MATRICVARIATE GENERALIZATIONS OF THE MULTIVARIATE
¢t DISTRIBUTION AND THE INVERTED MULTIVARIATE
t DISTRIBUTION'

By James M. DickeEy
Yale University
1. Introduction. Consider the random p-vector,
t = vy,

where v ~ x,°/Q, independently of the vector y ~ N(0, P™'). As is well known
(Cornish, 1954), ¢ has the multivariate ¢ distribution with density,

(L1)  p = T + pICGE) Q™ |PIQ + (P *+»"

(Traditionally, @ = ».) It is also known (Ando and Kaufman, 1965, eq. (6¢))
that ¢ has the representation,

t~ (U¥) 7,

where U*UY = U~ W(P,» 4+ p — 1), the Wishart distribution with covariance-
matrix parameter P and v + p — 1 degrees of freedom, independently of the
vector x ~ N(0, QI,), with I, denoting the p X p indentity matrix. In this
note we study the random p X ¢ matrix 7' with density proportional to

Q + T'PT|™",

where @ is now a q¢ X ¢ matrix. Such a density appears in Kshirsagar (1960),
Olkin and Rubin (1964, eq. (4.2)), Tiao and Zellner (1964), Geisser (1965),
Kiefer and Schwartz (1965, eq. (4.1)).

We give several representations for T (Section 3), a Bayesian application
involving a new conjugate prior distribution (Section 4), and a matric
generalization (Section 5) of the random vector r = [1 + (1/Q)t' P ™% (Raiffa
and Schlaifer, 1961, p. 259), which is, in turn, a generalization of the scalar
sample correlation coefficient r from two independent univariate normal popula-
tions.

2. Notation and preliminaries. From Wishart’s density for a symmetric -

p X p matrix U, if N > 3(p — 1), M > 0, then

(2.1) [oso |UP 2 etr (—=MU)dU = |M|7T,(\),
where
(2.2) I,(\) = 7PN — 4) - TN — 3p + 3),
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and, as thoughout the paper, A > 0 indicates that a matrix A is symmetric and

positive definite.
Recall (Anderson, 1958) that for a partitioned matrix A = (44),7,7 = 1, 2,
if Ay and Ay are nonsingular,

(2‘3) lAl = IA11-2l'lA22l = IAlll'lA22~1|y

where as usual, Aii.; = Ay — AGAT A ;.
By equation (2.3) and the density (1.1) of the multivariate ¢ distribution,
ifpXp M>0andm > p,

Jro IM 4+ & dt = 2""T[F(m — p))/T(3m)-|M|~" "
Hence, for the p X ¢ matrix T, if m > p + ¢ — 1,
(2.4) k(m,p,q) = [moa |l + T'T|™"dT
= [wall, + TT[™dT = 7™ TJ4(m — p)l/To(3m).
Since |I, + T'T| = |I, + TT'| and dT = dT’" = 10, dt; , then
(2.5) k(m, p, ¢) = k(m, ¢, p).

Given a symmetric p X p matrix 4, let A? denote any measurable p Xp
square root of A, A’A¥ = A. If A is nonnegative definite, A = S°, where
S = BA'B’ with A = BAB’, B'B = I, and A diagonal. If 4 is positive definite,
S is the only symmetric square root of A, and then, since 74} = § (4¥)7,
every p X p square root is of the form,

(2.6) A'* =80, 00 =1,

3. The Matrix T.

TarEOREM 3.1. Let T be the random p X q matriz,
(3.1) T = (UMYX,
where U ~ W(P,m — q), P > 0,m > p + q — 1, independently of X, the row
vectors of which are independently N (0, Q) dustributed, @ > 0. Then T has the
denstty,

(32)  pr = [k(m, ¢, PIIPI""MQITPPT + TQTTT

= [k(m, p, PI"1QI"""|P|""1Q + T'PT|™".

Proor. The joint densities of U and X and of U and T satisfy the propor-

tionalities,

puox « (U™ P2 ey [-3(PT'U 4+ XQT'X)],

pur < [U" PP etr [-3(PT + TQ'T")U).
By equation (2.1),

pr « [Pt 4+ TQ'T'| ™",
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The normalizing constant follows with linear transformations from (2.4).
Equation (2.3) implies the second form of pr .

The particular random matrix denoted by 7 in the theorem will be continually
referred to below. Merely for temporary notational convenience, we shall say
that T 4+ C, with C a constant matrix, is T'(P, @, C, m) distributed (hence
T~T(P,Q,0,m) ~ T(P,17'Q,0,m), scalar I > 0).

The limit in distribution, T — (P¥)™X,M¥, asm — «, where Q = mM and
X, has independent standard normal entries, follows immediately from the
definition (3.1).

The two forms of the density in the theorem imply

(3.3) T~ TW@Q" P10, m).
CoROLLARY 3.1.
(3.4) T~ Y(VH™,

where V.~ W(Q', m — p), independently of Y, the column vectors of which are
independently N (0, P™) distributed.
Consider the special case of T(P = I,,Q = I,),

(3.5) Ty = (Us) ' Xo,
where the row vectors, and thus the column vectors, of X, are independent and
standard normal, and Uy ~ W(I,, m — ¢). Then

T ~ (P¥)7'TQY.
Since the density of T is invariant under constant orthogonal transformations,
we can write
(3.6) To~ (U)X,
where Uos? is a square root of the form (2.6) for constant orthogonal 0. Olkin
and Rubin (1964, Theorem 4.2) obtain the density of (U &)X, for particular

choices of random orthogonal O.
The matrix ToTs is of interest for its importance in multivariate testing.

Equations (3.5) and (3.6) (with (3.3)) imply
(3.7a) ToTy ~ (Up ’)_IWO( Uoi)_1 ~ YiV,Y

where Wy ~ W(I,, q), and where given arbitrary ¢ X ¢ Z: > 0,
Vi~ W(Z1, m — p), independently of Y;, the row vectors of which are in-
dependently N (0, Z,) distributed. If ¢ = p, T'oTs has the density,

(3.7b)  prory = [Bp((m — @)/2, ¢/2)17| ToTo | ? VI, + ToTo| ™",
where
B,(a, b) = I‘,,(a)I‘,,(b)/I‘p(a + b)-

The density (3.7b) is that of a particular multivariate beta distribution, generaliz-
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ing the F distribution. It was derived as the density of T,Ty by Olkin and Rubin:
by Hsu’s lemma (Anderson, 1958, p. 319),

prory = [0 /To(3)| ToTo | “* 7 0, .

Geisser (1965) observed that if U = |Q|/|Q + T'PT|, then U ~ Ugpm—s
(Anderson, 1958, p. 194), a product of beta variables.

Consider the usual estimate p X ¢ B = 811812 of a matrix 8 = 21121, of regres-
sion coefficients, where (p + ¢) X (p + ¢)S~ W(Z,»),Z2>0;v > p+q — 1.
Kshirsagar (1960) proved that B is T distributed,

B~ T(Zn 5 222.1 y ﬁ, v + q).
Noting that B’ is also T distributed, we obtain two more representations for
T.Ifm > p + 29 — 1,
(3.8) T ~ S — P21, 4

where S ~ W(Z, m — q),

2= (5 o4 amrn)
S Q+ ZuP'Zy)’

and Xy, is arbitrary (2 > 0, by Lemma 3.1 below). Also, by (3.3), under a
different partitioning,

(3.9) T ~ 8uS1 — ZuQ,

but now,

s = (Q_l 21 >
Zn P A ZaQZn/’
The remainder of Section 3 concerns marginal and conditional distributions

of submatrices of T', which are also T distributions. In particular, the marginal
distribution of a row or column vector of T is multivariate .

Lemma 3.1. If
(X _(An Axp
X= (X2>’ 4= (An A22)’

and Ay s nonsingular,
X'AX = (X1 + AT 4uXe) An(Xy + ATARX,) + XJ/An.X,.

Nore. If A& = M, AT A = —MMs; and Apg = M.

Proor. Writing X = (21, -+ , %), & = (Z;:, 1), complete the bilinear
form in 4 , z; in the i, jth entry of X’AX = (z/Ax;).

TaeoreMm 3.2. If T' = (X., X.), the conditional distribution of X, given
X, is T with parameters Py , Q + X2 PpniXz, =P PuXe, m. If T = (T, T:),
the conditional distribution of Ty given Ts is T with parameters (P~ + T:Qn Ty) ™,
Qu.z, TzQz_lem y m.
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Proor. Apply the lemma to the second form of the density (3.2) of T to
recognize the functional form of the conditional density of X; . Apply the first
statement in Theorem 3.2 to T” to obtain the second statement.

TaeoreM 3.3. If T' = (X1, X1), X:p:i X g, the marginal distribution of X»
18 T with parameters P4 ,Q,0,m — p1 . If T = (Ty, T), T; p X q; , the marginal
distribution of T» ts T with parameters P, Qun, 0, m — q1 .

Proor. Either, using the Lemma 3.1 and Theorem 3.2, perform the integra-
tions with respect to X1, T in the joint density of 7', or merely refer to the syn-
thetic representations in Theorem 3.1 and Corollary 3.1.

‘4. Bayesian applications. Let the ¢ sets of independent random p-vectors
Zia, ,%n; ,J =1, -+, ¢, have normal experimental distributions with propor-
tional unknown covariance matrices (;H)™' and unknown mean vectors g; .
The resulting likelihood function for the I;H and p; is proportional to

(41) IGLPVPHY" etr {—3{A; 4+ N(&5 — w) (& — w)1H)

= (W)™ H™ etr (=324, + (M — X)L(M — X)'H},
where z; = Zn xjn/Nf’ A.i = Zn (xjn - ij)(xjn - j),7 X = (11-21 " iq);
M= {"17 k), N = ZNi)a'ndL = diag (Ni;).

Bayesian inference from the likelihood function (4.1) is of interest, for ex-
ample in discrimination problems. Stein (1963) has posed the question of
Bayesian inference about [ = (Iy, - -+, l;) when N is small.

We suppose the prior conditional distribution of H given M andl = (i, - -- , )
to be formal W(D™, »),

paiaa < [A(D)*|H|""™" etr (—1DH),
A(D) = |D| i |D| >0
=1 if |D| = 0,

where D could be a function of M and I. Such prior distributions in the context of
an unknown covariance matrix have been considered by Savage (1961), Geisser
and Cornfield (1963), Dempster (1963), Stone (1964), Ando and Kaufman
(1965).
Given B, S = 0, let
D=B+ (M —C)S(M —C)
(B, 8 possibly functions of 1), and suppose

pa s = [A(B)“PAGS)P*-AD)]",
S0
prai1 < [A(B)“PPAS)P|H|C ™" etr (—3DH).
Then we have the formal prior conditional distribution of H and M given i:
M~ T(B™,87,0,0);
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the column vectors o, of MS* are independent given H, and
oj|[H~N(r;, HY), €8 = (m, -, m);
H~W(B"v—yq); H|M~WD? ).

The posterior density of H, M, | is proportional to the product of pg, i, and
the likelihood (4.1),

paci 1 ws < |H|"TP etr (—3DH)[AB) AT ) o1
where
D= B+ (M — C)Syu(M — 1),
with
S =8 +1L,
C: = 8,7Y(8C + LX),
Bi =B+ > LA;+ (C — X)'88,'L(C — X).

pm.u | 1,»s 18 of the same form in H, M as pg,x |1 with B, S, C, v replaced by
B, , Sy, C1, v + N, respectively. Hence px,x | : isa conjugate prior distribution
in the sense of Raiffa and Schlaifer (1961). It possesses the same lack of flexi-
bility in the stochastic dependence between H and the u; as do the conjugate prior
distributions of Raiffa and Schlaifer and of Ando and Kaufman for a multi-
variate normal process.

The posterior density of [ is given by the proportionality,

priee & ([AGB)IT7/IBA| T 70) (AGS) /18" *(ML ™) pu
under the assmuption that v + N > p +~¢ — land B, S8 > 0.

5. The matrix R.

THEOREM 5.1. Let R and R, be the random p X q matrices,
(5.1) R = (PY)"RQ",
(5.2) Ry = [(Us + XoXo)'7'X,

where, as in equation (3.5), the entries of X, are independent standard normal var:-
ables, distributed independently of Ug ~ W(I,, m — q),m > p + q — 1. Then
R has the density,

pr = [k(m, ¢, p)I" [P P|QIP"PT — RQTR™ TV,
(5.3) P —RQR >0,
= [k(m, p, I Q""" "P|"*|Q — R'PR|™"7"",
Q — R'PR > 0.
Proor. It suffices to derive the distribution of Ro. Let U = U, + XoXy,
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then successively obtain the densities of U given X,, U and X,o, U and R,
and R, ,

pro = lk(m, g, )], — RoRo|" """, I —RiRy > 0.

The conditions, I, — RoRy > 0 and I, — Ry Ro > 0, are both equivalent to the
condition, k3; < 1,4 = 1, --+, min (p, q), where Ry = 0,KO,, O, and O, each
orthogonal, and K = (ky;), kij = 0 for z # j.

Notice the absence of a prime on the square root in the definition of R, (5.2),
in contrast to that in the definition of T (3.5).

The following list of representations for R, in terms of random matrices de-
fined in Section 3 can easily be verified and extended by the reader. A variety of
representations for R and T are implicit.

By (5.3) and (5.2),

(5.4) Ro~ Yo(Vo+ YdYo)'T,

with the entries of Y, standard normal variables, and Vo ~ W(I,, m — p).
By (5.2) and (5.4)

Ro~ [(I, + ToT0)'T'To
(5.5) ~ Tol(I, + Ty To)T™
(To~ [(I, — RoRs)'T"Ro
~ Ro(I; — R/R)'T).
By (3.8), (3.9), and (5.5),ifm > p + 2¢ — 1
Ro~ [(Sh + 81582 ) 17 Sz
~ Sii8ul(I + SuSiSu) 1™
~ [(Ip + S18582) " S1Sz
~ Sul(S5 + SuSi)*T7,

where (p + q) X (P + @) S~ W(Ipiqg, m — Q).
We have the analogue of (3.7),

RoRd ~ [(Us + Wo)'T"Wil(Us + Wo)' T
~ Yy(Vi+ Y'Y)7Y
If ¢ = p, RoRy has the density,
(5.6) prery = [Bp((m — ¢q)/2, /2T |RoRo | PRI — RoRy |7,
I — RoRy > 0.

The density (5.6) is that of a particular multivariate beta distribution, generaliz-
ing the beta distribution. It was obtained as the density of [(U, + wol™-
Wol(Us + Wo)¥I™ by Olkin and Rubin (1964).
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Theorems completely analogous to Theorems 3.2 and 3.3 can be derived for
the marginal and conditional distributions of submatrices of R.

Acknowledgment. The author is grateful to a referee for pointing out that an
asserted representation for 7' was invalid.

Note Added in Proof: C. G. Khatri (Ann. M ath. Statist. 37 468-479, Theorem 4)
has obtained the density of 7’7", thereby generalizing (3.7b).
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