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0. Summary. Bartlett [1] obtained an asymptotic relation connecting the
periodogram of a linear process and the periodogram of the residuals with uni-
form spectrum in the case of one dimensional stationary time series, and using
this relation he studied the asymptotic properties of the periodogram.

In this paper we obtain some asymptotic relations between the co-periodo-
gram and quadrature periodogram of the residuals in the case of a stationary
Gaussian vector process. The covariances of the co-periodogram and quadrature
periodogram have also been obtained. Two inequalities connecting the variance
and the bandwidth of the cross spectral estimate have been derived.

1. Introduction. Let z'(t) = (21(t), z2(f)) (¢ = 1,2, - -+ ) be a two-dimensional
wide sense stationary discrete vector process where the mean value of z'(t)
is assumed to be identically zero.

The spectral matrix of z'(¢) is

(1.1) F(N) = (fs(\) (4,5 =1,2)
where

(1.2) fe\) = (2m) 7 D220 e®Ru(t) = c(N) + ig(N),

(1.3) Ru(t) = Eln(j + t)z(5)].

c12(\) and gi2(N) which are respectively known as co-spectral density and quadra-
ture spectral density are assumed to be absolutely continuous.
Let 2'(t) = (2y(2), 22(8))(t = 1,2, - -+, N) be a realization of size N from
a real, stationary, Gaussian two-dimensional vector process considered above.
Let us define the complex cross periodogram as

(14) M) = (2eN) T 20 e ma(8)] | 2200 e ma(2)]
= (2r) " 2len € "BE (1) = co\) + igi’(N)
where ¢{3’(\) and ¢f3’(\) are respectively known as co-periodogram and quadra-
ture periodogram, and
(L.5) RE(t) = N XS a(j + 0)2(j), O0StsN-1L

2. Cross periodogram analysis. Assume the process to be non-deterministic.
Then the Zasuhin’s multivariate representation of the linear process of the
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elements of the vector z'(¢) is given (Whittle [5]) by
(2.1) 2i(t) = 2o i=1 Dommoo itmet,t—m G=12)

where all €’s are uncorrelated and each is distributed normally with mean zero
and variance unity.
Consider the quantity

(2.2) Jiz(\) = (2eN) 200 e a(2).

Substitute the expression for z;(¢) from (2.1) in (2.2) and assume that b,
tends to zero exponentially; then following Bartlett [1], it can be shown that

(2.3) J1:(N) ~ 231 AN 1e(N)
and
(2.4) FPMN) = J1.(\)J2z(N) ~ S h:z()\)hz,t'(h)f%).c(k)

where kfi(\) = D buje.
As N — «, we have
S 2

(2.5) E(fP ) ~ fu\) = (2r)7 Llaa a(N)he,a(N).

The relation (2.4) can be separated into real and imaginary parts as follows.
Let

(2.6) RN ha,r(N) = Hi(N) + iHu(N),
) = ) + dghtl(N)
where
HE(N) = X bugbaris cosN(G — §') and Hiu(N) = 2j.5 busbar s sin NG — 7).
Then from (2.4) and (2.6) we have
@7) PO = TiXr HEMERM) — Hir (Wi,

(2.8) ¢ = X v HE NN + Hir(NelaN)]:
From (2.7) and (2.8) it follows that

(2.9) E(c®N) ~ ea) = (2m)7 2 HO(N),

(2.10) E(@®(\) ~ ge\) = (2r)7 2Zia Hu(M).

The two equations (2.7) and (2.8) give asymptotic relations between the co-
periodogram and quadrature periodogram of the process and co-periodogram and
quadrature periodogram of the residual series.

TurorEM 1. Let z:(t) (i = 1, 2) have the representation (2.1). Let go(w) =
P (w) + 2acly’ (w) + a’fs2’ (w) be the periodogram of the series x1(t) + azy(t) and
Ka(w) = f&(w) + 2aigd’ (w) — d’fi2’ (w) be the cross periodogram of the series
21(t) — axa(t) and z:(t) + azy(t) for all a. Then



CROSS PERIODOGRAM 595

(i) Cov (ga(wr), ga(w)) = O(N*),  Ki= E(&') —3 =0,
= O0WN), Ki0;

ON7Y, K.=0,
= 0N, K0

(iii)  Cov (ga(wr), Ka(w2)) = O(N?), Ki=0,
= 0N, Ki#0.

(2.11) (ii) Cov (Ko(wr), Ka(ws))

Proor. Define
J(w) = (2eN)7F 20 (aa(t) + ama(t))e™
so that
(2.12) go(wn) = J (w)J *(wi)
— 2rN) T S S e BunBimetimetr a6

where Bin = (bum + abam). Applying the results of Bartlett [1], p. 278, to the

periodogram g,(w:) of 21(¢) + axe(t), it can be shown that result (i) follows.
Similarly one can proceed to show the results (ii) and (iii) of (2.11).
CoroLLARY. Let zi(t) (¢ = 1, 2) have the representation (2.1). Then

(i)  Cov (¢ (wr), ¢’ (ws)) = O(N?), K,y=0,
=0(N"), Ki#0;
(213) (ii) Cov (¢ (w), ¢§3(we)) = O(N?), K,=0,
=0N"), Ki#=0;
(iii) Cov (¢ (w1), ¢ (wn)) = O(N7?), K,=0,
=0(N"), Ki#0.
Proor. From Theorem 1, we have
4a® Cov (c$3”(w1), ¢’ (ws))
= Cov (ga(w1), ga(w) — Cov (ga(wr), fi1* (ws))
(2.14) — &" Cov (ga(w1), fi2’(wz)) — Cov (Fi’(w1), ga(ws))
+ Cov (fi1’(wr), fit’(w2)) + @’ Cov (i’ (wn), f52° (w2))
— a® Cov (fi3(w1), ga(wz)) + a’ Cov (f52° (wr), fi1” (we))
+ a* Cov (12" (wr), fi2 (ws)).

From Theorem 1 and Bartlett [1] it follows that each term of (2.14) is O(N?) if
K. = 0and O(N7?) if K, 5 0. Hence the result (i) of the corollary.
Similarly one can proceed to show the results (ii) and (iii).
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The results (i), (ii) and (iii) of the above corollary can also be obtained even
without assuming the representation z;(¢) given in (2.1).

From (2.9), (2.13) and (2.10), it follows that co-periodogram and quadrature
periodogram do not provide consistent estimates of co-spectral density and
quadrature spectral density. Hence, to ensure consistency, we consider estimates
of the form (Rosenblatt [4])

(2.15) ch(N) = (27)7 2oty k(Bat)RY’ (1) cos i\,
dh(\) = (21) ™ iy k(Bxt)R’(2) sin i\,

where the function %(z) is assumed to be continuous and square integrable
(Parzen [2], [3]). Bw is a sequence of constants such that By —»0as N — «. We
can choose By = M, where M is known as the truncation point. It has to be
noted that gi2(\) is zero at A\ = 0.

Parzen [3] has shown that for algebraic type of kernels k(z), the bandwidth
of the estimates is given by

(2.16) B(c(N)) = B(gz(N)) = [2x/M [ k() dz]

which is inversely proportional to M.

We now derive two inequalities.

THEOREM 2. Let algebraic type of kernels k(x) be chosen to estimate the co-spectral
density and quadrature spectral density. Then

(2.17) (ch(\)) " var (c(N)) -B(cia(N)) = N7'G(k),
(2.18) (gh(\) ™ var (gf:(N))-B(g:(N)) = N™'G(k)
where

G(k) = [r [ K (2)(1 + d)/f k(=) da]
and
d=1 if N=0 or %=
=0 otherwise.
Proor. From Rosenblatt [4], we have the variance of the estimate (2.15)
(2.19) var (ct2(N))
= (M/N)[fu(N)fa) + ch) — ¢(\)] [ K(2) dz-(1 + d)-

Using the coherency inequality fu(N)fz(N) = ci(\) + gl(N\), we can write
(2.19) as

(2.20) (V) var (ch(\)) = (2M/N) [ K (z) dz(1 + ).

The result (2.17) then follows immediately from (2.20) and (2.16). Similarly
one can proceed to show the result (2.18).
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For designing the cross spectral estimate, one can consider the equality sign
of (2.17) and (2.18) and proceed as in the case of single time series (Parzen [3)).
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