A BIVARIATE ¢ DISTRIBUTION
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1. Introduction and summary. In this note we consider the joint distribution
of Student variates (4, t2), where # corresponds to the z-observations and #; to
y-observations from a bivariate normal distribution. No applications are sug-
gested as Hotelling’s T? is more appropriate whenever estimation of covariance
matrix is necessary. Possibly on occasions, when the correlation coefficient, p,
between z and y may be assumed known, for example from past records, the
bivariate (4, t;) may be useful. The main interest in this distribution is theo-
retical. First, because this type of bivariate (¢, £;) has never been worked out
before while the joint distribution of (&, 4, 1, sz, r) is commonly known. Second,
for degrees of freedom n = 1 (sample size N = 2) the bivariate ¢ distribution
is an example of a bivariate Cauchy distribution. Lastly, the asymptotic ap-
proximation obtained in Section 3 is an application of the method of steepest
descent, which has some methodological interest and can be used in other situa-
tions.

There is no loss of generality, as far as the distribution of (¢, ¢;, r) is con-
cerned, in assuming the means of z and y to be zero and variances to be unity.
The only parameter which enters into the joint distribution of (¢, ¢, r) or into
that of (41, ) is p. Because of the simplicity of the limiting distribution and the
asymptotic approximation we will present them first, while the exact distribu-
tions are evaluated only for n = 1, and 3 (N = 2 and 4). The exact distribu-
tion for arbitrary » can be worked out, in double or triple sums, following the
method given for n = 3.

2. Distribution of (I, &, r). Let
¢(z) = (2m)H 7,
é(z, y;0) = (20)7(1 — ) Fexp [—(2(1 — o)) + ¢* — 2pwy)].

Let (z;, y:), 7 = 1,2, .-+, N, be a random sample from ¢(z, y; p), where
lo] < 1, and

21) &=N'Xs §=N'Ly &=N'2(z-2),
s = N* Z (y — g)z, r= (NSySz)_l E (x — 2)(y — 9),

where the summations extend over the sample values. The joint pdf of
(f) g; 81, 82, 7') is [1]«, p. 385,

F(& G, 81, 8,r) = [IN'/22°T(N — 2)(1 — p")™)(s18)"2(1 — )}
cexp [—[N/2(1 — POUZ* + 8 + 7 + s° — 20(3F + ras)}],
with —0 << 0, -0 << 0, 05g§< 0,0=8< o, —-1=r=1
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We make the following transformations in succession:

) =8N -1 to =g (N -1 s =8, =8,r=r;

(i) & = [N/21 — o)A + &/(N — 1), 2 = [N/2(1 — o)
A+ /(N=1))s' =, tb=t,r=r;

(iii) w1 = (2122)}, ue = 3log (21/22), h = t1, & = b, r = r. We then inte-
grate out u; and u, with the help of the gamma integral and

I3 dw/(coshz — @) = [B(3, N)/2X(1 — o)™ IF(3, 1; N + $;3(1 + a)),
where
F(a,b;c;z) = 1+ (ab/c)(z/11) + [a(a 4+ 1)b(b + 1)/c(c + D* /21 + -+ -,

is the Gauss hypergeometric series which converges for |z| < 1. For transforma-
tions (iii) and the above integral see [1], pp. 386-388. The joint pdf of (¢, ¢, 7)
is given by

ft, ta, 1) = [P(n + 2)(A — "™/ (2m)(n + §)]
(2.2) 1@+ t¥/n) A 4 /)RR — D

(L =b—e)TFG B+ £ 3L+ b+ o),
wheren = N — 1,

b = [ptita/nll(1 + t*/n)(1 + &/n)Y, ¢ = o1 + t¥/n)1 + LY/
It is noted that
L4b+er] 14 p|ll + [tatal/nll(1 + 62/0)Q + &2/m)F 214 o < 2,

so that the hypergeometric series in (2.2) converges uniformly in (¢, &) and
for every |p| < 1. If we now make the substitution

(2.3) =p+Q—-ph, H=t, h=¢t,
we obtain
(24) f(t, t,v) = ¢()p(tr, ta; p)[1 — (pv/2n")
420" = 7 4+ (6" + &' — 2otita) /(1 — p")} + O(n7)].
Thus
(2.5) limn.o f(t, b2, 0) = ¢(v)d(h, & ; p),
so that, in the limit, (¢4, ,v) are trivariate normal and ({, , %) is independent
of r.

3. Asymptotic distribution of (#;, ). We now derive an asymptotic distri-
bution of (4, t;) by integrating out r. This approximation is different from the
limit distribution of Section 2, and is of some methodological interest. We need
to evaluate

31) In= f5Q -1 —p — ¢r)™?
'F(%)

(S

sn+ 35,31 + b + o)) dr.
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Set
u(z) = log(1 —2°) —log (1 — b — c2),
h(z) (1—'2) *(l—b_cz)v(m 2’n+2) 2(1+b+cz))>

where z is now a complex variable. It is easily verified that (1 — b)* > ¢’ so
that the real singularity (1 — b)/c of u and h is outside the interval (—1, 1).
The other singularities being 1 and —1, % and k are analytic in the strip
—1 < Rez < 1. I, can be written as I, = [, e™h dz. The saddlepoints are
obtained from '(2) = 0, which has only one solution 2z, = ¢(1 — b)™ 2 is
real and an interior point of the interval (—1, 1). Also,

w(2) = —(1 —b)' QA —-b)? =7 <0.

Thus 2 is the unique saddlepoint and the real open interval (—1, 1) the line
of steepest descent through 2z, . From the standard theory we obtam the asymp-
totic approxnnatlon

= (2r)}(—nw") ™ ho[l 4+ O(n )],
where uo , ho etc. denote the value of u, h ete. at 2 = 2. In fact
= —3logl(1 —b)* — ¢, he=I[1—0b)— T —b)F,.
Finally
f(t, ) ~[T(n + 2)A — )™ /200' T (n + §)]
(3.2) 1+ 6'/n) (1 + &°/m)) 0
(1 = b1 —b)? = R,

Improved asymptotic approximations can be obtained by expanding %(2z) and
h(z) in Taylor series around the point z = z,, and take the form

flt, &) ~ ga(t, )1 + Ar/n + As/n’ + -],

where ¢.(#1 , £2) is the term on the right hand side of (3.2).
It may be observed that uniformly in every finite two dimensional interval
for (t1, %) asm — o,

T'(n+2)/mWTn+3) »1; (1 —=b}—>1; Fo—1;
[(1 4 63/0) (1 + /)| D — gD,
I(n+1)log (1 — ¢*) — 3(n + 1) log[(1 — b)* — ¢ —
—3log (1 — %) — (2(01 — )"t + &) — 20tits},
hence
liM e f(t1, £2) = liMnsw gn(ts, t2) = &(t1, &2 5 p).

Thus ga(#1, t2) is intermediate between the exact distribution and the normal
approximation.
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4. Exact distribution for » = 1. When N = 2, n = 1, and r = +1 and the
derivation (2.2) fails, it is simpler to start with the joint distribution of
(1, 1, 22, Y2), which is ¢(x1, y1 ; p)o (2, 42 ; p). We then have

= (@ +2)/|len— 2|, &= @+w)ln-—ry

Now, the vector 27 (zy + 22, 1 + 2, 21 — %2, y1 — ¥2) has the same distribu-
tion as (x1, %1, T2, %) and we may as well consider the distribution of
t = x1/|22, t2 = y1/|y2|- We divide the sample space into four disjoint sets:

(1) A, ={ze =2 0,y, = 0}. Hereset t1 = 21/22, 6o = Y1/¥Y2, 2 = 22,y = ¥z -

(2) A4 = {22 < 0, 4. < O}. Here set t = —z1/22, ta = —Y1/92, T = 2,
Yy=1Y.
(3) 4s

{xs <0,y2 = 0}. Hereset ti = —x1/2, e = Y/¥2, 2 =22,Yy = Y2 -
(4) Ay = {2220,y <O}.Heresetty = 21/%s , o = —Y1/¥o, 2 = T2,y = 2.
The pdf of (¢, t;) is then

flt, ta) = 2imhi(ty, ta; p)

o

where
hi(ti, b5 p) = [af(t, ta, o, y) dz dy.

It is easily seen that hi(ti,%;p0) = he(tr, ta; p) = ha(ta, t2; —p) =
hi(ti, t ; —p). Thus

fltr, t) = 2[M(t, ta; p) + Ma(tr, ta; —p)].
Now
Wty t;0) = (4n*(1 — o)) [5 J5 exp[— (21 — )7 + )2
+ (1 + D)y — 20(1 + tity)zy) ey da dy.

Make the following transformations in succession:
(1) 2o = 21 = DI + 612" 2 = 2(1 — o)]7'(1 + 8")¢,
(2) wm= (2122)}, up = §log (21/22),

and set

cos 6 = 2p(1 — p)(1 + &) (1 + )71 + &)
where 6 = 6(t,, t;) is between 0 and ». On integrating out u; and u, we obtain
(4.1) Mty ta;p) = [(1 — p*) cosec® 6/4x*(1 + &) (1+ 7))

‘[1 4+ (= — 6) cot 4].

In integrating out u, we have used

I3 dz/(cosh 0 + cos 6) = §/sing, 0 <6<,
and arrived at (4.1) by differentiation with respect to cos 8. Finally
(4.2) f(tr,8) = [(1 = ¢") cosec’ 0/*(1 + ") (1 + &")[1 + (x/2 — 6) cot 6].

When p = 0, § = x/2,cosec@ = 1, and f(¢, ;) becomes a product of two
Cauchy densities.
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6. Exact distribution when n = 3. If in (3.1) we expand the hypergeometric
function and express powers of (1 + b+ cr) as powersof [2 — (1 — b — ¢r)],
we get

In = 2is(T(n + Tk + 3)/T(k + n + $T(3)k!
20 (=1/2)() J5 (1 = b — o) = ) dr
For N = 4, n = 3, and
Iy = 255 [Tk 4+ 3)/T(k + HTE)E] 2i-0 (—3)C)
fe/e(5 — 2 — b —¢)™ — (1 — b+ ).

The terms diminish in magnitude quite rapidly. Thus, if we denote the kth
term as u, , we have

u = (2/50)[(1 —b—c)F — (1 —b+¢)7Y,
w = (1/18)uo — (1/3¢)(1 — b — ¢)t + (1/3¢c)(1 — b + ¢)7¥],
up = (1/88)[u0 — (2/3¢)(1 — b — )t 4+ (2/3¢)(1 — b + ¢)}
4+ (1/2¢)(1 — b — ¢)™F — (1/2c)(1 — b + ¢)7*].
Finally
flt, ) = [82-2'(1 — 0*)*/3577)(1 + t°/3)7°(1 + /3) "I .
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