EXPANSIONS OF ¢t DENSITIES AND RELATED COMPLETE INTEGRALS!

By James M. Dickey

Yale University

1. Introduction and summary. A class of alternatives is here presented to
Fisher’s (1925) expansion of Student’s ¢ density function. These expansions in-
volve Appell’s polynomials; and hence, recurrence schemes are available for the
coefficients.

Complete integrals of products of ¢ densities are of interest as Behrens-Fisher
densities (viewed as Bayesian posterior distributions: Jeffreys, 1940; Patil, 1964)
and as moments of Bayesian posterior distributions (Anscombe, 1963; Tiao and
Zellner, 1964). Asymptotic expansions of complete integrals, obtained by term-
by-term integration of these expansions, are favorably compared with those ob-
tained from Fisher’s expansion. Although expansions of complete integrals of
products of multivariate ¢ densities can be developed from these expansions by the
methods of Tiao and Zellner, the resulting coefficients are practically as compli-
cated as the Tiao and Zellner coefficients; methods will be published soon (Dickey,
1965) for reducing the dimensionality of such integrals for quadrature.

The paper concludes with a numerical study of the integral expansions.

2. Expansions of ¢ densities. In 1880, Appell obtained the power series repre-
sentation,

(1) e (1 —er) ™ = 300 Ay(z)€, lex| < 1,

considered as the exponential transformation of the power series for —x —
€ log (1 — ex). Since the left-hand member of (1) satisfies the differential
equation, (1 — ex) dy/dx = ey, with y(0) = 1, the polynomials 4, , sometimes
called Appell’s polynomials (Erdélyi, 1953, p. 256), satisfy the recurrence rela-
tion, 4,'(z) = z[Ad,1(z) + Ap_1(z)], with 4o = 1. Hence,

(2) Ay(x) = x”Zi;o Bz’

where

(3a) Boo = 1,

and for p > 0,

(3b) (p+ 8)Byps = (p+ 58— 1)Bp1s + Bpaer-

If p > 0,B,0 = 0.
By expanding the right-hand side of dy/dx = (1 — ex) 'exy, obtain the
recurrence relation, 4,'(z) = zA,1(z) + 2*4,3(z) + --- . Hence for p > 0,
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TABLE 1

Coefficients of the Appell polynomials
Ay(x) = 2D ¢ Bpx*

S

0 1 2 3 4 5 6

0 1

1 0 12

2 0 1/3 1/8

3 0 1/4 1/6 1/48

4 0 1/5 13/72 1/24 1/384

5 0 1/6 11/60 17/288 1/144 1/3840

6 0 1/7 29/160 59/810 7/576 1/1152 1/46080
(30) (p + S)Bp,s = _Bp—l,s—l + Bp——2,8—-1 -

The coefficients B,,, for p < 6 appear in Table 1.
We apply (1) to the kernel of the density of the ¢ distribution with » > 0
degrees of freedom. With e = 2/(v + 1), h = (v + 1)/v, and z = 3ht’. We have

(4) (1 + 772 = exp (—3h8) Do Ap(—30)2°(v + 1)77, £ < ».
More generally, given n > 0, and p > 0, with b = (n + p)/,
(5) (1 + 7)™ = exp (—30") 220 Pd—3(n/n)fIn™, & <,

where >, Py(z)n ?is the product of the expansion of ¢ *(1 — 2n"z) ™ accord-

ing to equation (1), times the binomial series for (1 — 2n " z) ®™~""* times the
series for ¢ **/".

Depending on the purpose of the expansion, 7 and p can be chosen so that the
sum of the first few terms on the right-hand side in equation (5) (for example,
the first term exp (—3At’)) approximates (1 4 »~£%) "+’ in some sense.
Fisher’s (1925) expansion of Student’s ¢ distribution is based on the choice
n=vwvp=0(h=1).

For some applications it is desirable that, as in Fisher’s expansion, the nor-
malizing constant of the ¢ density,

[B(3, 3v + LA = l/fi,o (1+ y )T g

where B denotes the complete beta function, be expanded and included as a
factor to yield an approximating normal density with correction terms. Thus,
by term-by-term integration of the right-hand member of (5), followed by
formal division of series, we obtain an asymptotic expansion for the ¢ density,

(6) [B(3, 3+ %)VQ]—I(I + V-1t2)—(v+1)/2
~ (h/2m)" exp (—4h) 5 Qol—3(n/) 7,

where
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TABLE 2
Coefficients of the Quotient polynomials

Q@) = 2 Vo

r
» 9 1 2 3 4 5
S 7 8 9 10 11
0 1.000000
1 | —.7500000 | .000000 | 1.000000
2 | —.2187500 | .000000 | —.7500000 | 1.333333 5000000
3 07031282 | .000000 | —.2187500 | —1.000000 | 1.625000 | 1.333333
1666667
4 .02880504 | .000000 | —.07031282 | —.2916667 |—1.609375 | 2.200000
2.763889 | .6666666 | .04166667
5 05888299 | .000000 | .02880504 | —.09375043 | —.4726565 |—2.691667
3.130208 | 5.366666 | 1.857639 129229292 | .008333333
6 | —.03316466 | .000000 | .05888299 |  .03840671 | —.1262231 | —.7937505
—4.643663 | 4.507024 | 10.17422 4.495062 715277 05555555
00138889

Qu(z) = Py(a) — 7 255 Qp(2) Pyy(T).

P,(T) denotes the polynomial P,(x) with the powers z” replaced by the quan-
tities [—(1 + o/n)] ' T(r + %). The coefficients of @,(z), based on the Appell
expansion (4) (n = v 4+ 1, p = 0), are given in Table 2 for p < 6.

Trivial modifications to equations (4), (5), and (6) yield expansions of a
multivariate —¢ density: a quadratic form replaces ¢*; and » + k, where k is
the dimensionality, replaces v 4+ 1. The quotient series for the multivariate
analogue of (6) is given by

Qo(z) = Po(x) — [T(3k)]™ 2257 Qo) Pop(T4),
where T indicates substitution of [—(1 + p/n)] 'T'(r + ik) for z". Tiao and

Zellner (1964) make use of the multidimensional analogue of essentially Fisher’s
expansion.

3. Complete integrals. The expansions (4), (5), (6) interest us as tools to calcu-
late integrals of the form,

(7) 2 g Tl + v l(t — )7 4,

where ¢(t) is a polynomial of low degree and the l,’s permit differences in
scale.

With K = 2, (7) can be interpreted as the normalizing constant and moments
of the posterior distribution for a normal mean u, obtained as follows. One ob-
serves the sufficient statistics , s, N — 1 in the presence of an independent
joint prior distribution for u and o°, respectively Student-t (parameters »;,
L,z,) and ¢/xa (2 =d + N — 1,1, = »N/(c + Ns — s), 22 = ).

ve > 0,
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Again with K = 2, interpreting (7) as a convolution of two centered ¢ densities,
we obtain the density of the Behrens-Fisher random variable, d = #; sin # —
s cos 6, where # and # are independent Student-f{ variables with degrees of
freedom »; and v, . The appropriate substitutions are

T — x = d,
(8) L = 1/sin®6, I, = 1/cos’ 6,
g =BG, b1+ H/W)BG, I + 1) /)T
Withg = i, v = v,and l, = [,k = 1, - - - , K, there is the obvious interpreta-
tion of the integrand in (7) as the likelihood function for a sample of size K from

a ¢ distribution. In practice, K is likely to be too large for one to easily make use
of products of K many series.

By applying the expansion in equation (5) (say) to each of the K factors in
the integrand of (7), completing the square in ¢ in the exponent, and then
integrating the resulting expansion term-by-term, we obtain an asymptotic
expansion for (7),

(9) CZq . rag=0Ng.ar,oeiaxt & - - - g K,
where
C = (2n/h)" exp [—3A 7 Bucihuhi(ze — 2;)’]
with he = L(n + p&)/vs and kb = Zh; , and where N, 4,,... o5 is the expectation,
E g(y)mPral—3(m/v)l(y — )],

given that y is normally distributed with variance 1/4 and mean & = Zhszi/h.
(Recall that if 7 is a positive integer, BE(y — &) = = 2T'(r + %) = 1-3-5
e (2r = 3)(2r — )BT

Starkey (1938) has demonstrated the asymptotic property for expansions of
the Behrens-Fisher densities based on Fisher’s expansion. Her method of proof
applies in the more general context. See also Wallace (1958).

4. Numerical results.
4.1. One t-kernel factor. A numerical study of the approximation to (7) by
the first few terms of (9) began with consideration of the following simple ex-

ample.
(10) JEa (1 4+ ) = 8,

S, a partial sum of the form, S, = Y% 5, . The example (10) was chosen largely
because of the availability of the closed form, B(r + %, v — r)y™*, for the left-
hand side, by which nominal true values 7' were calculated. The relative error
R, = (8p — T)/T was taken as a measure of accuracy.

Using the Appell expansion (4), we have

8 = 2°(v + 1)7((v + 1)/20) " 220 Bpo(=1)PVT(r + p + s + 1),
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TABLE 3

Accuracy of the Appell expansion of the moments of a t kernel
(d Ee denotes d X 10¢)

r=0 r=1 r=2
14
»* Rp» 1’* Ryp» »* Ryps

1 7 —3E-3

2 7 -6 E-5

3 —3 E-6 9 —.08

4 3B-7 9 —.02

5 . 3E-7 . —-5E-3 10 —-.17

6 0 < Ry* <5 E-7 . —6 E-4 10 —.03

7 (round-off accuracy . —2E-4 . -8 E-3

8 attained) —6 E-5 . —2E-3

9 . -2 E-5 . —7E-4
10 . —9 E-6 —2E4
11 . —4 E-6 —8 E-5
12 7 -2 E-6 —3E-5
13 9 —8 E-7 —-1E-5
14 9 —2E-7 —4 E-6
15 . -1E-7 . —1E-6
16 . 2 E-7 . —-1E-7
17 . 0 < Rp* < 5 B-7 (round- . 2 B-7
18 off accuracy attained) 10 5 E-7
19 11 —2E-6
20 11 -7 B-7
21 . —4 BE-7
22 . —4 E8
23 . —2E-8
24 2 B-7
25 0 < R,*» < 5 E-7 (round-
26 off accuracy attained)
65 .

by which the first 16 terms 8, were calculated for the values » = 0, 1, 2 and
v = 2r + 1(1)35(5)65. For each r and », the absolute value of 8, was found to
decrease monotonically in p until a term &, , p* = p™(», 7), for which |8,+| and
|R,+| were minima, and after which |8,] and |R,| increased astronomically.
Hence, an appealing stopping rule is to retain terms up to and including the
smallest term in absolute value. The terms do not alternate regularly in sign.

The values found for p* and R, appear in Table 3. Notice the anticipated
improvement of accuracy with increasing » and the surprising near independence
of p™* from ». The growth of p* with r is accompanied by an increase in |R,+| and
an increase in |R,| for each fixed p.
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TABLE 4
Accuracy of Fisher’s expansion of the moments of a t Kernel (d Ee denotes
d X 10°)
r=1 r=1

v P* Rp‘ RB’

3 4 —.13 —.20

4 4 —.03 —.05

5 4 —.01 —.02

6 4 —4 E-3 —8 E-3

7 5 5E-3 -3 E-3

8 5 6 E-3 —2E-3

9 5 —1E-3 —9E-4
10 4 —1E-3 —5E-4
11 3 —1E-3 —3E4
12 5 2 E-3 —2E-4
13 3 —6 E-4 —1E-+4
14 3 —4E-4 —8 E-5
15 4 —3E4 —6 E-5
16 4 —2E4 —4 E-5
17 4 —2E-4 -3 E-5
18 4 —2E-4 —2E-5
19 4 —1E-4 —-1E-5
20 4 —1E4 —-1E-5

When the right-hand side of (10) was based on the normalized form (6) of
the Appell expansion (4), it was found to yield largely equivalent accuracy for
the same numbers of terms with r = 1. Of course, when » = 0, the first term of
any such normalized analogue is the true value 7.

The approximation (10) based on Fisher’s expansion was examined for r = 1
and v = 3(1)20. The va,lues for p* and R, are displayed in Table 4, showmg

< 5and R, = 107". This contrasts with p* = 9 and up to three more sig-
mﬁca,nt figures with (10) based on the Appell expansion. Table 4 displays also
the six-term accuracy R’ delivered by (10) based on the Appell expansion,
showing |R,+ = |Rs'| for » > 6.

4.2 Two t-kernel factors. We consider also the asymptotic double-series
expansion for the Behrens-Fisher densities given by (9) with the substitutions
(8). The relative errors Ry of approximations of the form, Z(ql,qz)a‘B day .0, , WETE
calculated for various parameter values » , 12, 6, d, and using nominal true values
obtained by Patil’s (1964b) recurrence relations for Behrens-Fisher densities.

The following algorithm for choosing the index set B was found to give respec-
table accuracy in a modest amount of computer time. M, and M are fixed upper
bounds for ¢1 and g, . For successive values of ¢ = 0,1, ---, let ¢, = 0, 1,
] Q(ql)’ until Q(ql) <Oor ()1 > Ml CIf Q2 > Q(‘h - 1)7 or ‘541&2[ > I8QI—1:42|7
Or |8g,,4,] > [8g;.0,-1], OF @2 > M, then choose Q(¢qy) = ¢ — 1.

Values of RB5 obtained with (9) based on the Appell expansion (4) (Pi, =
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TABLE 5
Accuracy of approrimations to Behrens-Fisher densities (d Ee denotes d X 10¢)
Appell c har?
Appell A Fisher’s
1 Vs 6 d Expﬁﬁsion l\g’;p“::llsliz:g Expansion
3 3 45° 1 5E-3 15 —.02
3 3 7.5° 0 7E-4 —-3E+4 —6 E-4
3 3 52.5° 1.4 .01 .05 .05
5 3 52.5° 6 E-3 .04 .02
5 5 30° 2 E-3 —4 E-3 .03
7 7 30° 8 E-4 —5E-4 .01
9 7 60° 9E-4 —4E-4 .01
7 5 75° 4.2 —.51 — .48 —-.70
7 7 15° 0 1 E4 5E-5 1E4
1 1 E4 4E4 —1E-3
2 8 E-3 —8E-6 6 E-4
3 .03 —.03 .13
4 .19 .18 .36
5 .76 .89 .97
30° 0 —4E-4 3E-5 1 E-4
1 2 E-4 7E-3 —1E-4
2 2 E-3 .02 —5E-3
3 .05 .07 —8 E-3
4 .03 .09 .06
5 .21 .33 .44
45° 0 —-1E-7 —1E+4 —1E+4
1 7E-4 .03 —6 E-4
2 —2E-3 1E-3 .02
3 .03 .03 ©.07
4 —.34 —.28 —.19
5 —.31 —.26 —.44

2%A,.), My = M, = 15, are displayed in column 5 of Table 5. The numbers of
terms used averaged about 17. Notice the characteristic deterioration of accuracy
for large |d|.

Comparable values of Ry, yielded by the analogue of (9), based on the
normalized form (6) of the Appell expansion, M; = M. = 15, appear in column
6. Nearly identical values of B were obtained in this way with M = M. = 5.

Column 7 contains the accuracies yielded by the analogue of (9), based on
Fisher’s expansion, My = My = 5.

The Appell expansions and Fisher’s expansion appear to perform about as
well with respect to numbers-of-terms used and accuracy, in the context of
approximating Behrens-Fisher densities, with the Appell expansions seeming
slightly more accurate.
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