GENERAL PROOF OF TERMINATION WITH PROBABILITY ONE OF
INVARIANT SEQUENTIAL PROBABILITY RATIO TESTS BASED ON
MULTIVARIATE NORMAL OBSERVATIONS!

By R. A. WusMAN
Unaversity of Illinois?

0. Summary. Z,, Z,, --- is a sequence of iid k-vectors with common dis-
tribution P. G* is a group of transformations Z, — CZ, + b, C ¢ G, where G
is a Lie group of &* matrices, dim @ = 1, G closed in the group of all nonsingular
k* matrices, and the totality of translation vectors b is a subspace of k-space
invariant under G. Let 9% be all N(, =) distributions, with = &* nonsingular. Let
U = (U, Uz, --+) be a maximal invariant under G* in the sample space,
v = ¥(8) a maximal invariant in 9T, where 6 = (u, Z). For given 61, 6, ¢ N
such that v(6;) 5 v(6:) let R, be the probability ratio-of (Uy, -+, U,). The
limiting behavior of R, is studied under the assumption that the actual distribu-
tion P belongs to a family § O 91, defined as follows: the components of Z;
have finite 4th moments, and there is no relation ZJ/AZ, + b'Z, = constant
a.e. P, with A symmetric, unless A = 0, b = 0. It is proved that & can be par-
titioned into 3 subfamilies, and for every P in the first subfamily lim R, = « a.e.
P, in the second lim R, = 0 a.e. P, and in the third lim sup R, = « a.e. P or
lim inf R, = 0 a.e. P. This implies that any SPRT based on {R,} terminates with
probability one for every P ¢ &.

1. Introduction. There are many testing problems where it is possible to elimi-
nate nuisance parameters by invoking the principle of invariance. Among the
parametric problems it is especially in problems involving normally distributed
variables that the success of invariance has been spectacular. Application of the
principle of invariance to nonparametric problems is no less important but will
fall entirely without the scope of this paper. We shall restrict ourselves to se-
quential tests of composite hypotheses, based on a normal model, where nuisance
parameters can be eliminated by using the principle of invariance. More specifi-
cally, we shall investigate the problem whether a sequential probability ratio
test (SPRT) based on a maximal invariant sequence terminates with probability
one. Throughout, it should be kept in mind that for the study of the behavior of
any SPRT one needs three distributions: two to define the sequence of prob-
ability ratios, whereas the third one is the “actual” distribution of the observa-
tions and need not belong to the model. In fact, the wider this last class of pos-
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TERMINATION OF SEQUENTIAL PROBABILITY RATIO TESTS 9

sible actual distributions is relative to which termination with probability one
can be proved, the better.

Let U = (U, Us, - --) be a sequence of random variables, and, for two given
distributions of U, let R, be the probability ratio of (U, ---, U,). In Wald’s
SPRT [13] of a simple hypothesis against a simple alternative the U, are in-
dependent and identically distributed (iid) and termination with probability
one is easy to prove for arbstrary actual common distribution of the U, (except-
ing only the distribution according to which the probability ratio of one ob-
servation equals 1 with probability one). However, if the sequence U arises from
the application of the principle of invariance, the U, are usually not iid and the
termination proof is incomparably more difficult. For several well-known se-
quential tests of composite hypotheses individual proofs have been given; e.g.
for the sequential ¢-test by David and Kruskal [4]; for special cases of the se-
quential F-test by Johnson [9] and Ray [11]; for the sequential x*- and T’-test
by Jackson and Bradley [8]. Results of greater generality, making various assump-
tions, have been obtained by Wirjosudirjo [15], Ifram [7] and Berk [1].

This paper offers a rather general termination proof, including the above
mentioned tests as special cases. The sequence {R,} of probability ratios is
computed under the assumption that the observations are iid multivariate
normal and the invariance group is a Lie group of affine transformations sub-
ject to some weak restrictions (Assumption A, Section 2). The actual common
distribution of the observations, under which the behavior of {R,} is studied,
may be almost completely arbitrary (family ¥, Section 2) although we have to
exclude certain distributions for which termination cannot be proved with the
present methods. This is somewhat unfortunate from an aesthetical point of
view, even though it probably matters little for applications. Note that also in
the existing termination proofs, mentioned above, certain restrictions have to
be placed on the actual underlying distribution. This is true also for the recent
proof, by Savage and Sethuraman [12], of termination with probability one of
an invariant SPRT in a nonparametric problem. It may be conjectured that
termination with probability one is valid for a wider family than &, but this
remains to be investigated. In any case, the restrictions are very mild. Certainly
every nonsingular multivariate normal distribution belongs to &.

The main tool used in the proof is the possibility of writing the probability
ratio of a maximal invariant as the ratio of two integrals with respect to Haar
measure on the group of transformations. This method seems to have been intro-
duced into statistics by C. M. Stein (for references see [14]). Whereas in the case
of a known group of transformations there are usually other methods available
for obtaining the probability ratio, in our case the group is almost completely
unknown, subject only to Assumption A, and the method of “integration over
the group” seems the only possible way to get a handle on the probability ratio.
In the ratio of integrals the asymptotic behavior of numerator and denominator
is studied, applying what amounts to the idea of Laplace’s method to integration
over a Lie group. It is Ifram’s success with Laplace’s method in [7] that led us to
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believe that it would work also in the present more general problem where
integration takes place over a Lie group.

2. The theorem: statement and examples. Throughout the random variables
Zy,Zs, --- are assumed to be iid k-vectors with common distribution P. The
joint distribution of Z; , Zs , - - - will also be denoted P. Let Z, = (1/n) X1 Z;
and S, = (1/n) 221 (Z; — Z,)(Z; — Z,)' be the sample mean and covariance
matrix of Z1, ---, Z,. We consider two families of distributions to which P
may belong. The first, denoted 9, is the family of all k-variate normal distribu-
tions N(u, Z), 2 nonsingular, indexed by § = (u, 2). The second is defined as
follows:

DerinITION. F is the family of all distributions P such that the components
of Z, have finite 4th moments and, if 4 is a k” symmetric matrix and b a k-vector,
then P(Z/AZ, + b'Z, = constant) = 1 implies A = 0,b = 0.

For any P ¢ § we denote by u the mean and by = the covariance matrix of Z; .
As in the case of the family 9% we put 6 = (g, =). If it is important to stress the
dependence of § on P we shall write 6(P). It follows from the definition of
¥, by taking A = 0, that 2 is nonsingular. It is also easy to see that any non-
singular k-variate normal distribution satisfies the conditions of P ¢ &, so that
F DN

Concerning the group G* of invariance transformations we make the follow-
ing assumption:

AssumpriON A. G* = GH, where (i) G is a Lie subgroup of GL(k, R) (i.e.
the general linear group of all real nonsingular &* matrices); (ii) G is closed in
GL(k, R) and of dimension =1; (iii) H is a group of translations of k-space
with k-vectors b, the totality of vectors b constituting a subspace invariant
under @; (iv) each transformation g* = (C, b), C &G, be H, transforms
(Z1,2Z,, +--) according to Z, - CZ, +b,n =1,2, --- .

Under the group G* let U = (U, Us, ---) be a maximal invariant in the
sample space, ¥ = v(6) a maximal invariant in 9. If P ¢ 9, the distribution of
U depends on ¢ only through v [10]. Let 6;, 6; € 9t be such that vy, # vz, where
vi = ¥(6:),% = 1, 2. Denote U = (U, ---, U,) and let pin be its density
under v;, ¢ = 1, 2, with respect to some common sigma-finite measure. Denote
Tn = p;n/p;.n and

(2.1) R, = r(U"),

then R, is the probability ratio at the nth stage of sampling based on the maximal
invariant U. A SPRT based on {R.,} continues sampling as long as R, is between
two fixed stopping bounds, taking the appropriate decision the first time one of
the bounds is exceeded. We shall call a SPRT based on {R,} also an ¢nvariant
SPRT.

TuEOREM. Let Zy, Z,, --- be iid with common distribution P ¢ &, G* satisfy
Assumption A, and R, be defined by (2.1). Then im R, = « a.e. P or = 0 a.e. P
according as ®(0) > 0 or < 0, where 6 = 0(P) and ® is defined in (3.9). For P
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such that $(6) = 0, lim sup R, = « a.e. P or lim inf R, = 0 a.e. P. Consequently,
any invariant SPRT terminates with P-probability one if P € 5.

Before proving this theorem it may be helpful to see how some of the well-
known sequential tests fit into this scheme.

ExampLE 1. (sequential ¢-test). Z,, Z,, - - - are iid normal (univariate) with
unknown mean p and unknown standard deviation ¢. Suppose the two hypotheses
are u/o = v and p/o = v, . The group of invariance transformations transforms
Zn—>cZy, ¢ > 0,s0 that H is trivial and G consists of the multiplicative group
of positive reals, which is a one-dimensional subgroup of GL(1, R) and closed
in GL(1, R). The conclusion of the Theorem applies then to the one-sided se-
quential ¢-test, whose R, equals the probability ratio of student’s ¢-statistic
computed from Z,, ---, Z,. The same conclusion holds for the two-sided se-
quential ¢-test if we allow ¢ to be <0 as well as >0,i.e. G = GL(1, R).

ExaMPLE 2 (sequential T°-test). The k-vectors Z;, Zs, -- - are iid N(p, Z)
and v = = 'u. Here H is trivial and G = GL(k, R). The conclusion of the
theorem applies then to the sequential test whose R, equals the probability
ratio of Hotelling’s T"-statistic computed from Z;, -+, Z, .

ExampLE 3 (sequential multiple correlation coefficient test). The k-vectors
Zy,Zy, -+ areiid N(u, 2) and v = o1(Z12223 21)} is the multiple correlation
coefficient between the first and the ¥ — 1 remaining variates, where X is parti-
tioned in the usual way. Here G consists of all matrices C that have the form
diag (¢, C), c real # 0 and Ca, (k — 1)® nonsingular. H consists of all translations
of k-space, so that the subspace of Assumption A (iii) is all of k-space and is clearly
invariant under @. The conclusion of the Theorem applies then to the sequential
multiple correlation coefficient test [7] whose R, is the probability ratio of the
multiple correlation computed from Z;, ---, Z,.

ExaMPLE 4 (sequential F-test). The k-vectors Z; , Z,, - - - are iid N (g, o’Ix);
each Z, is partitioned into Z., Zns, Zas, where Z,; is a ki-vector, ky + ks +
ks = k, with u partitioned similarly; u, is known to be 0 whereas ¢, p; and us
are unknown, and y = ' /o’. The group of invariance transformations con-
tains all translations Z.; — Z,; + b3, i.e. H consists of all translation vectors b
with by = b, = 0. The group of linear transformations G consists of all matrices
¢Q, ¢ > 0and @ = diag (Qu, s, Qs) With Q;; being k. orthogonal. If k-space
E* is written By X Ey X Es , with E; being k;-space, then @ leaves each E; in-
variant. In particular @ leaves invariant E; , which is the totality of all transla-
tion vectors b under H. Thus, Assumption A is satisfied and the conclusion of
the theorem applies to the sequential F-test, whose R, is the probability ratio of
the usual F-statistic computed from Z;, ---, Z,.

3. Proof of the Theorem. Several lemmas are needed whose proofs are
rather long. Instead of proving the lemmas first and then the theorem, we shall
turn it around and state each lemma without proof the first time it is needed,
while coming back to the proofs of the lemmas in Sections 4, 5 and 6. Further-
more, in order to avoid tiresome repetition, the phrase “a.e. P”’ will be suppressed
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whenever there is question of the asymptotic behavior of a sequence of random
variables.

Since we are concerned with the derivation of an expression for r, , the term
“sufficient statistic” is used in the following relative to the family 9 of multi-
variate normal distributions. For each n, let T, be sufficient for U", then the
probability ratio r, of U" equals the probability ratio of T, so that we may
denote the latter also by r,. The sequence Ty, Ty, --- (called an inveriantly
sufficient sequence in [6]), which was obtained by ﬁrst applying invariance,
then sufficiency, may also be obtained by applying sufficiency first and then
invariance (this is proved in [6]). That is, for each n let V. be sufficient for
Zy, +++, Zn, then T, is a maximal invariant obtained by applying the group
of invariance transformations to V, . For V, we choose the sufficient statistic

= (Za, Sa), defined in Section 2. Then the transformation Z, — CZ, +b
for each n, induces the following transformation of V.: Z, — CZ, + b,
S, — C8,C". It is readily checked that part (iii) of Assumptlon A guarantees
that H is a normal subgroup of G*. This implies that a maximal invariant can
be obtained by first applying H and then G [10]. Let the invariant subspace cor-
responding to H (Assumption A (iii)) be E; and write E* = E; X E,, where E;
has dimension /, 0 < I < k. Without loss of generality we may assume the co-
ordinate system chosen so that the first ! coordinate axes span E; and the re-
maining span E;. Let all vectors and matrices be partitioned according to
E1, E, . The invariance of E; under @ implies that for each C ¢ G the partitioned
C has Cy» = 0, i.e. C has the form

Cll 0

(3.1) C = I:Cu 022].
The transformations of H are of the form Z,; — Z,s + by, which induces on V,
the transformations S, — S, , Zn; — Zn + by, by By . A maximal invariant
under H is X, = (Zn, S ) and the transformation of X, induced by C ¢ G
is Zny — CuZm, S — CS,C’. A maximal invariant under this group of trans-
formations is what we have called T, , and the first object is to find an expression
for its probability ratio.

X, takes its values in a space X of points = (z, s), where z is an l-vector and
s a k” positive definite matrix, so that & is an open subset of E?, where ¢ = | +
(k(k + 1)/2). Put ¢ = u; (= projection of x on ;) and rename 6 by putting

= (£, Z), then if P ¢ % the distribution of X, is determined by 6. In fact,
letting from now on » = %k + 1 and denoting by ps, the density of X, with
respect to Lebesgue measure in &, we have

(32) pon() = cal B[~y o] D"
rexp [—(n/2) tr 27 — (n/2)(z — §)'23'(z — )],

in which vertical bars around a matrix denote the absolute value of the deter-
minant, and ¢, is a constant depending on n whose value does not interest us
since it will drop out when we form the probability ratio.
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The group G will temporarily be considered a group of matrices g of linear
transformations of & onto intself according to £ — gz. Let us be left Haar
measure on G. Then it is proved in [14], Theorems 2 and 4, that the probability
ratio of a maximal invariant under G can be written as

(3.3) ra(2) = [ Poya(g2)lglua(dg)/ [ po,n(g2)lglna(dg).

Returning now to our concept of G as a group of k’ matrices C, we observe that.
the connection between g and C is as follows: the transformation z — gz is.
given by (2, 8) — (Cuz, CsC’). From this we compute |g| = |C|**|Cu|. Before
substituting this and (3.2) into (3.3), it is convenient to introduce

(3.4) y¥(=z,0,0C)
= —3tr37'CsC’ — 3(Cuz — §)'Z0(Cuz — ¢) + In |C] — 3In |2

and

(3.5) Tua(z) = [ € IC7"|Culue(dC).
Then we can express r, as

(3.6) ra(x) = KJng,(2) /I ne ()

in which K is a constant depending only on 6; and 6, .

LemMma 1. For every x and 0, ¥ defined in (3.4) has a maximum when C varies
over G.

Define

(3'7) (0(27, 0) = IMaXceq 'l/(xy 0, C)'

LemMA 2. For every fixed 6, o( -, 0) given by (3.7) s continuous on X.

LemMA 3. Let N be an open subset of %, such that tr s, tr s~ and ||z|| are bounded
on N. Let d be the dimension of G. There exist K1(0), K3(0), both >0 (and de-
pendent on N') such that for x ¢ N

(3.8) Ki(0)n %" < Jap(z) < Ka(0)e™* ™.
Substituting (3.8) into (3.6) we find
(3.9) K %"*® < ry(z) < Kn’e™®®, zeN,
in which K, , K, are some positive constants (depending on N), and
(3.10) ®(x) = o(x, 02) — o(z, 61).

R, , defined by (2.1), also equals r,(X,). The asymptotic behavior of {R,}
will follow from (3.9) and the strong law of large numbers applied to {X.}. We
have, for P ¢ §, Z,; — ¢ and S, — Z, so that X, — 6. Choose the set N in (3.9) to
be a neighborhood of 8 then X, ¢ N eventually. We have from (3.9) for sufficiently
large n:

(3.11) ntIn (Km™) 4+ n*®(X,) < ntlnR, < ntIn (K:n®) + ne(X,).
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Letting n — « we get
(3.12) lim sup 7~ In R, = lim sup n*®(X,),
lim inf n* In R, = lim inf n}®(X,).

In the following it should be kept in mind that ®, defined in (3.10), is con-
tinuous by virtue of Lemma 2, and that X, — 6. We distinguish three cases,
according as ®(6) > 0, <0, or =0.

Cask 1. (0) > 0. Then the right hand sides of both equations (3.12) are «,
so that R, — .

Cask 2. #(6) < 0. Then the right hand sides of both equations (3.12) are
— o, 50 that In R, — — « and therefore B, — 0.

CasE 3. &(8) = 0. We shall show lim sup n*®(X,) = o or lim inf n*®(X,) =
— o, 80 that lim sup R, = o« or liminf B, = 0. To prove this, several more
lemmas are needed.

LemMA 4. The directional derivative ®'(zo, z) defined by

(313) ‘P’(xo , x) = ].im;lot_l[@(ibo + til!) - ‘I’(xo)]

exists for all zo £ X, x € E%, and v(0;) 5 v(0:) implies that for every zo , ®'(zo , - ) is
not identically equal 0.

LemMA 5. For any set of vectors ai, ---, am & E® such that the convexr cone
Co = {z: min;az > 0} has positive Lebesgue measure, we have

lim sup min; a7} (X, — 6) = »

if Ped.

LemwMA 6. If a real-valued function f on X has the property that there exists a cone
Co as in Lemma 6, and constants a, b > 0 such that f(x) = b ||z| whenever z & Cy
and ||z|| £ a, then lim sup n*f(X, — 0) = = f P ¢ .

LemMA 7. If ®(x0) = 0and ' (x0, - ) 5 0, and f is defined by f(x) = ®(zo + z),
then f or —f satisfies the condition on the function f of Lemma 6.

Case 3 can now be completed, using Lemmas 4 through 7. Remember that the
6; used in forming the probability ratio (3.3) are chosen such that v(6;) =
71 # v2 = v(6), so that Lemma 4 applies. In Lemma 7 take zo = 6, so that
f(z) = ®(6 + z), then the conclusion of Lemma 6 holds for f or —f. That is,
lim sup n'®(X,) = o or lim sup —n!®(X,) = . This finishes the proof of the
theorem.

REMARKS. 1. Case 3 is by far the hardest case to prove, i.e. there may be cer-
tain exceptional values of 8 (or rather of v: this follows from the invariance of ®)
for which the termination proof is much more difficult. This difficulty with ex-
ceptional parameter values is typical of all termination proofs that have been
given in specific cases (e.g. [4] [8]) as well as in the more general treatments [7]
[15]. In [15] there is the possibility of existence of an exceptional value of v for
which termination with probability one cannot be proved. In [7], in order to
assure termination at the exceptional value stronger assumptions have to be made
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than would be necessary otherwise. In the present paper, if it were not for Case 3
the definition of § (Section 2) could have been widened to include all P with
finite 2 (singular ¥ permitted). The further restrictions on P ¢ § are only used
to also cover Case 3 by ensuring asymptotic normality of n*(X a — 0) (see proof
of Lemma 5).

2. The existence of exceptional parameter values occurs even in a problem as
simple as proving termination with probability one of Wald’s SPRT based on
iid observations. There, n B, = Y; + --- + Y, , where Y;, Y,, - - - are iid real
valued random variables; i.e. In R, performs a random walk on the real line with
iid steps. It follows that In B, — «© or — « according as EyY; > 0 or <0. If
EyY; = 0 for some exceptional parameter value 6, then In E, does not converge
at all. Instead, for such 6, limsupln B, = « and liminfln B, = — «. This
same behavior of In R, at an exceptional parameter value has also been demon-
strated in tests like the sequential i-test, ete. [7] [15]. Unfortunately, in the
present paper that result is not quite achieved, since we have been able to prove
only that at an exceptional 6 (where ®(6) = 0), limsuplnR, = o or
lim inf In B, = — . It is not known at the present whether in general the ‘‘or”
can be replaced by “and”.

3. Since the proof of the theorem (including the proofs of the lemmas) is
rather long, it may be helpful to indicate some of the ideas in the proof. By (3.6)
ra(2) is essentially the ratio of two integrals given by the right hand side of (3.5),
written down for 6; and 6, . If this were integration in Euclidean space, the
asymptotic behavior of such an integral would be as exp [n max ¢] times a factor
depending only on n (Laplace’s method). It turns out that this is still essentially
correct if the integration takes place in a Lie group. Since, by (3.7), max¢ ¢ = ¢,
we get r.(&) ~ exp [n®(z)], using (3.10). Thus, in cases 1 and 2, r,(8) —> «© or 0
according as $(8) > 0 or <0. The same conclusion holds then for R, since
X, — 6 and ® is continuous.

In order to sketch the idea behind the treatment of Case 3, imagine the simple
situation where X, and 6 are real valued. The family of directional derivatives
(indexed by z) of Lemma 4 has then only two members: the left and the right
hand derivative of ® at zp . In Case 3, () = 0. According to Lemma, 4, one of
the one-sided derivatives at 6 is 520, say the right hand derivative equals a = 0.
Since X, — 6, the asymptotic behavior of n*fb(X ») isasa n’}( X, — 0) whenever
X. > 6. It is not hard to see that lim sup n*(X,. — 0) = o, so that
lim sup n*®(X,) = « if @ > 0, and lim inf 2*®(X,) = —» ifa < 0.

4. Proofs of Lemmas 1, 2 and 3. First we prove a useful matrix lemma, which
will be used repeatedly in the sequel.

LemMA 8. If A and B are k* matrices, A positive definite and B nonnegative
definite, then

(4.1) trB/tr A™' < tr AB < tr A tr B.

Proor. To prove the right hand inequality it is sufficient to prove
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trC AC tr A tr CC’ for any %’ matrix C (for then we can take C = B*). Let
xy, -+, x be the columns of C, then tr C'AC = ksziAz; . Now z/Az; <

maxllx,H < tr A ||z:|*, where )\mx is the largest eigenvalue of A. Summing over
i and noting Dt ||z.]|> = tr CC’, the result follows. The left hand side inequality
is a consequence: tr B = tr A_I(A BAY) < trd M tr (A*BA%), using the right
hand side inequality.

Proor or LEMMAs 1 AND 2. In the following it should be kept in mind that the
topology in @ is the relative topology of G as a subset of GL(k, R): this follows
from Assumptlon A (ii) that G be closed in GL(Ic R) [2] [3]. In other words, con-
sidering the %* matrices C' as vectors in E¥ , the topology of @ is the relative
Euclidean topology of E*". It should also be noted that, since GL(k, R) is not
closed in E a subset of G that is closed in G is not necessarily closed in E*
Lastly, in the proof of Lemmas 1 and 2, with ¢ defined in (3.4), it i 1s sufﬁ(nent to
glve the proof with = set equa,l to I} , if we replace 2 03t by €, 7427 by s and
=1tz by z (the group =~ 1@=! is isomorphic to @). Multiplying the right hand side
of (3.4) by 2, we put f(z, C) = —tr CsC’ — ||Cuz — ¢||* + 2In |C|. Let zo & % be
fixed and let N be a neighborhood of 2, such that tr s, tr s and ||2|| are bounded
above on N. Take any C ¢ @ then, for this C, tr CsC’ is bounded above on N,
using the right hand inequality (4.1), and so is [|Cuz — ¢|*. Hence, for this C,
f(z, C) is bounded below on N. It follows that there is a finite constant K such
that supeeef(z, C) = K,z eN. Let G4 = {C eG: f(z, C) = K for all z ¢ N},
then G; = @ and G is closed in @ (because f(z, -) is continuous on G) so that
G is closed in GL(%, R). Let {G;} be any sequence of matrices in Gi converging
to a k* matrix C. Since forz ¢ N, 2In |Ci| = f(z, C:) = K, wehave2In |C| = K
so that |C] > 0 and consequently C ¢ GL(k, R), and therefore C ¢ Gy since G, is
closed in GL(k, R). It follows that Gi is closed in E¥. Next, we shall show G
bounded. Let 1/a be an upper bound for tr s, z ¢ N, then, by the left hand in-
equality (4.1) (appliedto A = s, B = CC") wehave a tr CC' £ tr CsC'ifzeN.
Therefore, if e N, —atr CC’ + In ICCI = f(x (), and since f(x, C) = K if
zeN, CeG,wehave that —a tr CC’ + In |CC’| = K for C ¢ Gy . Now |CC'| is
the product of the positive, real eigenvalues of CC’, and each elgenvalue is less
than the sum of the elgenvalues, ie. <trCC'. Hence lec’| < (tr CC")*, so that
—atr CC'+kIntr CC' = K for C & Gy. This implies that tr CC’ is bounded on
G, . Since tr CC' is precisely the squared Euclidean norm of C as a vector in E"
we have proved that the closed set G is bounded, and therefore compact. It
follows that, for z £ N, the supremum of f(z, C) over all C ¢ G is a maximum,
proving Lemma 1. Lemma 2 now follows by a standard argument, taking N to
be compact and observing that f is continuous on N X Gy, and therefore uni-
formly continuous.

Proor or LEMMA 3. As in the proof of Lemmas 1 and 2 we may suppose
2 = I . Let N be as in the hypothesis of Lemma 3, then N is included in a com-
pact set, so that (-, 8) is bounded on N by virtue of Lemma 2. First we shall
prove the right hand inequality in (3.8). Using (3.5) and (3.7), we have
Tni(z) < exp [(n — k — De(z,0)] [ exp [(k + 1)¥(, 0, C)]|IC|™" |Cu| ne(dC) =
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exp [—(k + 1)e(z, 0)] exp [ne(z, 0)] [ exp [—3(k 4 1) tr CsC")|C[* |Cu| e(dC).
Since ¢ is bounded on N, the factor exp [—(k + 1)¢(z, )] is bounded on N by a
constant, which is part of K»(8) in (3.8). It remains to be shown that the integral
is bounded by a constant. Using the left hand inequality in (4.1) and the bound-
edness of tr s on N, there is a positive constant @ such that exp [—4(k + 1)-
tr CsC'] £ exp [—atr CC'] on N. Furthermore, |Cy| < (tr CuC1)"* by the
argument given in the proof of Lemmas 1 and 2. Since tr CuCy < tr CC’, we
have |Cu| < (tr CC)"*. We shall show now that for any a > 0, m = 0,

(4.2) [ e (tr €)™ |C]* ue(dC) < .

(Remark: If G were given to be the group, say G, of all nonsingular matrices
of the form (3.1), then the Haar measure p¢ in (4.2) could be written down
explicitly and (4.2) proved directly. However, G is only known to be a subgroup
of G’ so that ug cannot be given explicitly. To prove (4.2) anyway, a trick will
be used.) First, we claim that for any a > 0, m = 0,

(4.3) e 44 (tr AA)™ [] dasj <

where the integration is over all k* matrices A, with elements a;; , and the product
in the integral runs over all 7, j from 1 to k. It is easy to show (4.3), e.g. by intro-
ducing polar coordinates, and the proof will be omitted. Let d be the dimension of
G. If d = K’ then G must contain the component of the identity of GL(k, R).
The integral in (4.2) would therefore not be decreased if the integration is taken
over all of GL(k, R), which equals the integral over all &> matrices. Then (4.2)
follows from (4.3) (with m replaced by m + (k°/2)) after observing that
[CIF = (tr CC")**"*. Suppose now that d < k% Using the theory of Lie groups and
Assumption A (ii) that G is closed in GL(k, R), we can assert the existence at
the identity (i.e. Ix) of a local cross-section ([2], p. 110, [3], Theorem 6.5.2), say
®, of the left cosets GL(k, R)/@G. The matrices in ® will be denoted by B, and we
may choose ® so that tr BB and tr (BB’)™ are both bounded above on ®. Let
@ = {A = CB:C ¢ @, B ¢ ®}. Since B is the unique intersection of ® and the left
coset GB, every A ¢ @ has a unique representation A = CB, CeG, Be®. In
other words, there is a 1-1 correspondence between @ and G X ®. The set G is a
subset of GL(k, R) of positive k’-dimensional Lebesgue measure. Any integral
over @ with respect to Lebesgue measure can be evaluated as an integral over
G X ® after observing that [] dai; = |C|* ue(dC)»(dB), with » some measure on
® such that »(®) > 0 (this formula for the volume element can be derived by
making the transformation A — Ced with any’ fixed Cy ¢ G, which transforms
I1 da:; — |Co* T1 das; , but leaves pe(dC) and »(dB) invariant; cf. [14], proof
of Theorem 3): Let b be a common upper bound for tr BB’ and tr (BB')7,
B & ®. Then if A = CB, B ¢ ®, we derive from Lemma 8 the following bounds:
trCC’ £ btr AA and exp [—atr CC'] £ exp [—(a/b) tr AA"]. In order to prove
(4.2) it suffices to multiply the left hand side of (4.2) first by »(®) = f@ v(dB)
and to show that the result, which now may be considered as an integral over
G X ®, is finite. Writing the resulting integral now as an integral over @, and ob-
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serving the above derived bounds for the integrand, we obtain the following
bound for the integral:

bm J'a e—'(G/b)trA.A’(tr AA’)m H daij .

This integral can only be increased by extending the integral over all k* matrices
4, and then we know by (4.3) that the result is finite. This concludes the proof of
the right hand inequality in (3.8).

Next, we shall prove the left hand inequality in (3.8). In the following, 8 will
be held fixed and the dependence of various functions on 6 will be suppressed
(e.g. ¥(z, C) instead of Y(zx, 8, C)). For any = £ X, denote by C. any matrix
C & G that maximizes y(z, C), the existence of C; being guaranteed by Lemma 1.
Furthermore, denote zn(z) = (2n(z), sn(x)), with

(4.4) 2m(2) = Conz,  sm(z) = C.sCy .

Putting, temporarily, C* = CC,™ (the dependence of C* on z has been sup-
pressed), we can write ¥(z, C) = —3itr C*sn(z)C* — %|Cizalz) — ¢|°
+ In |C*| + In |C,|. In the integrand on the right hand side of (3.5), |C|™ |Cul.=
|C*I7 |CHi] |Ca ™" |Cant| and 1e(dC) = ue(dC*C.) = m(Ca)pe(dC™) in which
m( -) is the modular function. Now for ¢ N we have necessarily C, ¢ Gy , where
G, was defined in the proof of Lemmas 1 and 2, and shown to be compact. Since
also G1 C GL(k, R), |C,| and |C.u| as well as their reciprocals are bounded above
on G, so that |Cz|™ |Canl is bounded below by a positive constant, for « & N.
The same is true for m(C.), m being continuous. The lower bound for
|C[™" |Co| m(C=) may be absorbed in the constant Ky(8) on the left hand side in
(3.8). We integrate now over C*, but since C' runs through @, so does C*. We
now drop the asterisk and define

(45) Ym(z, C) = =} tr Csm(2)C" — § [|Cuizm(z) — ¢|* + I |C| + In |CLl.
Then Ym(x, I) = ¢(x), defined in (3.7), and we are seeking a lower bound for
(4.6) [ =211 |Cul ne(dC), zeN.

Let V be a compact neighborhood of the identity I in G on which there is a chart
[3],1.e. a set of coordinatesuy , - - - , ug such that the elements of C ¢ V are analytic
functions of the u; (remembering that d = dim @, and d = 1 by Assumption A
(ii)). Put w = (w1, - -+, ug) and assume, without loss of generality, that w = 0
at C = I .On V define f(z, -) by f(z, 4) = ¢m(z, C), so that f(z, 0) = ¢(z) is
the maximum of f(z, - ). V compact implies that tr CC” and (tr CC”")™ are bounded
on V, which, in turn, implies that |C|™ |Cy| is bounded below by a positive con-
stant on V. Furthermore, there exists b > 0 such that on V, ue(dC) > b H du; .
Absorbing all positive constants into K;(0) in (3.8) and restricting the integra-
tion in (4.6) to V, we are seeking a lower bound for f v exp [nf(x, u)] [1 du..
Define N, = {zn(z):2 € N}, z.(zx) given by (4.4), then it follows from Lemma 8
and the boundedness of trs, tr s~ and |jz]| on N that tr sn(z), tr sm(z)™" and
|lzm(z)|| are bounded on N so that N has compact closure. The function f(z, u),
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indirectly defined by (4.5) and depending on z through z. , on u through C, is
clearly analytic jointly in (Zm, %), Zm &€ Nm, u € V. The radial derivative of f
with respect to % is then an analytic function of (s , ) on the set N, X V which
has compact closure. Consequently, this directional derivative is bounded below,
say by —a, a > 0. It follows that f(z, u) = ¢(x) — a |ju|, z ¢ N. Thus, we get a
lower bound for our integral:

J‘V enf(:t.u) Hduz g enqo(a:) fV e—na[]u]] Hdu. — en‘o(z)n—d an e——a"u" Hduz .

The latter integral is > [ v ¢ ™ J] du. , which is a positive constant. This estab-
lishes the left hand inequality in (3.8) and concludes the proof of Lemma 3.
ReMARK. We could have bounded f little sharper by f(z, u) = o(z) — a |ju|?
for some a > 0. Then the factor 7~ on the left hand side in (3.8) would have been
n~%?, which gives a slightly better bound. However, it makes no difference in

the proof of the theorem.

5. Proof of Lemma 4. First we prove the following auxiliary lemma.

LEmMMA 9. Let A be a subset of some topological space, and let, for each o€ A,
f« be a function defined on the real line by fu(¢) = —a(a) + b(a)t — c(a)f’, in
which a, b, and ¢ are real valued functions on A with the following properties: (i) a
and ¢ are nonnegative; (i) there exist disjoint sets Ay, A, with Ayu 4, = A and
A; compact, such that a and b are continuous on Ay and ming.4, a(a) = 0, (iii) there
exists ap > 0 and r < o such that for all e € Ay, a(a) = aoand b(a)/a(a) = r.
Define Ay = {a: a(a) = 0} and put by = MaXaca, b(a). Then L = limtlot—l-
SUPqes fa(t) = bq.

Proor. We shall first reduce the proof to the case ¢ = 0. Denote temporarily
f*(t) = —a(a) + b(a)t, so that f* = f. . Note that A, is nonempty and com-
pact. Let ay & Ao be such that b(a) = by . Suppose the lemma proved for § fa*1.
Then, on the one hand, lim sup; ;0 supa fo(t) < lims;o¢ " supa fa*(t) = bo,
and, on the other hand, liminf,,o¢ " supafa(t) = liminf, 0t fa(t) =
lim¢ 40 (b(a0) — c(ao)t) = b(ap) = bo. Thus, the limit in the definition of L
indeed exists and equals b .

Dropping the asterisk, we shall in the remainder of the proof take f.(¢) =
—a(a) + b(a)t. Since sup. f« is convex, its one-sided derivative at ¢ = 0 exists.
In the first part of the proof it was shown that L = b, , so it remains to show that
L £ by.Take M > 0 arbitrarily. With ao and r defined in (iii) of the hypothesis of
the lemma, if aed, and £ > r + (M/ay), then ¢ fa(t) < —M. Hence,
lim sup; 404" SUPaes, fo(f) < —M, and .since M was arbitrary, limg,of -
SUDaca, fa(t) = —oo. It follows that L = lim; 0 Supacs, f«(¢) (here the sup is
really a max, by (ii) of the hypothesis). Let {¢,} be any sequence such that ¢, | 0,
and, for each n, let a, € A; maximize f(¢,). By the compactness of 4, we may
assume that a, — a*, say, with a® £ 4, so that a(a,) — a(a™), b(a,) — b(a™).
We have now L = liMpaw tn Fay(tn) = liMpse [t "a(an) + b(an)] = b(a™)
— liMpae b a(an). If lim a(a,) = a(a™) were >0, then L would be — «, con-
tradicting L = bo. Therefore, a(a*) = 0 so that a* & 4,. It follows that
L= b(a*) < MaXe4, b(a) = bo, which finishes the proof of Lemma 9.
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Proor or LeEMmA 4. For any zo € &, z ¢ E%, define
(5.1) oo (2o, ) = limg 08 (20 + tz, 0) — o(20, 0)].

In the course of the proof we shall show that the limit on the right hand side in
(5.1) exists. In that case, using (3.10), the limit on the right hand side in (3.13)
also exists, and

(5.2) & (20, 7) = so;z(xo , %) — 5,(T0, T).

Using the definition (3.7) of ¢, we compute

(5.3) o(@0+ tx,0) — (2o, 0) = maXcea [—aa(C) + bo(C)t — co(C)E,
in which (with ¢ defined in (3.4))

(5.4) —a(C) = (20,0, C) — maxese ¥(To, 6, C*)
(5.5) b(C) = =3 tr27CsC’ — (Cuzo — §)'Z1Cuz
(5.6) co(C) = 32'C1Zn Cuz.

From (5.1) and (5.3) we have then
(57) @ (2, ) = limy,0f " maxees [—as(C) + ba(C)t — co(C)E.

Suppressing the dependence of the functions as , be and ¢y on 6, we shall show that
these functions satisfy the conditions of Lemma 9. Condition (i) is obviously ful-
filled. Choose ao > 0 arbitrarily and define 4; = {C £G:a(C) = ag}, 4; =
G — A, . The set A4, is the set on which ¥(xo, 6, -) = constant, and it was shown
in the proof of Lemmas 1 and 2, section 4, that thls is a compact set. All functions
are obviously continuous and mincm1 a(C) = 0. Thus, condition (ii) has been
verified. The only part of (iii) that is left to verify is the boundedness of
b(C)/a(C), C & A, . Since this ratio is continuous, and the denominator bounded
away from 0, we only have to check that b(C)/a(C) remains bounded as
tr CC' — . In order to obtain bounds, Lemma 8 will be used repeatedly We
compute b(C) < ——-(Cuzo — ©)'ZCuz £ 2ol |2l tr =7t tr CuCu + i1 Izl -
tr =7 (tr CuCu) < ky tr CC' for some finite %; . It remains to be shown that
a(C) > ko tr CC” for some ko, > 0. For this purpose, consultmg (5.4) and (3.4),it
is sufficient to show that tr ZCsC’ — 21n |C| = ks tr CC’ for some k3 > 0 for
sufficiently large tr CC’. This follows from tr =~ 10sC" = (tr E)—l(tr sH™trec’
and 2In|C| £ kIn tr CC’ (see the derivation of |CC| £ (tr CC’ )* in the proof
of Lemmas 1 and 2). Thus, Lemma 9 applies, from which it follows that the limit
on the right hand side in (5.7) exists. This concludes the proof of the first part of
Lemma 4.
Applying the conclusion of Lemma 9 to (5.7), we obtain

(5.8) o¢[2o , ) = maxceq, bo(C)
in which be(C) is given by (5.5), and
(5.9) Gy = {CeG: (o, 0,C) = maxcrea ¥(T0, 6, CT)}.
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Observing that tr Z7'CsC’ = tr C'=7'Cs = 2.4 (C"=7'C)sjsi; = s (C'Z7°C) issis
+ 2 X ici (C'Z7'C) 44 , we may write be(C) = vs(C)’z, where the components
of the vector #(C) ¢ E* consists of the components of —C{;Eﬁ‘((}uzo — ¢) and
the elements of —%C’Z7"C on and above the diagonal (the latter counted twice).
Thus, according to (5.8), ¢s (%o, ) = maxXgeeq, vo(C )'z. This may be considered
as the value at z of the support function of the set Vs = {95(C): C & Gy} in E* [5].
Since vy is continuous on the compact set Gy , Vi is compact. We shall prove the
second part of Lemma 4 by contradiction. That is, we shall assume &'(zo, -) = 0
and then show that v(61) = v(6:). For convenience we replace subscript 6;
wherever it occurs by 4, ¢ = 1, 2. If (2, -) = 0 then, according to (5.2),
@' (20, +) = ¢ (20, ). This is equivalent to saying that the two compact sets
V1 and V; have the same convex hull. It is not hard to show that, under those
circumstances, V1 and V; must have a point in common. Thus, there exist
Cie G, 1 = 1,2, such that v1(C1) = v2(C2). In view of the definition of ve(C),
this equality becomes the two equalities

(5.10) CYZ7C = CY'Zy7'Ch,
(5.11) CiuZii(Cruzo — &) = CouZan(Cenzo — §2)

in which 8; = (¢;, Z:), ¢ = 1, 2. Throughout, it should be kept in mind that, for
2 = 1, 2, C; has the form (3.1). Then (5.10) implies

(5.12) C{,uzl_.ilcl,u = CouZ2iiCan
and, using (5.12), (5.11) reduces to
(5.13) Crufr = Canle .

Putting Cs = C,Cy™", which is in @ since C; and C; are, it is easily verified that
(5.10) and (5.13) are equivalent to Z; = 032,05 and {2 = Cs 11 . In other words,
if g is the transformation § — g corresponding to C , then 6; = g6, so that 6; and
6, are on the same orbit; i.e. v(6;) = v(6:). Q.E.D.

6. Proofs of Lemmas b, 6, and 7.

Proor oF LEmmA 5. Throughout this proof it will be assumed that P ¢ §. First
we mvestlgate the hlmtmg distribution of n (X — 0) =n}(Zn — ¢, S,, — 2).
We write 72S, = n 7 2.1 (Zi — u)(Z: — ) — 2 (Zn — p)(Zn — p,) Since
n (Z — ,u) has a limiting (multivariate normal) distribution, = 7w — u)-
(Zn — 1)’ — 0 in probability. Therefore, the limiting distribution of (X, — 0)
(still to be shown to exist) is the same if we replace n.Sp by D1 (Z: — u)(Z: — u)’.
Furthermore, nZ., = 2.¢ Za , where Z; is the vector of first I components of
Z; . Let Y; be the g-vector (¢ = I + k(k + 1)/2) consisting of the first I compo-
nents of Z; and the k(k ~+ 1)/2 elements of (Z; — u)(Z; — ). Then the limiting
distribution of n}(X, — 6) is the same as the limiting distribution of

w31 (Y —6). Now Yy, Yy, - -+ are iid with mean 6, and it follows from the
definition of & (Section 2) that the covariance matrix of Y; is finite and non-
singular. Consequently, the limiting distribution exists and is nonsingular multi-
variate normal, say Q.
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Define, for any real ¢, A = {min; ain'(X, — 6) > ¢ for infinitely many n}.
Clearly, A, does not depend on any finite number of the Z; , and since Z; , Z, , - - -
are independent, PA. = 0 or 1, by the zero-one law. We shall show that PA. = 0
is impossible. Define A, = {min; a;/m}(Xn — 8) > ¢ for some m = n} and
B.. = {min; a/n}(X, — 6) > ¢}, then B., C A | A..If we would have
PA, = 0, then PB,, — 0. But by hypothesis Co = {z: min; a;'z > 0} has positive
g-dimensional Lebesgue measure, and then so has C. = {x: min; a;z > ¢} for
every c. It follows that PB.,— QC. > 0, contradicting PB., — 0. Hence, PA. = 1
for every ¢, implying the conclusion of Lemma 5.

Proor or LEmMma 6. Denote X, — 8by Y, , then we have for any real ¢, using
Y, — 0 and Lemma 5

(6.1) P{for infinitely many n, ||Y,]| £ ¢ and min;a/n'Y, > ¢} = 1.

Let e = max; ||ai|™, then min; a;'z > ¢= ||z|| > ec. From now on we shall take
¢ > 0. Observe that min; a;'n’z > 0 = min, i’z > 0 = z ¢ C . Consider now,
for each n, the string of implications [|| V.|| < a and min; a/ntY, > ¢]=[|| V.|| < a
and Y, £ Coand |n?Y,| > e = [f(Y,) = b | V.| and ||n}Y,|| > ec]= n*f(Y,) >
bec]. Using (6.1), we have then P{n*f(¥Y,) > bec for infinitely many n} = 1.
Since be > 0 and ¢ > 0 arbitrary, the conclusion of Lemma 6 is proved.

Proor or LEmmaA 7. We shall first show that given ¢ > 0 and any compact set
K C E* there exists t, > 0 (f may depend on 8) such that

(6'2) I¢0,(