A TECHNICAL LEMMA FOR MONOTONE LIKELIHOOD RATIO FAMILIES

By J. PFANZAGL

Universität zu Köln

Let α be a σ -algebra on an abstract set X. Let \mathcal{O}/α be an ordered family of p-measures which is dominated by a σ -finite measure μ/α . Let p be a density of $P \in \mathcal{O}$ with respect to μ . \mathcal{O} is said to have monotone likelihood ratios, if there exists an α -measurable map $T: X \to R$, defined \mathcal{O} -a.e., such that for each pair P', $P'' \in \mathcal{O}$ with P' < P'' there exists a nondecreasing function $H_{P'P'}: R \to \bar{R}$ such that

(1)
$$p''(x)/p'(x) = H_{P'P''}(T(x)) \qquad \mu\text{-a.e.},$$

whenever p''(x)/p'(x) is defined.

In this formulation, the μ -null set on which (1) is violated depends on P', P''. The purpose of this note is to show that for MLR-families the densities can always be chosen such that (1) holds except on a fixed μ -null set. This leads to a simplification in many proofs connected with MLR-families, (e.g. those connected with the theory of uniformly most powerful tests).

LEMMA. If $\mathfrak O$ is a MLR-family there exists a dominating σ -finite measure μ_0 and a coherent system of densities with respect to μ_0 , such that for each pair P', $P'' \in \mathfrak O$ with P' < P'' the ratio p''(x)/p'(x) is a nondecreasing function of T(x) with the exception of a fixed μ_0 -null set. In other words: There exists a subset $X_0 \subset X$ such that $P(X_0) = 1$ for all $P \in \mathfrak O$ and such that p''(x)/p'(x) is a nondecreasing function of T(x) for all $x \in X_0$ for which this ratio is defined.

PROOF. As \mathcal{O}/\mathcal{C} is dominated by a σ -finite measure μ/\mathcal{C} , according to the lemma of Halmos and Savage (see Lehmann, p. 354, Theorem 2), there exists a σ -finite measure $\mu_0 = \sum_{n=1} c_n \cdot P_n$, $P_n \in \mathcal{O}_0$, which is equivalent to \mathcal{O} . The densities of P/\mathcal{C} with respect to μ_0/\mathcal{C} can be assumed to depend on x only through T(x) (Lehmann, p. 48, Theorem 8). Hence for the following proof we might change the p-space: instead of $(X, \mathcal{C}, \mathcal{O})$ we will consider $(\mathcal{C}, \mathcal{C}, \mathcal{C})$, where \mathcal{C} is the Borelalgebra on \mathcal{C} and \mathcal{C}/\mathcal{C} is the family of p-measures induced by \mathcal{C}/\mathcal{C} through T (i. e., $Q(B) = P(T^{-1}B)$). Let ν_0/\mathcal{C} be the p-measure induced by μ_0/\mathcal{C} . Then ν_0/\mathcal{C} is equivalent to \mathcal{C}/\mathcal{C} . If q(t) is a density of Q/\mathcal{C} with respect to ν_0/\mathcal{C} , p(x) := q(T(x)) is a density of P/\mathcal{C} with respect to μ_0/\mathcal{C} .

As $\mathfrak G$ is separable, $\mathbb Q/\mathfrak G$ is separable with respect to uniform convergence, i. e., there exists a countable subset $\mathbb Q_0 \subset \mathbb Q$ such that for each $Q \in \mathbb Q$ there exists a sequence $(Q_n)_{n=1,2,...}$ with $Q_n \in \mathbb Q_0$ such that $Q_n(B) \to Q(B)$ uniformly in $B \in \mathfrak G$. (See Lehmann, p. 352, Theorem 1.)

For each $Q \in \mathbb{Q}_0$, we fix a version, say q, of $dQ/d\nu_0$. For convenience we choose

Received 8 August 1966.

q finite everywhere. For Q' < Q'', Q', $Q'' \in Q_0$, we have

(2)
$$q''(t)/q'(t) = H_{Q'Q'}(t)$$
 vo-a.e.

Let $B_{Q',Q''}:=\{t: q''(t)/q'(t)\neq H_{Q'Q''}(t)\}$. Then $\nu_0(B_{Q',Q''})=0$. Hence for $B_0:=$ $\cup \{B_{Q'Q''}: Q', Q'' \in \mathbb{Q}\}$ we have $\nu_0(B_0)=0$. We have (2) for all $t \not\in B_0$.

For each $Q \in \mathbb{Q}$ we choose a monotone sequence $(Q_n)_{n=1,2,\cdots}$, $Q_n \in \mathbb{Q}_0$, converging uniformly to Q. Uniform convergence of measures implies ν_0 -convergence in the mean of densities which furthermore implies ν_0 -a.e. convergence of a subsequence. Taking this sequence instead of the original one we obtain: To each $Q \in \mathbb{Q}$ we may choose a monotone sequence $(Q_n)_{n=1,2,\cdots}$, $Q_n \in \mathbb{Q}_0$, such that $(q_n)_{n=1,2,\cdots}$ converges ν_0 -a.e. We will show that $(q_n(t))_{n=1,2,\cdots}$ converges for all $t \notin B_0$. As $(q_n)_{n=1,2,\cdots}$ converges ν_0 -a.e., the limit is a density of Q with respect to ν_0 . Hence there exists $t_0 \notin B_0$ such that $\lim_{n\to\infty} q_n(t_0)$ is positive and finite. Let $t \notin B_0$ be arbitrary. Without loss of generality we may assume $t_0 < t$. If $(Q_n)_{n=1,2,\cdots}$ is increasing, we have by definition of B_0 :

$$q_{n+1}(t_0)/q_n(t_0) \ = \ H_{\mathcal{Q}_n\mathcal{Q}_{n+1}}(t_0) \ \leqq \ H_{\mathcal{Q}_n\mathcal{Q}_{n+1}}(t) \ = \ q_{n+1}(t)/q_n(t).$$

Hence $q_n(t)/q_n(t_0) \leq q_{n+1}(t)/q_{n+1}(t_0)$. This relation also holds if $q_n(t) = q_{n+1}(t) = 0$. As $(q_n(t)/q_n(t_0))_{n=1,2,...}$ is nondecreasing, it converges (possibly to $+\infty$). As $(q_n(t_0))_{n=1,2,...}$ converges by assumption to a positive and finite value, $(q_n(t))_{n=1,2,...}$ converges too. Hence $(q_n)_{n=1,2,...}$ converges for all $t \not \in B_0$. We define for $t \not \in B_0$: q(t): = $\lim_{n\to\infty} q_n(t)$. By this procedure we obtain for each $Q \in \mathbb{Q}$ a fixed version of the density defined in \bar{B}_0 .

fixed version of the density defined in B_0 .

It remains to show that q''(t)/q'(t) is nondecreasing in \bar{B}_0 for all Q', $Q'' \in \mathbb{Q}$ with Q' < Q''. Let $(Q_n')_{n=1,2,\dots}$ and $(Q_n'')_{n=1,2,\dots}$ be monotone sequences out of \mathbb{Q}_0 , converging uniformly to Q' and Q'', such that the corresponding sequences $(q_n')_{n=1,2,\dots}$ and $(q_n'')_{n=1,2,\dots}$ of densities converge to q' and q'', respectively, everywhere on \bar{B}_0 . As Q' < Q'', there exists n_0 such that $Q_n' < Q_n''$ for all $n \geq n_0$. If $Q_n' \uparrow Q'$, $Q_n'' \downarrow Q''$, this is trivial. If $Q_n'' \uparrow Q''$, there exists n' such that $Q' < Q_n''$ for all $n \geq n'$, because $Q_n'' \leq Q' < Q''$ implies that q''/q' as well as q'/q_n'' are nondecreasing; together with $q'' = \lim_{n \to \infty} q_n''$ this implies q' = q'', which contradicts Q' < Q''. If $Q_n' \uparrow Q'$ the assertion holds with $n_0 = n'$; if $Q_n' \downarrow Q'$, there exists n'' such that $Q_n' < Q_n''$ for all $n \geq n''$. Then the assertion holds with $n_0 := \max(n', n'')$. For t_0 , $t_1 \not\in B_0$ and $t_0 < t_1$ we have

$$q''(t_0)/q'(t_0) = \lim_{n\to\infty} q_n''(t_0)/\lim_{n\to\infty} q_n'(t_0) = \lim_{n\to\infty} q_n''(t_0)/q_n'(t_0)$$

$$\leq \lim_{n\to\infty} q_n''(t_1)/q_n'(t_1) = \lim_{n\to\infty} q_n''(t_1)/\lim_{n\to\infty} q_n'(t_1)$$

$$= q''(t_1)/q'(t_1),$$

whenever q''(t)/q'(t) is defined for $t = t_0$ and $t = t_1$. Therefore q''/q' is nondecreasing for $t \not\in B_0$. Hence p''(x)/p'(x) = q''(T(x))/q'(T(x)) is a nondecreasing function of T(x) for $x \not\in T^{-1}(B_0)$.

REFERENCE

LEHMANN, E. L. (1959). Testing Statistical Hypotheses. Wiley, New York.