Assume F is IFR. First we shall show that (n — 1)(Xon — X1a) et
nXi, . Given Xy, , Xon — Xi, is the minimum of n — 1 random variables each
stochastically less than X, . Hence Xa, — Xin =& Xi1sn-1. By Theorem 5.1,
(n — 1)Xina S ot nX1n, s0 that (n — 1)(Xon — Xin) = st 8X1, . The result
follows by repeated conditioning.

An analogous argument applies in the DFR case. (]

Next we obtain results concerning ‘“total time on test’’ when successive obser-
vations are taken from an IFRA (DFRA) distribution. For example, if n items
are put on life test and experimentation is terminated at the time of the rth
failure (censored sampling), then T, = 21 (n — 4 + 1) (X — Xi_1,») denotes
the total time on test. This statistic has been extensively studied and applied in
the case of the exponential distribution by Epstein and Sobel (1953) and Epstein
(1960 a, b). The best estimate for the mean 6 in the exponential case is 6,, =
Ton/r.

TrEOREM 5.3. Let F be IFRA (DFRA), F(0) = 0, and EX = 0. Then

(1) 0rn(X)/X = 20 (0 — i+ 1)(Xi = Xia)/rX 2o (Sa) _

20 (n—i+ 1)Y= Yin) r¥ = 8,.(Y)/7;

(ii) E6,, is decreasing (increasing) in r so that Eb,, = (£) 0;

(i) Drain — i+ DEX: — Xi) S ()02 2 aitfar = -+ = ay.

Proor. (i) follows from Theorem 3.12 (iii). (ii) follows from Theorem 3.9) (i).
(iii) follows from Theorem 3.9 (iv). []
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Note that when F is IFR we can assert
H(nEXI’ (n - I)E(X2 - Xl)) e ’E(Xn - n—l)) = H(0, f, .- ,0)

when H is a Schur function.
TerEoREM 5.4. Let F be IFR (DFR) and F(0°) = 0. Then T., =
Z{ (n — 14+ 1) (X — Xi1) 18 stochastically increasing (decreasing) inn = 7.
Proor. Assume F is IFR. The proof is by induction on r. By Theorem 5.1 the

result is true for r = 1.
Now assume the theorem is true for r — 1. Note that

Pe[Tw > 2] = [ PryyulTro1nas > & — u] duPnXsm < ul
= ﬁf PeoTioyn > ¢ — u] duPnXy, = ul

by the induction assumption since F,;, is IFR.

Next note that if X; < --- < X, are order statistics from any distribution F,
then P[X; + --- + X, + (n — r)X, > z| X; = w] is increasing in w. This
is a consequence of the following two facts:

(i) Given X; = w, X,, - - - , X, are order statistics of a sample of sizen — 1
from the conditional distribution P[X =< z|X > w], where X has distribution F.

(ii) P[X > x| X > w] is increasing in w.

It follows that Pg,,,[Tr—1,» > & — u] is increasing in % for any distribution F.
Hence

I8 PryylTrin > 2 — ] duP[nXs, < u)
< [§ PrylTran > 2 — u] duP[(n 4+ 1) X1y < ul
= 8 Projun[Trtn > @ — u]duPl(n + 1) Xipn S
= P[Tyn41 > xl.

The last inequality follows from the fact that if F is IFR, then F,(z) is de-

creasing in w.

A similar proof holds if F' is DFR. []

Another result concerning total time on test in the case of censored sampling
from an IFR distribution may be obtained directly from Theorem 4.6. Simply
choose A; =n — i+ 1,9 =1, ---,r in that theorem. We immediately obtain:

COROLLARY 5.5. Let F be IFR with mean 6 and G(t) = 1 — ¢ °. Then

PeDi(n—i+1)(Xi— Xiy) >2) 2 Pe[D 1 (n— 1 +1)(Yi— YViy) >al

forz £ (n —r+1)6.

Next we consider truncated sampling. If n items are placed on test and suc-
cessive failure times are observed until a pre-assigned time %, the associated
sample is called a truncated sample. Let

V() = 2 ima Xi + (n — o,

where r denotes the number of observations < ¢, and is a random variable.
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V () represents the total time on test up to time & . This statistic occurs in life
testing in the exponential case. See, for example, Epstein and Sobel (1955).

TaEOREM 5.6. Let G'F be starshaped on the support of F, F(0) = 0 = G(0).
and EX = EY. Then

(5.4) B> X+ (n — r)t) Z E[2 4 Yi+ (n — 8],

where r(s) denotes the number of X(Y') observations =< .

Proor. Since F and G have the same mean, they cross at least once. Since
G'F is starshaped, F crosses G exactly once and from below. Hence there exists
a least value zo such that = G7'F(z) forx < x, whilez < G 'F(x) forz > .

Let ¥y = G'F(X;) and let s’ denote the number of Yy, -+ ,Y.) =t.Then
YY,---,Y, and s’ have the same joint distribution as Y3, ---, ¥, and s.

(i) Suppose to = 2o . Then

SUXid+ (n— )tz Sa¥i + (n =tz 24 ¥+ (n— .

This implies (5.4).
(ii) Suppose fo > zo. Let
v*=v/ ity =t

to otherwise.

I

I

Write
SiXi+ (n— 1)t — SV — (n— )t
= 20 Xi+ (n = — 20 Y = (n = e
> 20X = Y) 4+ X (X - YY),
since X; < Y.’ for 7 > r. Hence
B[25 X+ (n — )t — B[22 Y+ (n — s)t]
> B Xi—EXiY:i=0. [
ReMark. In the special case in which @ is the exponential distribution and F
is an IFRA distribution, then G'F is starshaped. In this case, (5.4) yields a

lower bound on the expected total time on test in truncated sampling from an
IFRA distribution with known mean.

6. Bounds on expected values of order statistics from monotone failure rate
distributions. In Section 3 we obtained explicit bounds on EXj;,, assuming G~ 'F
is starshaped [cf. (3.7)]. In particular, if F is IFRA with mean 6, we have the

result
0 i (n — j 4+ 1)/ i £ EXip S m03 5a (n —j +1)7

forl <£i<mnand 8 £ EXpn < 02.71Y;, for ¢ = n. The bounds are non-
trivial but only sharp for ¢ = 1 ors = n.
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If F is DFRA with mean 6 we have, using (3.6),
0 = EXyn < 0/n,
0<EX;\n 200 i(n—7+1)7"/24;" forl <i<n,
0> 15" < EX,n < 0.
All lower bounds are sharp. To see this, let

F(z) =0, z <0,
=« =0,
where 0 < ¢ = 1. Then F is DFR with mean 0, and for1 <7 < n
PX; 2 = IF @)VIF ()"~
< 255 (7) e exp [—ex(n — j)/0].
Hence EX; = f o P[X; = z]dx < 2"¢f. Since we can choose e arbitrarily close

to 0, we see that EX = 0 (1 £ 7 < n) is sharp. Note that since 21 EX:;n =
nb, EX, . approaches nd as e decreases to 0. Hence the upper bound for 7 = n
is also sharp. The upper bound for 7 = 1 is attained by the exponential. The other
bounds are non-trivial but not sharp.

Using Theorem 4.5 we can obtain additional explicit upper bounds on
3% a:EX; assuming F is IFR, a; = 0 and D7 a; < 1.

TaEOREM 6.1. If F s IFR with mean 6, F(0) = 0,a; =2 0forz=1,:--,m,
and X 1" a; < 1, then

(6.1) 21 aEX; £ 021 aBYi/[l — exp(— 2.1 a:iEY.)]

where EY; = Y iy (n —j +1)7.
Proor. We may assume without loss oi generality that 6 = 1. As shown in

Barlow and Marshall (1964),

F(x;1) = b(z;1) =0, =
=1-¢e", z =1,

8

where w depends on z and satisfies
(6.2) 1—¢" =w.
Since F[Y_} a:EX] £ 1 — exp[— 2.} a:EY] by Theorem 4.5, we have
21 alXi;1] S 1 — exp[— 27 aiBY .
Choose ¢ such that
(6.3) b(t;1) =1 — ¢ =1 —exp[— 21 a:EY],
where w depends on ¢. It follows that
2l aEX: St = 21 aEY i/ w.
Using (6.2) and (6.3) we obtain (6.1). []
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Sharp bounds on expected values of order statistics from an IFR distribution
can be given in terms of the pth percentile.
TaEOREM 6.2. Let F be IFR with pth percentile £, . Then

(64)  EX; S max{t,, (p/—logg)ln” + -+ + (n —j + 7Y
and
(6.5) BX; 2 LSO — @)@t ) T

where ¢ = 1 — p. All inequalities are sharp.

Proor. To show (6.4), let
Ga(z) =1 for0 =z = A

gexp{l(z — &)/(&% — A)lloggt  forz > A.

Note that Ga(A) = 1 and Ga(£,) = g. Since log F(x) is concave, there exists at
least one value of A = 0 such that Ga(z) = F(x) for all z = 0. Thus EX; =
supo<ast, EY; where Y is the jth order statistic from G» . Now

EY; = A+ [§ 20 ()IGa(@)Ga(2)]* de
— A+ S0+ 1)/THT( 4+ 1 — Dlfegw 71 — O dt da

by p. 234, Mood (1950).
To find the maximizing A, consider

(3/0M)EY; = 1 — [P(n + 1)/TGT(n + 1 — PHfeuw (1 = )" dt
4 [T(n + 1)/TG T + 1 — HIZ [Ga @) [Ga(2)]" g

exp{[(z — &)/(& — A)]log g llogal(z — &)/ (& — 4)* da.
Since Ga(A) = 0, — (&, — A)IEY ;/0A reduces to
[P(n + 1)/TGHT(n + 1 — D2 [Ga(@)) ' [Ga(2)]" g2 (2) (z — &)da
where ga is the density of Ga . Hence S ETE
— (& — A)(3EY ;/9A)

—A—[(& — A)/logglln" + -+ + (n—F+ 171 — &

- (= A1+ (logg) I 4+ - + (n =+ D7

For j such that 1 4 (log O+ e+ (v =G+ 1)™] £ 0, we have 0EY ;/
dA = 0. For j such that 1 4 (log O+ -+ (n—J+ 17 =0, we
have 0EY;/dA = 0. Thus EY; is maximized in the first case at A = 0 and in
the second case at A = £,. When A = 0, EY; = (&/—logg)[n™ + -+ +
(n —j+1)7];when A = &, EY; = &.

To show (6.5), let

G(z) = &%  for0 =z <4

=0 forg, Sz < .
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@ has pth percentile £, . Moreover, since log F is concave, it cannot cross log G
on (0, £,); hence G(x) < F(x) for allz = 0. Thus EY; < EX;, where Y; is
the jth order statistic from G. But

EY; = [¢ 2% (1)A(@)]16(2)]" da.
(6.5) follows from the definition of G given just above. []

7. Properties preserved in taking order statistics from IFR (DFR) distribu-
tions. In Barlow and Proschan (1965), pp. 38-39, it is shown that order statistics
from an IFR distribution themselves have an IFR distribution. This is not true
for spacings from an IFR distribution. To see this, suppose that F is IFR with
mass at ¢ < . Then the distribution of X, — X; will have a jump at the origin,
and hence cannot be IFR. The reverse situation exists for DFR distributions.
Order statistics from DFR distributions are not necessarily DFR. This is evident
since the exponential is DFR, while the ¢th order statistic from the exponential
is strictly IFR for ¢ > 1. However, spacings from a DFR distribution are DFR.

Taeorem 7.1. If F is DFR, then X; — X;_; has a DFR dustribution, v = 1, 2,
R (8

Proor. Let H; denote the distribution of X; — X, ;. For ¢ = 1, Hi(z) =
[F(x)]", so that H, is DFR. Fori = 2, - -+ , n, write

Hi(z) = /(G — 2){(n — i + DT F()]F(u + 2)]"""dF (u)

for t=2,---,n.]

Now F(u + z) is logarithmically convex in = 0 since F is DFR. Hence, so is
[F(u + z)]" """ and therefore H,(z) is, since it is a positively weighted linear
combination of logarithmically convex functions [Artin (1931)]. Thus H.(x) is
DFR forfixedz = 2, -+ ,n.[]

A stronger property than IFR is the property that F has density f such that
log f(x) is concave where finite; i.e., f is PF, . Order statistics do preserve the
PF, property, as shown in

TaeorEM 7.2. Suppose f ts PF, , with f(x) not necessarily O for negative x. Then
the density fu, of the ith order statistic is also PF; for fized 1 = 1,2, -+ , n.

Proor. When f is PF, , so is F and F. Thus

fu@) = /(@ = D (n — )IF (@) F* 7 (2)f(2)

is also logarithmically concave. Equivalently, f is PF, . []

TrarorEM 7.3. Let f be PF, with f(x) not necessarily 0 for x < 0. Then h; , the
density of X; — X4 1s also PF, for fivxed i = 2, --- ,n. If f(z) = 0 forz < 0,
then hy ©s PF, , where hy is the density of X, .

Proor. Note

hi(z) = l/(G — 2)I(n — )02 Fu)f(w)f(u + 2)F*"'(u + =) du
for i = 2, 3,---, n. Since f is PFy, so is r(u) = F7(—uw)f(—wu),
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s(u) = f(u)F" " (u). Since the PF, property is preserved under convolution,
hi(z) = [nl/(Z — 2)U(n — )20 r(—u)s(u + =) du

is PF, for fixed 7 = 2,3, -+, n.
Assuming f(z) = 0 for z < 0, we see that hy is PF, from

hi(z) = nf(z) F" (2). ]
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