RANDOM HYDRODYNAMIC FORCES ON OBJECTS!

By Leon E. BoremMAN
University of California, Davis

1. Summary. The force exetted on an object immersed in a flowing turbulent
fluid is considered as a zero-memory, nonlinear transformation of the bivariate
Gaussian process whose components are the fluid particle velocities and local
accelerations that would be present at the location of the object if the object
were not disturbing the fluid. A model often used in applications is assumed and.
the probability density and the moment generating function are derived and in-
vestigated. The covariance between the forces at two space-time points in the
presence of a space-varying mean flow is developed and a series approximation
outlined. Under suitable restrictions the partial sums of the series are used to
obtain an easily computed approximation to the spectral density of the force at
a fixed space location.

2. Introduction. Let V(z, y, 2, t) be the velocity of fluid flow at a specified point
(z, y, 2) within a fluid at time ¢. It will be assumed that the velocities are always
directed along the z-coordinate axis. The force that would be exerted by the fluid
on an object placed at the point has been approximated in many applications
(Morrison, O’Brien, Johnson, and Schaaf [8], Reid and Bretschneider [14],
Wiegel, Beebe, and Moon [17], Wiegel [16], pp. 256 ff.) by the formula

(2.1) ®(2,y,2,t) = cV|V| + kaV/at.

The two terms are called the drag and inertial forces respectively. The constants
¢ and k are determined by the shape and dimensions of the object, the physical
properties of the fluid, and the general regime of flow as evidenced by flow
parameters like the Reynolds number or the Froude number.

It is often reasonable to consider V(z, ¥, 2, t) a Gaussian stochastic process in
(z,9,2,t). On this premise, we will investigate the probability properties of the
random quantity ®, and, in particular, will consider (1) the probability law and
moments of ®(xo, %o, 2 ,%), (2) the covariance of ®(21,y1,21,4h) and
®(22,Y2,2,t), and (3) the spectrum of ®(¢) = ®(zo, Yo, 20,t). (The sub-
scripts denote fixed values of the coordinates, while a coordinate without a sub-
script indicates a stochastic process parameter.)

3. Assumptions. It will be assumed that
(1) V(z, y, 2, t) and the sample-function derivative,

(3-1) A(‘% Y, 2, t) = (-)V(x, Y, 2, t)/at
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38 LEON E. BORGMAN

are a two-component Gaussian stochastic process over the parameter space of
all vectors of the form (z,y, 2, t).

(2) the random variables, V(xo,¥o,20,%) and A(zo,%o,2,%), are in-
dependent, and have means m(%o, ¥ , 20, %) and O respectively, and variances
o> (2o, Yo, 20, 1) and p*(zo, Yo , 20, to) respectively.

(3)
(3‘2) Q(x’ y’ z’ t) = CV(x’ y’ z’ t) |V(x’ y’ 27 t)l + kA(x’ y’ z’ t)'
An additional property which often holds, but which will be taken as a basic
assumption only in Section 6, is
(4)
(33) — Cov[V(x,y0,20,1), A(z0, 0,20 ,t+ 7)]
= Cov [V(z0,90,20,t + 7), A(%0, Yo, 20, t)].

Assumptions (1) and (2), as well as (4) arise quite naturally in applications,
in several ways. '

1. In the linear theory of waves (Wiegel [16], pp. 13-17) velocity and accelera-
tion at position (z,y,¢) in a wave with phase ¢, traveling in the z-direction, is

V(z,y,t) = aw(cosh ky/sinh kd) cos (kx — wt + ¢),
A(z,y,t) = aw’(cosh ky/sinh kd) sin (kx — ot + ¢)

where x and y are the horizontal and vertical coordinates, the origin is on the
sea floor, w is angular frequency, d is water depth, and k is determined by the
relation &’ = gk tanh kd. If ¢ is assumed to be a uniform random variable on
(0.27), then V(xo,y0,%) and A(x0,¥o,%) are independent by the ortho-
gonality of the trigonometric functions and have zero expectations. This in-
dependence is preserved if the wave train is taken to be the sum of a large
number of wavelets of this form, each with its own frequency, amplitude, and
independent random phase. An application of the central limit theorem, under
certain reasonable regularity conditions, gives that V and A, in the limit, are
jointly normal (Pierson [10]) and the above properties continue to hold.

Equation (3.3) also follows directly from the elementary properties of trigono-
metric functions and holds in the limit.

2. Suppose V(t) is taken as a separable, stationary, Gaussian process with an
absolutely continuous spectrum whose density, p()\), satisfies

(3.4) 2o Np(N) d\ < .

Then the local acceleration, A(t), may be considered as the derivative in quad-
ratic meau of V{i) since (Doob [2], pp. 535-536) the derivative in quadratic
mean exists, almost all sample functions are absolutely continuous, and the
sample derivative and the quadratic mean derivatives are equal with prob-
ability 1.0.
Let
An(t) = [V(t 4+ h) — V(D)]/h.
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The mean vector, u,. and covariance matrix, M, of V(0), 4,(0), V(¢), and
A(t) in the limit as h tends to zero are

9 = (m’ 0’ m’ 0)

and
R(0) 0 R(1) R (t)
. 0 R"(0) —R'(t) —-R"®t)
imio M =\ poy  ZR')  R(0) 0
R'(¢) —R"(®) 0 —R"(0)

in the above relation R(h) = Cov [V (¢ + h), V(¢)] and it is assumed that
R(h) is everywhere differentiable and is twice differentiable at A = 0. (The
latter condition is equivalent to (3.4)).

The jointly normal characteristic function of V(0), 4.(0), V(¢), and Ax(t)
remains normal as & tends to infinity and it follows.from the multivariate con-
tinuity theorem (Takano [15], p. 58) and from the relation

Ar(t) —qm. A(2)
that V(0), A(0), V(¢), and A(t) are jointly normally distributed, ¥(0) and
A(0) are independent, and
Cov [V(0), A(t)] = — Cov [A(0), V()]

4. The probability law of &(xo, ¥o, 20, t). In the following section,
V(o ,%o0,20,%) and A(xo, Yo, 20,%) will be written V and A for simplicity.
Similarly, Var V, Var 4, and EV will be denoted by ¢*, ¢°, and m.

TueoreM 4.1. The probability density of

(4.1) Y = &/pk = [c|V|V + kA]/ok
18 given by
(42) fr(y) = (@/20") exp [—=(+" + ¢")/2 [T £
.exp (—at — ££/2) cosh (y(2at)? + yt)dt

where
(4.3) o = pk/2co’,
(4.4) v = m/ .
Proor. The distribution function of W = V|V| is
Fy(w) = PIW < w] = P[V £ —(—w)Y, if w <0,
= P[V = v, if w > 0,

= [221* ((2r)i0) " exp [— (z — m)?/20%] da

where the 4+ or — sign holds according as w is positive or negative, respectively.
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The density of W is obtained by differentiation, for both w > 0 and w <0, as
(4.5) f(w) = (8rlwlo") ™ exp [~ (= [wl' — m)?/20".

The joint density of W and A is then

fr.a(w, a) = [exp (= (= o' — m)"/26" — a'/20"))/4moplw]’.
The density of the transformed variables
Y = [cW + kA]/ok,
‘ T = cW/ok,
is
Froa(y, ) = ((20)}/4m) [ exp (—(=(2alt])t — 7)%/2 — (y — ©)%/2).

The marginal density of ¥ is obtained by integrating ¢ over (— «, 0) and
(0, »), transforming the [, to [¢ and collecting terms

(4.6) fr(y) = ((22)*/47) exp (— (" +4")/2) [T [ exp (—at — £/2)]
- [exp (—v(2at)! — yt) + exp (v(2at) + yt)] dt.

The asserted result follows immediately.

Equation (4.2) can be integrated numerically for particular values of ¥ and
a. This is essentially the procedure used by Pierson and Holmes [12]. If m = 0
(i.e., v = 0), then (4.2) can be stated in terms of parabolic cylinder functions

in a more useful form.
THEOREM 4.2. If m = 0, (i.e.,v = 0), then

fr(y) = (a/87) ™ lexp ((a« +4)*/4) U(0, & + y)
+exp ((a — 9)/O)r'V(0,y — a)], if y2Za
(4.7) = (a/87)% " [exp ((a + y)*/4)U(0, @ + y)
+exp ((a — 9)/8) U0, a —y)], if —a=Sy=Sa
= (a/87)%"[exp ((a + 9)*/4)r'V (0, —a — y)
+ exp ((a — 9)/H)U(0,a — y)], if y < —a

where U(a, z) and V(a, ) are the parabolic cylinder functions tabled by Miller [7].
Proor. In (4.6), let m = 0 (i.e., v = 0). Then

(48) fr(y) = ((22)}/4m)e ([T 7 exp (= (a + y)t — £/2) dt
+ [Tt exp (= (a — y)t — ££/2) di.
By equation (3), p. 119 of [3]
D,(z) = (T'(—»)) " exp (—2*/4) [ 57" exp (—at — £/2) dt.
If » = —1, this reduces to
[5 t exp (—at — ££/2) dt = o' "*D_4(2)
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and hence can be applied to (4.8) to give
(49) fr(y) = (a/8m)'e ™ [exp ((a + 9)"/4)Dy(a + y)
+ exp ((a@ — y)*/4)D_(a — y)].
But (Miller [7], p. 687, equations 19.3.7 and 19.3.8)
D_iy(m) = U(0,m), if m>0,
=V (0, —m), if m <O.

If this is applied to (4.9), then (4.7) is obtained.
THEOREM 4.3. The moment generaling function for Y is

(4.10) My(s) = e ™?[(1 + s/a)* exp (¥(1 + s/)™/2)Q((1 + s/a) ™)
+ (1 — s/a)Fexp (v*(1 — 8/)™/2)Q(— (1 — s/a) )]

where

(4.11) Q(z) = [2 @)™ da.

If m =0 (i.e.,v = 0), then

(4.12) My(s) = 3¢™[(1 4 /o)™ + (1 — s/a)7"].
Proor. From (4.1) and (4.3)

(4.13) Y = (¢/pk)V|V| + A/p = V|V|/2a0" + A/p

where, by assumption, V and A are independent. Hence

My(s) = Mi(s)M,(s)
where
Mi(s) = Elexp (V|V|s/2ac")]

My(s) = Elexp (s4/p)]-
The random variable 4 /p is N(0, 1), so
(4.14) Ma(s) = &
The other generating function is obtained as follows.
Mi(s) = [Zw exp (sv]v]/200) (2m0*) F exp (— (v — m)*/26%) dv
=[5 (2r0”)* exp (—sv°/2a0” — (v + m)?/26") dv
+ [7 (2re®) " exp (s0°/2a0® — (v — m)*/20%) dv.

The left integral comes from the integral over (— «, 0) in the original expression
after a transformation. Let w = v/0, expand the quadratic in the exponent, and
introduce v from (4.4). Then

My(s) = ¢ P[5 exp (— (1 + s/a)w’/2 — yw) dw
+ [T exp (= (1 — s/a)w’/2 + yw) dw].
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If the squares are completed in the two expressions and
= (1 + s/a)}(w 4+ v/(1 + s/a)), in the first integral,
= (1 —s/a)(w—v/(1 — s/a)), in the second integral,
the expression becomes
(415)  Ma(s) = ""[(1 + s/a) ™ exp (v¥'(1 + 8/a)7/2)Q((1 + s/a)™h)
+ (1= s/a) 7 exp (v'(1 — 8/a)7/2)Q((L = s/a) )],

The required result follows from the product of (4.14) and (4.15).
Let Z(x) and P(z) denote the functions

(4.16) Z(z) = (2r) exp (—2°/2),
P(z) = [ Z(y) dy.
TrEOREM 4.4. The first four moments of Y about the origin are
(417)  EY = vZ(v) + (v + DP(7))/e;
(4.18) E(Y") = (v + 67"+ 3)/4a” + 1;
(419) E(Y') = (vZ(7)/9)[(v" + 149" + 33) /" + 12/a]
+ [("" + 157" + 459" + 15)/40" + 3(v* + 1)/a]P(¥);
(4.20) E(Y*) = (v* + 28y° + 210" + 4204* 4 105) /164"

+ 3(v" + 67" + 3)/2a" + 3
and if m = 0 (z.e., v = 0) these reduce to
(4.21) E(Y) = E(Y*) = 0;
(4.22) E(Y?) = 3/4d” + 1;
(4.23) E(Y*) = 105/16a* + 9/24° + 3.

Proor. These results are obtained by expanding each of the expressions in
(4.10) as a power series in s, and combining the power series as indicated. As a
check against these computations, the moments were also obtained directly by
integration.

In the case where m = 0, (4.22) and (4.23) have been used by Pierson and
Holmes [12] to estimate pk and co” by the method of moments for measured
ocean wave forces on a segment of a circular piling. The variances ¢* and p* were
then estimated from the spectral density of the sea surface elevation. The two
sets of estimates were combined to yield estimates of ¢ and k for ocean wave
forces. Pierson and Holmes report that this procedure yielded reasonably con-
sistent estimates although certain legal restrictions on their data prevented the
publication of the numerical results. They do, however, show plots of the data
histograms versus the theoretical densities which exhibit very satisfactory
agreement,.
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The theoretical densities fitted to the data by Pierson and Holmes were
evaluated by numerical integration of an equation much like (4.2) except that
v Was zero.

In an appendix to their paper, Seymour Kaplan [5] obtained a Bessel function
representation for (4.7) which was formally capable of being used to evaluate
the density, but which presented certain difficulties in practice. The representa-
tion, (4.7), avoids most of these difficulties and with the tables of U(0, z) and
V (0, z), permits the probability density for v = 0 to be computed directly. The
probability density and distribution function of the standardized variable
obtained by dividing ¥ be the square root of (4.22),

(4.24) Z =Y(1+ 3/’

which has mean zero and variance 1.0 has been extensively tabled by Brown
and Borgman [20].

THEOREM 4.5. Let Z be defined by (4.24). Then, taking limits in quadratic
mean,

(4.25) lime,o Z = V|V|/o*3},

(4.26) limgaew Z = A4/p.

This implies that the limiting forms of the probability density are
(4.27)  limesofa(2) = 38n) 72 exp [- (£342]" — v)*/2],
(4.28) limgw f2(2) = ¢*7%/(2r)}

where the symbol =+ denotes a plus sign for z > 0 and a negative sign for z < 0.
Proor. Combining (4.24) and (4.13) gives

Z = (V|V|/2a0" + A/p) (1 + 3/4a")”
= V|V|/o*(4e" + 3)' + A/p(1 + (3/40"))}.
Since
EA = 0,
E(VY) = o*(v* + 6" + 3),
E(A*) =0,
it follows that
E|Z—V|V|/e®3 = (14 8/4¢")" + (v'+ 64" + 3) (4’ + 3) 7 — 37H)"—> 0
asa—0
and

E|Z — A = (' + 6 + 3)/(4a” + 3) + ((4a* + 3) 22 — 1)’ —> 0

asa—> «©,
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This demonstrates (4.25) and (4.26). Convergence in quadratic mean implies
convergence in law, so (4.28) follows immediately and (4.27) is obtained from
(4.5) after making the transformation, Z = W/s°3%.

THEOREM 4.6. For |y| >> |a|, (4.7) can be expressed in series form as

Fr(y) ~ (a/87)'¢ " [(y + )1 — 3/8(y + &)’ + 105/128(y + a)* + -]
+ (2/(y — @)1 + 3/8(y — a)® + 105/128(y — a)* + ---]].

Proor. This follows immediately from the corresponding expansions for
U(0, z) and V(0, z) given by [7], p. 689, equations 19.8.1 and 19.8.2.

6. The covariance of ®(z;, y1, 21, t1) and ®(x, , ¥s , 2 , t2). Since the covariance
relations for ®(z, y, 2, t) can be obtained by a simple direct method if m(z, y, z, t)
= 0, this special case will be considered before the general formulation. Let &, ,
Vi, and A, be the force, velocity and acceleration at (2, 1, 21, & ). Similarly
let &, V2, and A be corresponding properties at (22, ¥s, 2, ). The symbols
Tyo y Taa y Tva , a0d 74, Will be used to specify the correlation coefficients for the
pairs of random variables (Vi, Vs), (41, 4z2), (Vi, As), and (A4, V,) respec-
tively. The variances of Vi, V,, A, and A, will be denoted by o’, o2, pi’, and
p2’ respectively.

THEOREM 5.1. The covariance of ® and &, is given by

(5.1)  E[@®] = 01°05°G(120) + ck(8/7)}(p201Tva + proa’r w) + Epiperas
where
(5.2) G(r) = [(2 + 4*) arcsinr + 6r(1 — 7)Y/

Proor. Since m = 0, E®, = E®, = 0. It follows that the covariance of &, and
P, is

(5.3) E[@®)] = CE[(ViVa)|ViVa|] + ck{E[V, [Vi] As]
+ E[A,V, |Vo} + FE[A:4,].

Now
BV1|Vi| As) = E{V1|V1| E[A: | Vi}}
= (po/o1)r0aB{ Vi |V}
since
E{4:| Vi = (m/o)raaVs.
But

E{V?Vi/o} = 2[72°(2r) P exp[— 2*/21dx = (8/x)%

So E[Vy |V A2 = (8/7)%ee01rva. By analogy E[A,V:|Va]] = (8/r) o10ees .
The last two equations yield the middle term in (5.1). Since the expectation in
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the last term is, by definition of 74, ,

(5.4) E[A145] = p1pes

only the expectation in the first term remains to be computed. Let
(5.5) w(t) = V(t)/e.

Then

(5.6) G = E[(V1V2)|ViVell/ (a'ay”

= E[W1W2 |W1W2I]

is the covariance function of the stochastic process obtained by making the
zero-memory, non-linear transformation

(5.7) h(w) = w |w|

on the Gaussian process W(z, y, 2, t). The covariance function for W(z, y, z, t),
evaluated at the same two space-time points is, by definition, 7., .

A theorem due to Price [13] (see also Deutsch [1], pp. 15-26) can be used to
obtain G. For simplicity in notation, let 7,, = r in the following development,
and consider G as a function of r. The theorem referred to gives integral repre-
sentations for the various derivatives of G with respect to r as

(5.8) 3"G/ar = E[L™ (W1)h™ (W,)]
with
(5.9) B (w) = 8"h(w)/dw™.

Differentiating (5.7) gives
B (w) = 2 |w|
B (w) = 2sgnw

B (w) = 45(w)

where §(w) is the Dirac delta function. Hence

G(0) = 0;

(5.10) G (0) = 8/x;
G"(0) = 0;

and

(5.11) G"(r) = 16/[2r(1 — ).

The solution to (5.11) using (5.10) as boundary conditions is
(5.12) G(r) = [(4* + 2) arcsinr + 6r(1 — r*)¥)/x.
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It follows that E[(ViV:)|ViVs|] = o1°02°G(r.,) which provides the first term
in (5.1).
CoROLLARY 5.1. The series expansion of G(r) about r = 0 is given by

(5.13)  G(r) = = '[8r + 4*/3 + +*/15 + /70 + 5°/1008 + - - -]

Proor. The expansion follows immediately from the binomial expansion of
(1 — r*)* and the elementary series for arc sin r.

The function G(r) over the interval, —1 < r < 41, is quite close to a straight
line. At r = 1, the straight line, g;(r) = 8r/x differs from G(r) at r = 1 by only
15%. The cubic approximation

(5.14) gs(r) = [8r + 47°/3)/x

is remarkably accurate, differing from G(r) at r = 1 by only 1.1%.
TaeorREM 5.2. Let EV, = my and EV, = m.. The expected product of ®1 and
B, is given by

E[®®,] = czalzazzG( Y15 Ve To)

(5.15) + 4ckoi’ ool Z(v1) + 7P (11)]
+ 46]00'22[)17' awlZ(v2) + veP(v2)]
+ kzplpfraa

with

Gy, v, 1) = (144" (14 %") + dvver + 27

(5.16) ‘1= 2Q(n1) — 2Q(v2) + 4L(v1, 72, 7)]
+ (2/7)(1 = ") (yry2 + 3r) exp [— (7" — 2vver + 7")/2(1 — )]
+ (2/m) [n(1442") + 4 yarl exp (— 71*/2) P (o — 1 7) /(1 — )}

+ (2/7)i (1 + 7)) + 4] exp (— % /2)P((11 — var)/(1 — 1))
where

(5.17) v1 = my/or,
Y2 = my/os,
(5.18) L(a, b, R)
= [2[712r(1 — R exp [— (2 — 2uyR + *)/2(1 — R*)] dz dy

and Q(z), Z(z), and P(x) are defined (4.11) and (4.16).

Proor. Equation (5.3) still holds except that it must be interpreted as the
expected product instead of the covariance. Also (5.4) is still valid. Proceeding
as before

E[V1|Vi| A5] = E{V:|Vi| E[A, | V1]
(p2/01)roaBi{ Vi [Va| (Vi — ma)}
012P27'va[4Z(‘Yl) + 4vP(v1)].

(5.19)

Il
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By analogy
E[A,V: |Va]] = o orranl4Z(v2) + 4v2P(72)].

The last two equations supply the middle terms in (5.15). This leaves only the

first term to be evaluated. The differential equation approach by means of the

Price theorem can still be formulated, but the integration is very difficult. It is

better to evaluate (5.6) directly. The following lemma is useful in the evaluation.
Lemma 5.1. Let

- J(a, b, R)
(520) = [3f7 (x — b)(y — @)’ exp [— (2" — 2Ray + ¥*)/2(1 — R")]
2r(1 — RH " dz dy.
Then
J(a,b,R) = [(1 + a®)(1 + b°) + 4abR + 2RYL(a, b, R)
(5.21) + [(ab + 3R)/2x](1 — R*)} exp [—(a’ — 2abR + b°)/2(1 — R?)]
— [(a + ab® + 4bR)/(2r)'1Q((d — aR)/(1 — R*)*) exp [—d"/2)]
— [(b + a’b + 4aR)/(27)11Q((a — BR)/(1 — RB*)) exp [—b"/2].

Proor or LEmMa. This identity may be obtained as follows. The variables are
transformed to

= (¢ — Ry)/(1 — BY},
Y=Y
and z is integrated by parts. This gives
(522) J(a,b,R) = (1 = R)fZ (y — ) —8""/(2m)" + Q(8)(1 + ")}
€V (20) dy

where § = (b — Ry)/(1 — R®)*. This can be separated into two integrals in the
obvious way.
Since

& +y ="+ [(y — Rb)/(1 — BT,
the first integral, after a change of variable tow = (y — Rb)/(1 — R»* becomes
o (Aa/ (200 [T W™ exp [—w®/2] dw = 2750 4,8,

where 0 = (a — bR)/(1 — R*?* and A, is a function of a, b, and R.
The second integral arising from (5.22) can be expressed as

2 mms (Bn/(20)))[Z y"Q(8) exp [~y"/2) dy = 2meo BuTm -

Both sets of integrals, S, and T, , can be integrated by parts using the integra-
bility of « exp [—z%/2]. This reduces J(a, b, R) to a function of a, b, and R in-
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volving the functions @(z) and
(2m)7}7 Q(8) exp [—y*/21 dy = L(a, b, R).

This completes the proof of the lemma.
The function G(r) can be evaluated immediately.
By definition, (see (5.6)),

G(r) = [ [Zo (twrwe) hoywe| [2(1 — 7

cexp { —[(wr — 11)* — 2r(w1 — 1) (w2 — 72) + (w2 — 72)"] [2(1 — r*)] 7"} dwy dawe.
Ifz = wy — v,y = ws — 72, this becomes after some manipulation
G(r) = J(=v1, =v2,7) = J(=v1, 72, =7) + I (1, 72,7) — I (1 — 72, — 7).

The collection of like terms after substituting in the lemma identity gives (5.16),

provided the elementary identity (Zelen and Severo [18], p. 936)

L(=v, =v2,7) — L(—n1, 7, —=7) + L(v1,72,7) — L(v1, =72, —7)
=1—2Q(v1) — 2Q(v2) + 4L(v1,72,71)

is introduced.
If m = 0, (ie., vy = 0), then (5.16) reduces to (5.12) after substituting the
identity ([18], pp. 937, equation 26.3.19)

L(0,0,7r) = % + arcsinr/2x.

The function L(a, b, ) is tabled by Pearson [9] and a graphical procedure for
its evaluation is given by [18].
TureoREM 5.3. The series expansion of G(vy1, vz, r) about r = 0 1s

G(y1,72,1)
= 4vZ(m) + (1 + v )P(y)}{v:Z(v2) + (1 + ') P(v2)}
+ 16[{Z(71) + mP(v)HZ(v2) + veP(v2)}r
(5.23) + P(m)P(v2)r"/2! + Z(v1)Z(72)r"/3!
+ Y122 (1) Z(v2)r' /4!
+ (o = V(' = 1) Z(m) Z(y2)r"/5!
+ - + Hen—a(’Yl)Heu’—s(’Yz)Z(’Yl)Z(‘Yz)fn/n! + -]

where He, ,m = 0, 1, 2 - - - are the Hermite polynomials (Kendall and Stuart [6]
p. 155, Equation 6.23) and Z(z) and P(xz) are defined by (4.16).

Proor. The function, G(v1, vz, r), is defined by the second half of (5.6) as
being
ffm ffno (’w1W2) |w1w2|

+exp { _[(wl - ')’1)2 — 2r(wy — v) (w2 — v2). + (we — 72)2] [2(1 — 7'2)]_1} dw; dws.



RANDOM HYDRODYNAMIC FORCES ON OBJECTS 49

With the transformation u; = w; — v, for ¢ = 1, 2, this becomes

2o [ 2o (w4 v1) (ua + v2) [(a + 1) (w2 + v2)| f(ur, w2, ) duy dus

where f(u; , uz , r) is the bivariate normal density with zero means and unit vari-
ances. Now (5.24) can be interpreted as the covariance of the output of a non-
linear, zero-memory device characterized by h(u) = (v + v) |u + v|, which is
acting on the Gaussian stochastic process

u(zr,y,2t) = [V(z,y,2,t) — m(z,y,2t)/c(x,y, 2, 1).
Since
K(u) = 2u+4l;
K" (w) = 2sgn (u + v);
K" (w) = 48(u + 7);
R (u) = 48 (u + 7);

h(n)(u) — 46(1;—3)(“ +7).

The integrals from the Price theorem (see (5.8) and (5.9)) evaluated at r = 0
gives the coefficients in (5.23). In the first three coefficients, the integrals are
separated into an integral over (— , —v,;) and another over (—v;, ), for
i = 1, 2. Within these ranges the absolute values and sgn (u; + v:) can be
eliminated and the integrals evaluated by elementary methods.

The fourth and higher-order coefficients involve the Dirac delta function and
its derivatives. Hence setting r = 0,

G (v, 72,0) = [imn [Z0 46(ui + i) 2 (us) dus
16Z(v1)Z (v2).

The higher-order coefficients lead to the Hermite polynomials, through the
relation

G(”)('Yl y Y2, 0) = ?gl f:oo 45(”_8)(u{ + 'Yi)Z(ut’) dui
= 162 {(—1)"°Z" 0 (1)}

= 16H?==1 {Hens(v:)Z(v:)}.
(See Friedman [4] pp. 136-143).
6. The spectral density of (0 , ¥ , 20 , t). Suppose that V(¢) = V(xo, Yo, 20, 1)
and A(t) = A(xe, Yo, 20, t) are stationary Gaussian processes with constant
means m and 0 respectively. Let the covariance function matrix be

E [<V<j1>(t”) m) (V(t+h) —m, At + h))] - (ﬁ:j% g:%)‘

It will be assumed that the spectrum of ®(t) is absolutely continuous.
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The covariance function of ®(t), denoted by R44(h), can be obtained from
(5.15) and (4.1) as

R¢¢(h) = 6204G(77 Y, va(h)/o'z)
(6.1) + 4cka’plZ(v) + YP(¥)] [rva + Tav)
+ K’Raa(h) — p'K(EY)™

The relation, (3.3), will be assumed to hold in this section, so the middle term
in (6.1) is zero. Hence, substituting in (4.17),

(6.2) Rys(h) = o'G(v, v, Ros(h)/d") + K’ Raa(h)
— 4l vZ(v) + (¥ + 1)P(y)

If R,,(h) and R, (h) are known, the spectral density for ®(¢) may be obtained
by making the Fourier transform of (6.2). In principle this is possible, although
numerical integration may be necessary. An approximation that appears quite
accurate and greatly reduces the work is provided by (5.14) for the case of

= 0, and by analogous relations from (5.23) if m = 0.

Let {S(f)}*" denote

(SN} = [Za 8(f — g)S(g) dg
and forn > 2

(6.3) (SOI™ = [Z= 8(f — 9){S(g)} " ™" dg.

Thus {S( 1™ is the n-fold convolution of S(f) with itself. The expression
{S(f)}*" is understood to mean S(f).

If S,.(f) and S..(f) are the spectral densities of V() and A(t), and (5.23)
is represented, with v, = v, = v, as

G(v, 7, 1) = 2 0m0 Car”/nl
then at least formally, the spectral density of ®(¢) is given by

(6.4) 8ss(f) = 0* D na1 Cul Suu(H}""/mla™ + K*Saa(f).

The partial sums of (6.4) are relatively easy to compute and appear to give
reasonable approximations to Sg4(f) if v is close to zero. Questions of conver-
gence of (6.4) and bounds on accuracy of approximation have not been investi-
gated. An application of the preceeding theory to engineering problems is given
by Borgman [19].
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