ON THE EXPECTED VALUE OF A STOPPED MARTINGALE!

By LesTeER E. DuBiNs AND DAviD A. FREEDMAN

University of California, Berkeley

Throughout this note, X; , Xz, - - - is a martingale, and K = sup, E|X,|. As
is easily verified, E|X;| < K for every stopping time ¢. This note studies the exist-
ence of ¢ such that E|X,| = K when K = «, and finds necessary and sufficient
conditions on the distribution of the martingale for E(X ;) to be equal to E(X;)
for all .

THEOREM 1. If sup, E|X,| = , then there is a stopping time t for Xy, Xz, -+
such that E|X,| = o.

Let F; be the o-field generated by Xi, ---, X;. As usual, a stopping time t
for X;, X,, --- is a random variable whose range is the set of positive integers
with 4 « adjoined, such that for each n, the event {t = n} ¢ &, . Say ¢ is finite
ifit is finite almost surely. Whether or not ¢ is finite, E|X | is evaluated as [ ;<.|X4|-

Of course, E|X;| may be finite for all finite stopping times ¢, and yet be infinite
for some stopping time ¢. Here is an example which helped us find Theorems 1
and 2. Let X; = 0. On X, 0, let X,11 = X, a.e. On X, = 0, given X;,
<o+, Xa, let X,4; = 0 with conditional probability 1 — 2p,41, while X,41 =
Zny1 and X, = —2,41 with conditional probability p,41 each. Let 0 < p, <
L2 < 0,0< 2, < ©,and ) p,x, = .

Let
(1) Vi = sup.x; B{|X.| |F4}.

Lemma 1. With the understanding that the Vs may be infinite on a set of positive
measure, Vi, Vs, -+ 18 a martingale relative to F1, F2, -+ .

Proov. Plainly, V; is §;-measurable and
E{Vu |5} = Eflim, E[|X,| |F,4]|F}
= lim, B{E[|X,| |F;nllF;}
lim, E{|Xa| |53
=V;.

LemmaA 2. If t is a stopping time for an integrable stochastic process Y1, Y.,
-+, F 158 a o-field of measurable sets, n is a positive inieger, and the event {t = n}
e F, then almost everywhere on {t = n},

(2) E{Y.|5} = BE{Y.|5}.
Proor. Since both sides of (2) are plainly F-measurable, it is only necessary
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to check this for 4 C {t = n}, 4 ¢F:
(3) J4B{Y:|F} = [4V.= [4V.= [JE{Y,|5.

Proor oF THeoreM 1. Under the hypothesis sup, E|X,| = o, [V; = o
for all j, as is implied by Lemma 1. Suppose first that

(4) Jiv;<1 Vi = 0 for some j.

For each w with V;(w) < o, let {(w) be the least n = j such that E{|X,|
IF4(w) 2 Vi(w) — 1; if Vi(w) = o, let ¢(w) = j. Plainly, ¢t = j and ¢ is
F ;-measurable, so ¢ is a stopping time. Moreover, according to Lemma 2, on the
event {t = n}, E{|X,| |F;} = E{|X.||F;}. So E{|X|5F;} = V; — 1 wherever
V; < . Therefore,

(5) E|X.| = EBB{X||5}) 2 [iv;<e) B{X.] | 53}
2 [ivcm (Vi— 1) = .
Suppose next that
(6) Jirj<a1 Vi< w forall j.
Let A; be the event {V; = «}. By Lemma 1:
(7) For all j, A; ¢ §;, and 4; includes almost all of 4 ;..

Consider first the case that for some j, there are infinitely many disjoint sub-
sets By, Bz, --- of A; which have positive probability and are F;-measurable.

On B;, let ¢ be the least n = j such that E{|X,||F;} = 1/P(B:), and on the
complement of 4; let ¢ = j. The stopping time ¢ is §,-measurable and

o 1Xdl = 2o [ B4y | Xl

(8) = 2 n [5int=n B{|Xa| | 53
= [1/P(B:)]2_n P(B:in {t =mn})
= 1.

Consequently, E|X,| = «.
Finally, suppose in addition to (6):

(9) For each j, there are only a finite number of disjoint &;-measurable
subsets of 4 ; having positive probability.

An F;-measurable subset of 4 ; of minimal positive probability is an atom of A4 ; .
Since P(A;) > 0, there is at least one atom of 4 ;. In fact, since

(10) f(Vj+1<°°l Vi < «, and fB Vig = fB V= oo,

for each atom B of A4 ; , the F;,;-measurable set B n 4 j;; has positive probability.
So

(11) Each atom of 4 ; includes at least one atom of 4;,;.
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Consequently, there exists a sequence By D By D - - - , where each B;is an atom
of A;. Since V; = » on B;, E{X," |5} and E{X,” | %,}, which are constant
on Bj;, converge on B; to « as n — «. So there is a sequence j1 < j» < - -+
such that on Bj,

(12) B(X3,,. |94} = 1/P(B;)

and

(13) E{ X1 | Fid 2 1/P(Bj,).
These inequalities plainly imply

(14) fB:',, Xja 21 and fBi,,XJTIHI z L

Let B be the intersection of By, Bs, - -- and define ¢ thus. On B, let t = o
off B, let t be the least jix41 such that Bj,,, fails to occur. Plainly, ¢ is a stopping
time and

(15> f{t=-.1'k+1} Ika+ll = fBjA—Bij {Xjk+1|
= min (fBij;!;c+l ’ fBij,T,H_l) z L

The equality in (15) is obvious; the first inequality holds because X, , is
constant on Bj,,, ; the second inequality holds by (14). So E|X,| = «, com-
pleting the proof of the theorem.

(In contrast to Theorem 1, if sup, E|X,| is finite, there may exist no stopping
time that achieves the sup.)

TuEOREM 2. In order that E|X,| be finite for every finite stopping time t, it is
necessary and sufficient that (6), (9), and this condition hold:

(16) For every sequence By D By D - - - such that each B; is an atom of
A;,lim P(B;) > 0.

A compactness argument or Kénig’s lemma [Konig, 1936, Theorem 6 on p.
81] can be used to prove

Lemma 3. Suppose that (7), (9), (11), and (16) hold and that t is a finite stop-
ping time. Then there exists a positive integer n such that, for almost all w € 4., ,
tH(w) < n.

ProoF or THEOREM 2. As the proof of Theorem 1 makes evident, if any one
of the three conditions fails to hold, there is a finite stopping time ¢ for which
E|X,| = . Suppose now that all three conditions obtain and that ¢ is a finite
stopping time. Choose n as in Lemma 3, and let s be the sup of ¢ and n. Plainly,
s is a stopping time and

EIX) £ BIX)| = Juem |Xo| 4 Jiom X = [1Xal + Jroom X
(17) = [1Xul + [iom B{X | | 5}
< [1Xal + [ivucer BUX A | 54}
J Xl + Jvaca) Vi < 0.
This completes the proof of Theorem 2.

1A
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Of course, E|X | may be finite for all stopping times ¢, and yet there is a finite
stopping time s with E(X,) £ E(X;). For example, this occurs when the X,
are positive and converge to 0 a.e. As the proof of Theorem 3 shows, there is no
example essentially different from this one.

As is well known [Doob, 1953, p. 319], if sup, E[X,| < «, then X, converges
almost surely. This implies its own generalization:

Lemma 4. Almost everywhere on Uj{V; < =}, X, converges to a finite limit.

(Incidentally, lim, V, = lim, |X,| a.e. on U;{V; < «}. To see this, prove it
first for uniformly integrable {X,}. Second, argue that lim, X, = 0 a.e. and
P(lim, V, > 0) > 0 imply V; = «. The general case follows, because any
martingale with V; < o is the sum of a uniformly integrable martingale and a
martingale converging to 0 a.e.)

TreEOREM 3. E(X:) = E(X)) for all finite stopping times t if and only if both
of these conditions hold:

(a) E|X < o for all finite stopping times t; and

(b) For all n, the restriction of Xp41, Xnt2, + - to the event {V, < o} is
uniformly integrable.

Proor oF THEOREM 3. Suppose first that (a) and (b) hold, and let ¢ be any
finite stopping time. According to Theorem 2, (7), (9), (11) and (16) hold,
50 7 can be chosen in accordance with Lemma 3. As is easily verified, almost
everywhere that t < n,

(18) E{thiF,.} = X;.
Almost everywhere that ¢ > n, V, < «, so (b) implies that X, 41, Xnje,

... is uniformly integrable on the event ¢ > n. Consequently, almost every-
where that ¢ > n,

(19) E{X,|F.} = Xa.
Together, (18) and (19) say
(20) E{X,|%) = Xinn,

which implies
(21) E(X:) = E(Xtpn).

Since ¢ A n is bounded, the right side of (21) equals E(X3).

If (a) fails for a finite stopping time ¢, then plainly E(X,) is not well defined,
and certainly is not equal to E(X;). So there remains only to consider the case
that (a) holds and (b) fails. Suppose therefore that there is a least 7 such that
P{V;< o} > 0and X:y1, Xiy2, - - is not uniformly integrable on {V; < o«}.
It is convenient to suppose P{V; < o} = 1, the general case being similar. By
Lemma 4, X, converges almost surely to a finite limit X., . Moreover, E|X,| <
«, because E|X.| < E(V,) by Fatou’s lemma, and E(V;) < « by (6). Let

(22) X" = E{X.|5.}.
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As shown in [Doob, 1953, VII, 4], X1, X%, - - is uniformly integrable and
converges to X, . There must be a least j > 7 such that P(X; = X;*) > 0.
Suppose without real loss of generality that P(X; > X,*) > 0. Define a finite
stopping time ¢ thus. If X; < X% let t = 7. If X, > X i let t be the least
n > jsuch that X, — X,* < X; — X,*. Then X, — X,* £ X; — X,* and
strict inequality holds with positive probability. Therefore,

(23) E(X,— X" < E(X; — X,°.

Since X7y, Xita, - - is uniformly integrable, EX,* = EX & s0 B(X) <
E(X,;) = E(X:), completing the proof.

CoROLLARY. Suppose sup, E|X,| < «. In order that E(X:) = E(X;) for all
Jinite stopping times t, it is necessary and sufficient that Xy, X, , - - - be uniformly
integrable.
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