ON THE EXPECTED VALUE OF A STOPPED MARTINGALE¹

By Lester E. Dubins and David A. Freedman

University of California, Berkeley

Throughout this note, X_1 , X_2 , \cdots is a martingale, and $K = \sup_n E|X_n|$. As is easily verified, $E|X_t| \leq K$ for every stopping time t. This note studies the existence of t such that $E|X_t| = K$ when $K = \infty$, and finds necessary and sufficient conditions on the distribution of the martingale for $E(X_t)$ to be equal to $E(X_1)$ for all t.

THEOREM 1. If $\sup_n E|X_n| = \infty$, then there is a stopping time t for X_1, X_2, \cdots such that $E|X_t| = \infty$.

Let \mathfrak{F}_j be the σ -field generated by X_1, \dots, X_j . As usual, a stopping time t for X_1, X_2, \dots is a random variable whose range is the set of positive integers with $+\infty$ adjoined, such that for each n, the event $\{t=n\}$ $\varepsilon \mathfrak{F}_n$. Say t is finite if it is finite almost surely. Whether or not t is finite, $E|X_t|$ is evaluated as $\int_{t\leq\infty}|X_t|$.

Of course, $E|X_t|$ may be finite for all finite stopping times t, and yet be infinite for some stopping time t. Here is an example which helped us find Theorems 1 and 2. Let $X_1 = 0$. On $X_n \neq 0$, let $X_{n+1} = X_n$ a.e. On $X_n = 0$, given X_1 , \cdots , X_n , let $X_{n+1} = 0$ with conditional probability $1 - 2p_{n+1}$, while $X_{n+1} = x_{n+1}$ and $X_{n+1} = -x_{n+1}$ with conditional probability p_{n+1} each. Let $0 < p_n < \frac{1}{2}$, $\sum_{n=1}^{\infty} p_n < \infty$, $0 < x_n < \infty$, and $\sum_{n=1}^{\infty} p_n x_n = \infty$.

$$(1) V_j = \sup_{n \ge j} E\{|X_n| |\mathfrak{F}_j\}.$$

Lemma 1. With the understanding that the V's may be infinite on a set of positive measure, V_1, V_2, \cdots is a martingale relative to $\mathfrak{F}_1, \mathfrak{F}_2, \cdots$.

PROOF. Plainly, V_j is \mathfrak{F}_j -measurable and

$$\begin{split} E\{\boldsymbol{V}_{j+1} \mid \mathfrak{F}_{j}\} &= E\{\lim_{n} E[|\boldsymbol{X}_{n}| \mid \mathfrak{F}_{j+1}] | \mathfrak{F}_{j}\} \\ &= \lim_{n} E\{E[|\boldsymbol{X}_{n}| \mid \mathfrak{F}_{j+1}] | \mathfrak{F}_{j}\} \\ &= \lim_{n} E\{|\boldsymbol{X}_{n}| \mid \mathfrak{F}_{j}\} \\ &= \boldsymbol{V}_{j}. \end{split}$$

LEMMA 2. If t is a stopping time for an integrable stochastic process Y_1 , Y_2 , \cdots , $\mathfrak F$ is a σ -field of measurable sets, n is a positive integer, and the event $\{t=n\}$ ε $\mathfrak F$, then almost everywhere on $\{t=n\}$,

(2)
$$E\{Y_t \mid \mathfrak{F}\} = E\{Y_n \mid \mathfrak{F}\}.$$

Proof. Since both sides of (2) are plainly F-measurable, it is only necessary

Received 18 April 1966.

¹ This paper has been partially supported by the National Science Foundation, Grant GP-2593, and by a Sloan Foundation Grant to Freedman.

to check this for $A \subset \{t = n\}, A \in \mathfrak{F}$:

(3)
$$\int_A E\{Y_t \mid \mathfrak{F}\} = \int_A Y_t = \int_A Y_n = \int_A E\{Y_n \mid \mathfrak{F}\}.$$

Proof of Theorem 1. Under the hypothesis $\sup_n E|X_n|=\infty$, $\int V_j=\infty$ for all j, as is implied by Lemma 1. Suppose first that

$$\int_{\{V_j < \infty\}} V_j = \infty \text{ for some } j.$$

For each ω with $V_j(\omega) < \infty$, let $t(\omega)$ be the least $n \geq j$ such that $E\{|X_n| | \mathfrak{F}_j\}(\omega) \geq V_j(\omega) - 1$; if $V_j(\omega) = \infty$, let $t(\omega) = j$. Plainly, $t \geq j$ and t is \mathfrak{F}_j -measurable, so t is a stopping time. Moreover, according to Lemma 2, on the event $\{t = n\}$, $E\{|X_t| | \mathfrak{F}_j\} = E\{|X_n| | \mathfrak{F}_j\}$. So $E\{|X_t| | \mathfrak{F}_j\} \geq V_j - 1$ wherever $V_j < \infty$. Therefore,

$$(5) \quad E|X_t| = E(E\{|X_t| \mid \mathfrak{F}_i\}) \ge \int_{\{Y_i < \infty\}} E\{|X_t| \mid \mathfrak{F}_i\}$$

$$\geq \int_{\{V_i < \infty\}} (V_i - 1) = \infty.$$

Suppose next that

$$\int_{\{V_j < \infty\}} V_j < \infty \quad \text{for all} \quad j.$$

Let A_j be the event $\{V_j = \infty\}$. By Lemma 1:

(7) For all
$$j$$
, $A_j \in \mathfrak{F}_j$, and A_j includes almost all of A_{j+1} .

Consider first the case that for some j, there are infinitely many disjoint subsets B_1 , B_2 , \cdots of A_j which have positive probability and are \mathfrak{F}_j -measurable.

On B_i , let t be the least $n \geq j$ such that $E\{|X_n| \mid \mathfrak{F}_j\} \geq 1/P(B_i)$, and on the complement of A_j let t = j. The stopping time t is \mathfrak{F}_j -measurable and

(8)
$$\int_{B_i} |X_t| = \sum_n \int_{B_i \cap \{t=n\}} |X_n|$$
$$= \sum_n \int_{B_i \cap \{t=n\}} E\{|X_n| \mid \mathfrak{F}_j\}$$
$$\geq [1/P(B_i)] \sum_n P(B_i \cap \{t=n\})$$
$$= 1.$$

Consequently, $E|X_t| = \infty$.

Finally, suppose in addition to (6):

(9) For each j, there are only a finite number of disjoint \mathfrak{F}_{j} -measurable subsets of A_{j} having positive probability.

An \mathfrak{F}_j -measurable subset of A_j of minimal positive probability is an *atom* of A_j . Since $P(A_j) > 0$, there is at least one atom of A_j . In fact, since

$$(10) \qquad \int_{\{V_{j+1} < \infty\}} V_{j+1} < \infty, \text{ and } \int_B V_{j+1} = \int_B V_j = \infty,$$

for each atom B of A_j , the \mathfrak{F}_{j+1} -measurable set $B \cap A_{j+1}$ has positive probability. So

(11) Each atom of A_j includes at least one atom of A_{j+1} .

Consequently, there exists a sequence $B_1 \supset B_2 \supset \cdots$, where each B_j is an atom of A_j . Since $V_j = \infty$ on B_j , $E\{X_n^+ \mid \mathfrak{F}_j\}$ and $E\{X_n^- \mid \mathfrak{F}_j\}$, which are constant on B_j , converge on B_j to ∞ as $n \to \infty$. So there is a sequence $j_1 < j_2 < \cdots$ such that on B_{j_1}

(12)
$$E\{X_{j_{k+1}}^+ \mid \mathfrak{F}_{j_k}\} \ge 1/P(B_{j_k})$$

and

(13)
$$E\{X_{j_{k+1}}^- \mid \mathfrak{F}_{j_k}\} \ge 1/P(B_{j_k}).$$

These inequalities plainly imply

(14)
$$\int_{B_{j_k}} X_{j_{k+1}}^+ \ge 1 \text{ and } \int_{B_{j_k}} X_{j_{k+1}}^- \ge 1.$$

Let B be the intersection of B_1 , B_2 , \cdots and define t thus. On B, let $t = \infty$; off B, let t be the least j_{k+1} such that $B_{j_{k+1}}$ fails to occur. Plainly, t is a stopping time and

(15)
$$\int_{\{t=j_{k+1}\}} |X_{j_{k+1}}| = \int_{B_{j_k} - B_{j_{k+1}}} |X_{j_{k+1}}|$$

$$\geq \min \left(\int_{B_{j_k}} X_{j_{k+1}}^+, \int_{B_{j_k}} X_{j_{k+1}}^- \right) \geq 1.$$

The equality in (15) is obvious; the first inequality holds because $X_{j_{k+1}}$ is constant on $B_{j_{k+1}}$; the second inequality holds by (14). So $E|X_t| = \infty$, completing the proof of the theorem.

(In contrast to Theorem 1, if $\sup_n E|X_n|$ is finite, there may exist no stopping time that achieves the sup.)

THEOREM 2. In order that $E|X_t|$ be finite for every finite stopping time t, it is necessary and sufficient that (6), (9), and this condition hold:

(16) For every sequence
$$B_1 \supset B_2 \supset \cdots$$
 such that each B_j is an atom of A_j , $\lim P(B_j) > 0$.

A compactness argument or König's lemma [König, 1936, Theorem 6 on p. 81] can be used to prove

Lemma 3. Suppose that (7), (9), (11), and (16) hold and that t is a finite stopping time. Then there exists a positive integer n such that, for almost all $\omega \in A_n$, $t(\omega) \leq n$.

PROOF OF THEOREM 2. As the proof of Theorem 1 makes evident, if any one of the three conditions fails to hold, there is a finite stopping time t for which $E|X_t| = \infty$. Suppose now that all three conditions obtain and that t is a finite stopping time. Choose n as in Lemma 3, and let s be the sup of t and n. Plainly, s is a stopping time and

(17)
$$E|X_{t}| \leq E|X_{s}| = \int_{\{s=n\}} |X_{s}| + \int_{\{s>n\}} |X_{s}| \leq \int |X_{n}| + \int_{\{t>n\}} |X_{t}|$$

$$= \int |X_{n}| + \int_{\{t>n\}} E\{|X_{t}| \mid \mathfrak{F}_{n}\}$$

$$\leq \int |X_{n}| + \int_{\{v_{n}<\infty\}} E\{|X_{t}| \mid \mathfrak{F}_{n}\}$$

$$\leq \int |X_{n}| + \int_{\{v_{n}<\infty\}} V_{n} < \infty.$$

This completes the proof of Theorem 2.

Of course, $E|X_t|$ may be finite for all stopping times t, and yet there is a finite stopping time s with $E(X_s) \neq E(X_1)$. For example, this occurs when the X_n are positive and converge to 0 a.e. As the proof of Theorem 3 shows, there is no example essentially different from this one.

As is well known [Doob, 1953, p. 319], if $\sup_n E|X_n| < \infty$, then X_n converges almost surely. This implies its own generalization:

Lemma 4. Almost everywhere on $\bigcup_j \{V_j < \infty\}$, X_n converges to a finite limit. (Incidentally, $\lim_n V_n = \lim_n |X_n|$ a.e. on $\bigcup_j \{V_j < \infty\}$. To see this, prove it first for uniformly integrable $\{X_n\}$. Second, argue that $\lim_n X_n = 0$ a.e. and $P(\lim_n V_n > 0) > 0$ imply $V_1 = \infty$. The general case follows, because any martingale with $V_1 < \infty$ is the sum of a uniformly integrable martingale and a martingale converging to 0 a.e.)

THEOREM 3. $E(X_t) = E(X_1)$ for all finite stopping times t if and only if both of these conditions hold:

- (a) $E|X_t| < \infty$ for all finite stopping times t; and
- (b) For all n, the restriction of X_{n+1} , X_{n+2} , \cdots to the event $\{V_n < \infty\}$ is uniformly integrable.

PROOF OF THEOREM 3. Suppose first that (a) and (b) hold, and let t be any finite stopping time. According to Theorem 2, (7), (9), (11) and (16) hold, so n can be chosen in accordance with Lemma 3. As is easily verified, almost everywhere that $t \leq n$,

$$(18) E\{X_t \mid \mathfrak{T}_n\} = X_t.$$

Almost everywhere that t > n, $V_n < \infty$, so (b) implies that X_{n+1} , X_{n+2} , \cdots is uniformly integrable on the event t > n. Consequently, almost everywhere that t > n,

$$(19) E\{X_t \mid \mathfrak{T}_n\} = X_n.$$

Together, (18) and (19) say

$$(20) E\{X_t \mid \mathfrak{F}_n\} = X_{t \wedge n},$$

which implies

$$(21) E(X_t) = E(X_{t \wedge n}).$$

Since $t \wedge n$ is bounded, the right side of (21) equals $E(X_1)$.

If (a) fails for a finite stopping time t, then plainly $E(X_t)$ is not well defined, and certainly is not equal to $E(X_1)$. So there remains only to consider the case that (a) holds and (b) fails. Suppose therefore that there is a least i such that $P\{V_i < \infty\} > 0$ and X_{i+1} , X_{i+2} , \cdots is not uniformly integrable on $\{V_i < \infty\}$. It is convenient to suppose $P\{V_i < \infty\} = 1$, the general case being similar. By Lemma 4, X_n converges almost surely to a finite limit X_∞ . Moreover, $E|X_\infty| < \infty$, because $E|X_\infty| \le E(V_i)$ by Fatou's lemma, and $E(V_i) < \infty$ by (6). Let

$$(22) X_n^* = E\{X_\infty \mid \mathfrak{F}_n\}.$$

As shown in [Doob, 1953, VII, 4], X_{i+1}^* , X_{i+2}^* , \cdots is uniformly integrable and converges to X_{∞} . There must be a least j > i such that $P(X_j \neq X_j^*) > 0$. Suppose without real loss of generality that $P(X_j > X_j^*) > 0$. Define a finite stopping time t thus. If $X_j \leq X_j^*$, let t = j. If $X_j > X_j^*$, let t be the least n > j such that $X_n - X_n^* < X_j - X_j^*$. Then $X_t - X_t^* \leq X_j - X_j^*$, and strict inequality holds with positive probability. Therefore,

(23)
$$E(X_t - X_t^*) < E(X_i - X_i^*).$$

Since X_{i+1}^* , X_{i+2}^* , \cdots is uniformly integrable, $EX_t^* = EX_j^*$, so $E(X_t) < E(X_j) = E(X_1)$, completing the proof.

COROLLARY. Suppose $\sup_n E|X_n| < \infty$. In order that $E(X_t) = E(X_1)$ for all finite stopping times t, it is necessary and sufficient that X_1, X_2, \cdots be uniformly integrable.

REFERENCES

Doob, J. L. (1953). Stochastic processes. Wiley, New York.

König, Denes (1936). Theorie der endlichen und unendlichen Graphen. Akademische Verlags-Gesellschaft, Leipzig.