ESTIMATES OF REGRESSION PARAMETERS BASED ON RANK TESTS'

By J N. ApicHIE
University of Nigeria, Nsukka

0. Introduction and summary. In the linear regression model Y; = o +
Bz; + Z;, it is usual to estimate o and 8 by the method of least squares. This
method has, among other things, the nice property of providing “best” linear
unbiased estimates, under very general conditions. Various other methods of
estimation of the parameters are well known, see for example [12] and [14].
Most of these methods however make use of the actual values of the observations,
and the estimates they yield are generally vulnerable to gross errors. For some
alternative approaches to the problem, see [7], [11] and [13].

In a recent paper [9], Hodges and Lehmann proposed a general method of
obtaining robust point estimates for the location parameter, from statistics used
to test the hypothesis that this parameter has a specified value. In Section 1 of
this paper, this method is used to define point estimates @ and 8 of « and g,
in terms of certain test statistics. It is shown that the least squares estimates are
obtainable as special cases from the general method of estimation discussed.
In Section 2, the existence of ‘rank score’ estimates is proved, and in Section 3,
computing techniques are given and illustrated with an example. Both the small
sample and asymptotic properties of the estimates are discussed. It is shown,
for example, that the joint distribution of the estimates & and 8 is symmetric
with respect to the parameter point (a, 8)—and hence that & and § are un-
biased—if the underlying distribution of the observations is symmetric. In
Section 5, the joint asymptotic normality of & and 8 is proved, and in Section
6, it is shown that the asymptotic efficiency of (&, 8) is the same as the Pitman
efficiency of the rank tests [1], on which they are based, relative to the classical
tests. Finally in Section 7, the (&, B)-estimates are compared with the Brown
and Mood median estimates with respect to their efficiencies.

1. Estimation of « and 8. As in [1], let Yy, ---, Y, be independent random
variables with distributions

(1.1) Pop(Y; = y) = F(y — o — Bzj)

where z; are the known regression constants that are not all equal and which
satisfy the limiting conditions given in [1], and P.s denotes the probability com-
puted for the parameter values « and 8. As before we shall assume that the under-
lying distribution function F belongs to a class § of absolutely continuous
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symmetric distribution functions, the densities of which are also absolutely
continuous and square integrable. With these regularity conditions, we shall
define estimates & and 8 which are similar to the Hodges and Lehmann esti-
mates for shift [9].

Let T0 (Y1, -+, Y,) and To(Y1, -+, Y,.)(T1(Y) and T2(Y) for short) be
two statistics for testing hypotheses about « and 8 in (1.1). Assume that 7,
and T satisfy the following two conditions:

(A) for fixed b, Ti(y + a + bz) is non-decreasing in a; and for every a,
Te:(y + a + bz) is non-decreasing in b, for each y and z. Here y + a 4 bz stands
for (y1 +a + bxy, -+, Yo + a + bzx,).

(B) When o = 8 = 0, the distributions of 71(Y) and Ts(Y) are symmetric
about fixed points pu and v, independent of F & .

Let
(1.2) B* = sup {b: To(y — @ — bx) > v, for all a},
B** = inf {b: Ta(y — @ — bz) < v, for all a};
(1.3) B = 3(8" + 8™);
(1.4) o* = sup {a: Ty(y — a — Bz) > u},
&** = inf {a: Ti(y — a — Bz) < u};
(1.5) & = ¥ + ™).

For suitable functions 7; and 7T’ , we propose & and § as estimates of « and 3.

It may be remarked that many existing estimates of « and 8, belong to the
class of (1.3)- and (1.5)-estimates. In particular, the least squares estimates
& and B are obtainable as special cases of & and §. To see this, take T3(Y) =
> Yiand To(Y) = X; (25 — &) (Y; — ¥,) where as before 7, = Y,
and all the summations are from 1 to n. With these choices of the functions T}
and T, it is easy to see that conditions (A) and (B) are satisfied with p = » = 0.
Furthermore,

sup {b: To(y — @ — bz) > 0, for all a}
inf {b: To(y — a — bz) < 0, for all a}
= {2 (= — z)(y; — I/ i (25 — &)Y} = B.

(1.6)

In the same way,

(1.7) sup {a: Ti(y — a — Bzx) > 0}

inf {a: T (y — a — Bx) < 0}
= (gn - Bjn) = a.
2. Estimates based on rank tests. Since our main interest is in robust estimates,

we shall be primarily concerned with & and 8 based on rank (or mixed rank)
statistics. As in [1], we shall need the following functions:

(21) V) = =g (' Gu + 1)/g(G Gu+ 1), 0<u<l,
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(2.2) Yo(u) = =o' (67 (w)/g(G ()], 0<u<l,
(2.3) eo(w) = ~[f' (F7(w))/f(F(u))], 0<u<1,

where G~ is the inverse of G, and ‘G is any distribution function belonging to the
class . Consider the following pair of statistics:

(2.4) TW(Y) = 07 225 ¥a(®i/n + 1) Sign ¥

and

(2.5) Ty(Y) = n7' 2 (25 — Zu)¥ou(Ri/n + 1)

where ®; is the rank of |Y;| in the sequence of absolute values |Yy|, - - -, |V,

of the n observations, while R; is the rank of Y; in the ordered sample Vi <
---<Vn,i.e.Y]-=VR].,j=1,---,n,and ’
(2.6) ¥a(uw) = ¥(j/n + 1),

You(u) = Yo(j/n + 1) for (j— 1)/n < u =< j/n.
Observe that the statistic T'; of (2.4) is the same as the one studied in [1], while 7',
of (2.5) is studied by Héjek [6]. It can be shown by arguments similar to those
in [9], that with (2.4) and (2.5) as choices for Ty and T’ , conditions (A) and (B)
are satisfied, and hence that the estimates based on them, exist and are well
defined. If in (2.1) and (2.2) we choose G to be the logistic distribution function,
then ¢¥(u) becomes u and T1(Y) and To(Y) of (2.4) and (2.5) coincide with the
Wilcoxon one-sample and two-sample statistics respectively. Denoting by &,
and B, the resulting estimates, we then have that
(2.7)  Ti(y — a — o) = [n(n+ 1)]722; &;Sign (y; — a — fuz;)

= [n(n + D]2NT — n(n + 1)/2]

where N7 is the number of pairs (7, j) with 1 < ¢ < j < n, such that y; + y; —
Bu(zi + x;) — 2ais positive, and &; is the rank of [y; — @ — B,;| in the sequence
of absolute values [y1 — @ — Bumi|, - -+, [yn — @ — BuT,|. The estimate &, is
then given by
(2.8) &w = medig; HYs + Y, — Bu(z: + 25)},
where 8, is obtained from (1.2) and (1.3) with
(2.9) To(Y) = 07 2 i(%; — %) (Ri/n + 1).

3. Computation of the Wilcoxon estimate B,. An explicit expression, for
B, in terms of Y’s does not seem to be available, without restrictive assumptions
on the regression constants x; . As an example of such an assumption if we take

Ty = C, j=1)"')k’
= C, j=k+1,"',n,

the estimate B, so obtained would coincide with the Hodges and Lehmann es-
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timate for shift in the two-sample problem, i.e. 8, = med (¥ — Z) where
Y=(Y1,---,Yy)andZ = (Y1, - -+, Y,). However for any given constants
z; an iterative method may be used to compute 3, , for moderate sample size n.
The procedure described below. depends mainly on the monotonicity of
T2(y + bx) as a function of b. There are however some values of b, for which ties
occur. For any such b we define

(3.1) Ty + bz) = %supycs Ta(y + b'z) + infyss To(y + b'z)].

Note that the use of mid-ranks is not acceptable here for it badly dislocates the
monotonicity of T2(y + bzx).

Let y1, -+ -, ya be the values of the observations, taken at levels z; , - - -, , ,
respectively. Choose any bofor which thereis no tie, (usually b, = 0forastart) and
rank the n differences y; — bor;, j = 1, -+, n. Then compute Ty(y — bex).

If the result is positive (negative) increase (decrease) by to by and compute
Ty(y — byr). Continue this iteration increasing (decreasing) b at each step until
Ts(y — bx) becomes zero. The b-value that achieves this would be the estimate.
If To(y — bz) = 0 for b < b < b”, then the estimate would be L +v").
If on the other hand, T>(y — bx) does not assume the value zero, there would be,
by condition (A), a certain by say, such that for b > by, Ta(y — bx) < 0, while
forb < bo, To(y — bx) > 0.

In such a case by would be the estimate. To find by , continue the iteration
described above, in close steps of b, until To(y — bx) changes sign. Then go back
and forth to determine where the first change of sign occurs.

ExamprLE. Consider the following set of data, taken from Graybill’s Intro-
duction to Linear Statistical Models Vol. 1.

x 1 2 3 4 10 12 18
Y 9 15 19 20 45 55 78

The results of the iterative method described above, are set out below in the
form of Tables 3.1(a) and 3.1(b). The estimate 3, obtained from the tables has
the value 4.00 while the corresponding least squares estimate B has the value
4.02. Observe that for b = 4.00, T2(y — bz) is defined by (3.1).

4. Invariance and symmetry properties. As in [9], the estimates & and 8
have useful invariance and symmetry properties in a sense to be made precise

in the following two lemmas.
Lemma 4.1. For any real a and b, the (1.3)- and (1.5)-estimates possess the

following translation invariant properties:

(4.1) By +a+bx) =By) +b
and
(4.2) &y +a+br) = &(y) + a.

? Proor. (4.1) is immediate from definition (1.3) while (4.2) follows from
(4.1) and (1.5).
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TaBLE 3.1(a)

b z=1 2 3 4 10 12 18
b=0 (y — bzx) = 9 15 19 20 45 55 78
ranks = 1 2 3 4 5 6 7
b=20 (y — bx) = 7 11 13 12 25 31 42
~ rank = 1 2 4 3 5 6 7
b=3.0 (y — bz) = 6 9 10 8 15 19 30
rank = 1 3 4 2 5 6 7
b=3.99 (y—bz)= 5.01 7.02 7.03 4.04 5.1 7.12 6.18
ranks = 2 5 6 1 3 7 4
b=4.01 (y—bzx)= 4.99 6.98 6.97 3.96 4.9 6.86 5.82
ranks = 3 7 6 1 2 5 4
TABLE 3.1(b)
b= 0 2 3 3.99 4.01
Te(y — b2x) = 78.24 77.24 75.24 19.80 —-9.14

Bw = 4.00.

From (4.1) and (4.2) it follows that, for all real a and b,
(43) Paﬁ{(& - w): (B - ﬁ) = (a7 b)} = POO{(&7 6) = (a’ b)}‘

In computing the distributions of the estimates, we may therefore assume that
a=p3=0.

One would like to have the distributions of & and §, centered in some sense, on
the true parameter values. The next lemma gives conditions under which & and
B are symmetrically distributed about « and B.

Lemma 4.2. Let T1(Y) and To(Y) be given by (2.4) and (2.5), with ¢ non-
decreasing, and let & and B be the (1.5)- and (1.3)-estimates. If F ¢ F, then B is
symmetrically distributed about B8, and & is symmetrically distributed about a, and
hence & and B are unbiased.

Proor. Similar to the proof of Theorem 2 of [9].

5. Limiting distributions. The study of the asymptotic distributions of & and
B is based on a regult of Hodges and Lehmann (see Theorem 4 of [9]) which gives
the connection between the distribution of the estimate and that of the test
statistic, on which it is based. Using this result, it can be seen that, under the
regularity conditions of Lemma 4.1 of [1],

(5.1 ) lim £(n}(8 — B)|Ps) = lim £(nl8|Py) = N(O, k*(%0)/c")
where

(5.2) B(do) = F(9) = (J5¥3(w) du)/(f3v(u)e(u) du)?

with & = limn™ D_;(z; — %)%, and ¢o(%) is defined as in (2.3).
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For the joint limiting distribution of (&, 8), it is convenient to consider first
the asymptotic distribution of
(5.3) b = & + B, .
Observe that if we write the idénf:ity
Yi=a+pa;+ Z; =8, + Bt + Z;

where Y _; ¢ = 0, then 8, depends on n only through a known quantity &, , and
the estimate 8, of 8, is still based on T(Y — Bz). Furthermore, the invariance
property (4.1) and (4.2) of the estimates, yield equation (5.3).
The following slight generalization of a result in [9], shall be used in the sequel.
TuaeoreEM 5.1 (Hodges and Lehmann). Let &, — & as n — », and let

(5.4) A, = —nHa +b)

where a and b are real constants. Let  be the distribution function of a normal random
variable with mean zero and unit variance, and suppose

(5.5) lim P,{n'Ty(Y) < y} = @l(y + dB)/A]
where d = (a + bE), and P, denotes that the probability is computed for the se-
quence of parameter values A, . Then for any sequence
(5.6) 6, = a + B, that tends to a + BE = 3,
lim P;, {n}(8, — 8,) = d} = &(dB/A).

To establish the limiting distribution of 8, , we need the asymptotic distri-
bution under A, of the statistic
(5.7) n'Ti(Z) = 0 2 ¥n(Ri/n 4 1) Sign Z;

where @ is the rank of |Z;] in the sequence of absolute values |Zi], - - - , |Zal,
with Zj =Y;— ij .

This asymptotic distribution may be obtained by the help of the following
theorem, the proof of which is given in the appendix.

THaEOREM 5.2. Let B be any estimate of 8 tn (1.1) such that

(5.8) (8 — B) is bounded in probability as n — .
Assume that the regularity conditions of Lemma 4.1 of [1] are satisfied. If
(5.9) |d/dyd(G(y))| = K(a constant),

then '

(5.10) lim &(n*Ty(Z) | P,) = lim &(n*Ty(Y) | P,)

where Z; = Y; — Bz;, P, denotes the distribution under A, of (5.4).

We remark that (5.8) is satisfied by all the (1.3)-estimates based on (2.5);
itrcan also be easily verified that (5.9) is satisfied by the usual symmetric dis-
tributions such as the normal, the double exponential and the logistic. Itfollows
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from Theorem 4.1 of [1], that under the assumptions of Theorem 5.2, T«(2)
and Ty(Y) defined in (2.4) and (2.5) are asymptotically independent with
limiting distributions

lim £(n*Ty(Z2) | P,) = N(d [ ve, [ ¥,

lim S(n*Ts(Y) | P,) = N(b [ doeo, &  ¥07),

yence 3, and § are asymptotically independent with the limiting distribution of
0y given by

(5.11) lim £(n}(5, — 8,) | Ps,) = lim £(ns,| Po) = N(0, K’(¥))

where ¥*(¢) is defined in (5.2).

To compute the limiting distribution of (&, 8), we_use the following simple
lemma.

LemMa 5.1. Let (X, , Y,) be a sequence of random vectors and {u,}, {v.} be two
sequences of constants, such that u, —> u, v, —> v asn —> o. If lim &(X,, ¥Y,) =
&(X, Y), then im £ (4. Xy + 0.Yn, Ya) = &(uX + 07, Y).

With this lemma, it is straight forward to establish the following main result of
this section.

TaeoREM 5.3. Let & and § be the (1.5)- and (1.3)-estimates based on (2.4) and
(2.5) respectively. Assume that the reqularity conditions of Theorem 5.2 are satisfied.
Then £(n*(& — a, 8 — B) | Pag) tends to the bivariate normal distribution with
means (0, 0) and covariance matriz k*()=, where

<(c2 + /¢ —:T:/cz>
(5.12) z =
—i/c 1/¢

with ¢ = lim n™ > ; (x; — &)%), and & = lim &, .

6. Asymptotic efficiency. In this section, we determine the asymptotic effi-
ciency of our estimates relative to the classical least squares estimates. In doing
this, we make use of the fact that if two vectors Uy and U; have lumtlng normal
distributions with covariance matrices =, and 2, related by Z; = k’Z, , for some
constant &, then the asymptotic efficiency of Us relative to Uy is K.

Condltlons for the asymptotic normality of a general class of least squares
estimates have been given by Eicker [5]. It can easily be checked that under the
assumptions of Theorem 5.2, the conditions in [5] are satisfied. If & and B denote
the least squares estimates then under very general conditions, enta — a
B — B) | Pas) tends to the bivariate normal distribution with zero mean and
covariance matrix = glven in (5.12). It follows that the asymptotic efﬁclency of
the estimates (&, 8) = A relative to the lea,st squares estimates (&, 8) = A is
k~*(¢). If the common variance of Y; is o’ instead of unity as assumed, the
efficiency becomes

(6.1) ex.5(¥) = A v(we(u) du)?/([34*(u) du).
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As expected, (6.1) is the same as the Pitman efficiency [1] of the M ,-tests rela-
tive to the classical F-test. This is unlike the situation in the multivariate loca-
tion case where the corresponding efficiencies do not coincide, see Bickel [2]
and [3]. From the particular cases of (6.1) discussed in [1], it follows that the
estimates & and 8 have all the desirable properties including robustness [10],
of the Hodges and Lehmann estimates for shift.

7. Comparison with the Brown and Mood Estimates. In [11], Brown and
Mood proposed the ‘median’ estimates & and 8 of a and 8. These estimates are
determined by the two equations:

(7.1) Median (Y; — & — Bz;) = 0 for z; < med z,
(7.2) Median (Y; — & — fz;) = 0 for z; > med z,
where med z is the median of the constants z;,5 = 1, ---, n .

In [8] Hill proved both the existence a}ld the asymptotic normality of
(&, 8) = A. He showed that £((3n) (& — a, 8 — B)) tends to the bivariate nor-
mal distribution with mean (0, 0) and covariance matrix 74| defined by

(7.3) = = [(Jhh(2) dt)* + (Jih() an)')(2(O) ([3 h(t) dt — S h(t) dt})7,
(74) 5 = {80 [ih(t) dt — [h(t) AT}

(7.5) 71as = —[5h(t) d{S[F0){ [} h(t) &t — [Sh(2) AT},

where % is a continuous strictly monotone increasing function on [0, 1] (also
called spacing function) defined by

(7'6) Tnj = h(]/n), .7 = 0, (D
Since the asymptotic covariance matrix of A is not proportional to that of A,
in order to compute their efficiencies one may use another measure of efficiency

based on asymptotic generalized variance (Cramér [4], p. 301).
The asymptotic generalized variance of n' A s

(7.7) Var nlA = [4f5(0){ [} h(t) dt — [$ h(t) dt}17,
and that of the (1.3)- and (1.5)- estimates & is
(7.8) Var nfA = [[3¢*(w) dul’/[¢{[s ¥(u)e(u) du}l.

It therefore follows that the asymptotic efficiency of the median estimates
A relative to the A-estimates is given by
(7.9) ex.a = [FO){[in(e) dt — [SR(2) dt} Js¥*(w) du]

(U wwde(u) dul'lf5 W) dt — (JoR(e) dyTy
where we have written ¢ in terms of the function &, by the relation ]im Y
= [7 h(t) dt. If we consider in particular the estimates (4, B:) = A,, based on
the sign statistics Ty(Y) = n~" > ;iSign Yand To(Y) = n Y i(z; — &) Sign Y,
the efficiency expression in (7.9) reduces to
(7.10) ez a. = [ih(t) dt — [Er(e) dAUSR°(8) dt — (Jon(e) ap)’].
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The function A is typically linear with positive slope, and with this, (7.10)
simplifies to

(7.11) eais = 3/2<1

which implies that there is some loss in the efficiency of the median estimates.
This loss is probably due to the fact that some information is lost in the process
of ordering the observations in two separate groups.

APPENDIX

8. Proof of Theorem 5.2. Throughout this section, £ will denote a generic
constant and 6; (short for 6,;(t)) a generic sequence of functions that tends to
zero uniformly in ¢ for |¢| < k,asn — .

Let Y;* = Y; — n*(tx;) for |t| < k and let By denote the expectation taken
with respect to the distribution under @ = 8 = 0. Write

(8.1) Ty(Y) =07 2 ;¥a(®i/n + 1) Sign ¥,
Ty(Y™*) =07 2 ¥m(®;*/n + 1) Sign Y%,

where ®;* is the rank of | Y;*| in the sequence of absolute values |¥1*|, - - - , | ¥,.*|.
Due to the independence of (&, -, ®,) and (Sign Y7, --- , Sign ¥,).

Var, [n}(Th — T1™)]
= n{Ey(T: — Tl*)2 — [EoT1 — Tl*)ﬁ
=07 225 Bolyu(®;*/n + 1) Sign ¥;* — ¢u(®i/n + 1) Sign VI
— 07205 Bo{¥n(®;"/n + 1) Sign ¥;*}T’
n”t 225 Bolyn(®;*/n + 1) Sign ¥;* — ¢u(®;/n + 1) Sign VI
= B1 + B, + Bs,

1A

with
By = 07 20 BoYa(®;*/n + 1) — $u(®s/n + 1T,
B, = 0 22, Eolym(®;"/n + 1)(Sign Y;* — Sign Y,)T,
Bs = 207 3, Eol{¥n(®;%/n 4+ 1) — ¢u(®;/n + 1)}{Sign ¥,*}
{¥a(®;*/n + 1)}{Sign ¥,;* — Sign Y;}].

Now

|Bs| = 4 |7 22 {(te;) /nt}(0;) B (®;*/m + 1)

< maxigign b [0 2 f(0;) | 07 25 9a7G/m + 1).

Using the absolute continuity of f, and the boundedness of the regression con-
stants z; (see (1.2), (1.3) and (1.4) of [1]), we see that lim, sup; |Bs| = 0. For B;,
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we have
|Bo| = [2n7" 205 B’ (@ /n + 1) — ¥a(®i/n + 1)¥a(®"/n + 1)]
-1 - SlgnY Sign ¥;¥|
maxi<jzn kb [ 2if (0, n7 205 | Eoldn’(®;%/n + 1)
— ¥a(®i/n + 1¥a(®/n + 1)]|
maxgjgn b [0 2f(0;)| 7 22597 (i/n + 1.
Hence lim, sup; |Bs| = 0 for |{| < k. Write By = i1 B1;, where
Bu = 0 X Eyn(®i/n + 1) — (U,
B = 17 205 Bolya(®;"/n + 1) — (UM,
By = nt X EdW(U;) — (UMY,
Bu = 207" 20 Bofn(®i/n + 1) — W(UNIW(U™) — ¥u(®;%/n 4+ 1)],
By = 207 X Bolya(Gs/n + 1) — (UNIW(US) — $(U;)],
By = 207" 20 EfW(U) — ¥u(®"/n + DIW(T;) — (U],

where U; = 2F(Y;) — 1, U;* = 2F(Y;*) — 1.
By (2.4) of [1], it is immediate that both By and Bz tend to zero uniformly in
t for |t| < k. On applying the mean value theorem to By; , we obtain

|Bu| < (k/n*) 205 {zif(y + 6)¥[2F(y) — 1 + 6,}°

liA

IIA

< (k/n*) 20 o by (5.9),
|Bu| < |[Bu| + |Be|—0 uniformly in ¢,
|Bis| £ |Bul| + |Bis| — 0 uniformly in {, finally
|Bis| < |Buz| + |Bus|-

We have therefore proved that

supja<e [H{TW(Y) — Ti(Y*)}] =0  in Poprobability,
and it follows from the contiguity of Py and P, that

supjy < =i [T(Y) — To(Y*)P -0  in P,-probability,
and the theorem is proved.
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