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1. Introduction. The object of this note is to co-ordinate some results pre-
sented by Chipman [1], Goldman and Zelen [2], and John [3].
We shall consider the model in the form

(1) y =X +e

where X is of order n X k of rank k — s, and ¢ has zero mean and variance matrix
o’L Tt is desired to estimate the parameters B8 subject to the set of s linearly inde-
pendent constraints H3 = c¢, where H is complementary to X.

2. Generalized inverse matrices. A unique generalized inverse of a matrix
X has been defined (e.g. [2]) as a matrix A satisfying

(2) XAX =X, AXA=A, (XA) =XA, (AX)' = AX.

In this note we introduce a generalized inverse which satisfies the first three con-
ditions only. Such a matrix will be denoted by X, and is essentially the same as
the “weak generalized inverse” of Goldman and Zelen [2], the slight change being
necessitated by their use of X’ in place of X in (1). Rao [6] also considered a class
of generalized inverses satisfying only the first condition of (2).

Chipman [1, Lemma 1.1] shows that there is a matrix B such that XB = 0 and

HB =1, .If
X
W=[HJ,

W'W = X'X + H'H, which is of order & X k of rank k, and (W'W)™X' = X~
i.e. it satisfies the first three conditions of (2). Similarly, B = (W'W)™H’ = H™
and we have the relations

(3) XH™ =0, HX =0, HH =1,.

For the special case here considered, X~ and H™ are the matrices denoted by
Chipman (Theorem 1.1) as X* and Y*. We note that X~ and H™ are not unique,
being dependent on choice of H and X respectively, but are unique (as defined by
Chipman) for a particular H or X respectively.

3. Solution of normal equations. Plackett [5], in deriving the solution (in
our notation)

(4) 8=Xy+Heg,
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makes use of a matrix D such that XD = 0 and HD is nonsingular of rank s.
John [3], uses the same matrix in showing that the Rao generalized inverse of
S (= X'X) implicitly used by Plackett, viz. (W'W)™, is not the same as the
matrix P (also a Rao generalized inverse) in

P Q] _[s HT!
593 4T
used by other authors (e.g. Kempthorne [4], p. 72) in solving the normal equa-

tions. However, it is evident from the above that D may be taken as H™ so that
HH™ = I, , with considerable simplification of the algebra.

4. Relationship between the two Rao generalized inverses. This may be
established in a rather more direct manner than that used by John. From (5)
we have

SP+HQ' =I.,, SQ+HR=0.
HP=0, HQ=Ico

Pre-multiplication of the first two equations by (H™)’ gives, by virtue of (3),
Q = H and R = 0. Pre-multiplication of the first equation by P and by (W'W)™"
gives, respectively,

(6) PSP = P,
(showing that S is a Rao generalized inverse of P, as well as vice versa) and
(7N XXP = (WW)? —H (H).

The right hand side of (7) is actually John’s expression for P. To show this we
use (3), (6), and (7) as follows:

XXXP = XP = (X7)';
and P = PSP = (XP)'XP = X (X")".

This gives the variance matrix of §, as is also evident from (4).

The fact that apparently non-unique sub-matrices, e.g. Q = H, appear in the
inverse matrix (5), necessarily unique, is explainable by the remark at the end of
Section 2.
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