SERIES REPRESENTATIONS OF DISTRIBUTIONS OF QUADRATIC
FORMS IN NORMAL VARIABLES. I. CENTRAL CASE

By SamvueL Korz!,” N. L. Jounson? anp D. W. Boyp?
University of Toronto, University of North Carolina and University of Alberta

1. Introduction. Suppose that X' = (X, X,, -+, X,) is a random vector
with a multivariate normal distribution with expected value vector
(&, &, -+, &) and variance-covariance matrix V.

The object of this paper is to give unified derivations of a number of series
representations of the distributions of quadratic forms

QX) = Q(Xy, ,X,) = XAX = 20 2 G auXiX;

where A is a real symmetric matrix.

The representations are all known, but the method of derivation presented here
differs from earlier methods, sometimes slightly, sometimes substantially. We also
give recurrence relationships for calculating coefficients of the series which are, in
some cases, simpler than those heretofore available. Further we obtain a number
of new bounds for errors committed in truncating the various series.

The cumulative distribution function of Q(X) is

(1) Pr[Q(X) = y].

By performing suitable linear transformations, (see, e.g. [9]), (1) can be shown
to be equal to

(2) Pr2 i aiZ: + 8:)° £ 9]

where Z /s are independent unit normal variables, and a1 = @ 2 a5 -+ 2 an
are the eigenvalues of VA. The 6,’s are the same functions of the £/s as the Z,’s

are of the X/’s.
In the special (central or homogeneous) case when & = & = -+ = & = 0,
all 8s are also equal to zero and (2) becomes:

(3) Pr(XimaiZi < yl.
We will denote the cumulative distribution functions (2) and (3) by
F”(al!a2’ )an;61)827 ,6,,,:(/) = Fn((!,fl,y)

and G,(e, y) respectively. The corresponding densities will be denoted by lower
case letters. Thus ¢,(1, 1, --+, 1;y) = ¢.(1; y) is the probability density of a
central x” with n degrees of freedom; while f,(1; «; %) corresponds to a noncentral
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824 SAMUEL KOTZ, N. L. JOHNSON AND D. W. BOYD

x* with n degrees of freedom and noncentrality parameter Y7 872 (We shall
also use the notation G(n; y) and g(n; y) for G,(1; y) and g,(1; y) respectively.)

We will restrict our discussion to positive definite forms. For these forms,
a, > 0. L«

Various methods have been used to derive expansions of G,(e;y) and
F.(e; 8; y). Ruben [9] gives a very complete derivation of representations of
these functions as series in x” and noncentral x* distribution functions. He gives
convenient methods for obtaining the coefficients in the expansion, good esti-
mates for the truncation error and a proof of the uniform convergence of the ex-
pansion, as well as a discussion of the best choice of the disposable parameters to
improve convergence. Another form of expansion is the power series expansion
given by Pachares [6] for the central case (¢ = 0), and Shah and Khatri [12] for
the noncentral case (3 £ 0), using the method of Pachares. The derivation is
quite complicated, and in the noncentral case leads to a double series. A proof of
uniform convergence is given in each case, and error estimates are presented, of
which the one given in [6] is particularly useful.

Gurland [2], [3] gives a simple derivation of an expansion of G,( «;y) in Laguerre
polynomials. The expression for the coefficients is not very convenient for compu-
tation, however. The paper [3] contains an estimate of the truncation error which
proves uniform convergence of the expansion in case oy = 3a, . For the noncentral
case, Shah [11], using Gurland’s method, obtains an expansion for F,(e«; 8; ¥),
as a double series of Laguerre polynomials. No discussion of truncation error or
uniform convergence is given, and the expression for the coefficients is rather
complicated.

We shall show that it is possible to derive all the above expansions by a uniform
method which is in essence the same as that of Gurland [2], but which also leads to
a simple and direct proof of uniform convergence and provides error estimates in
all cases. The method of computing the coefficients is by a recurrence relation-
ship, used by Ruben in his x* expansions [9]. In the noncentral case, this method
gives single series expansions in the power series and Laguerre series cases, more
useful for computation than the double series of [11] and [12].

Because of the special nature of the central case more precise bounds on the
coefficients can be obtained than in the noncentral case. For this reason, we
present the two cases separately, although the second contains the first as a
particular case.

The present Part I of the paper is restricted to the central case.

The general method used will now be outlined. We seek a series expansion for
gn(@; y) of the form

(4) gn(@; ) = Do ciha(y)

where the sequence {h:} is a sequence of known functions (e.g., h(y) = y

for the power series expansion).
“[n this connection the following lemma will be used. (We will denote by f

the Laplace transform of the function f defined on [0, «].)

k
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Lemma 1. Let {hi}o be a sequence of measurable complex valued functions on
[0, »]; let {c}o be a sequence of complex numbers such that

(5) Do lallm(y)| £ A for almost all ye [0, o],
where A, b are real constants.
Define

f@) = 2iochu(y)  (well defined a.e. by (5)).
Then by and f exist for Re s > b, and
f(8) = 2 ahu(s), Re s > b.

The proof is an immediate consequence of Lebesgue’s dominated convergence
theorem. .

In all types of expansions considered in the sequel we shall apply Lemma 1
with , of the following special form:

(6) hi(s) = E(s)n"(s)

where £(s) is a non-vanishing, analytic for Re s > b, function and » is analytic

for Re s > b and has an inverse function ¢ (i.e. 7(¢(8)) = 8). For example, in the

case of the power series expansion £(s) = 1/s,7(s) = 1/s, if l(y) = ¢*/T(k + 1).
Define

(7) M(6) = (Luo§/E08)(8) = La(£(6))/8(£(6)),
where L,(e; s) is the Laplace transform of g,(e; y) which is known to be
La(e;8) = 7 e ga(a;9) dy = JT5=1 (1 + 2sa;)7%

Assuming that {c;}s and {h}o are data as in Lemma 1 and defining the func-
tion f to be

) = 2 chi(y),
we obtain from the lemma that .
(8) (Fot/Eo1)(0) = Zioad’

for 6 such that Re {(6) > b.
‘We now choose the coefficients c; so that

(9) M(6) = (fog/Eo£)(0) = 2imad.
Since M is known, we use Cauchy’s inequality to obtain
(10) leel < m(p)/p"

where

(11) m(p) = maxjs—, | M(8)|

and p is less than the radius of convergence of the series (9).
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Using these estimates and estimates of the functions 44(y) which are derived
in various ways depending on the particular functions involved, we verify that
the chosen sequence {c;} and the given {A;} satisfy condition (5) of the lemma.

Therefore, by Lemma 1, the steps leading to (8) are justified, i.e.

f(s) = Z;:;o Ckilk(s), Re s > b.

On both sides of (9) replace 6 by 5(s), multiply by £(s) and use ¢ o 7(s) = s to
obtain:

L.(a;8) = f(s), Re s > b.
Finally, by the uniqueness of the Laplace transform we obtain
ga(e;y) = f(y) = 280 ciu(y).

It also follows from (5) that D _reo cxhi(y) converges uniformly on every finite
y-interval (or if b < 0 for all y).

On account of the uniform convergence, we may integrate term-by-term to
obtain,

(12) ' Gula;y) = i [b () de,

where the series is uniformly convergent on every bounded y-interval.

In the application of the above method to particular cases, we shall not dis-
tinguish between M (6) and fo ¢/to ¢ (ef. (9)) and, similarly, we shall write
formally g.(e; y¥) = D_reockha(y), subject to later justification as explained
above.

The estimate (10), (or a better one if possible), is used to obtain a bound for
the truncation error for the series expansion. This estimate will not always be
the best possible, since direct methods, if available, usually yield improvements.
This is the case in Pachares’ expansion [6], so we will indicate his bounds for the
error term.

2. Determination of the coefficients ¢, and notation for truncation errors.
Although the expression (9) defines the numbers ¢ uniquely, it may not yield
a particularly convenient expression for them. In the cases we are considering,
the coefficients d; of 6" in the expansion

(13) N(6) = log M(6) = ZIO:=1 dkok/k

will be obtained in a rather simple form.
It is easy to see by differentiating (13), multiplying through by M (8) and
equating the coefficients of 6*™" that:
(14) co = M(0),
Cr = (l/k) Zﬁ;é dk—rcr ) ]C
) where the d; are determined by (13).
In computations using (4), it is important to have an estimate of the trunca-
tion error. We write

v
—
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(15) en(y) = | 2imnr1 chu(y)),
and
(16) Ex(y) = | 2i=ni o [§ () dal,

with superseripts to indicate the particular series used.
Obtaining upper bounds for ey and Ey will usually involve using (10), but
other methods are possible and sometimes better.

3. Series expansions for central positive-definite forms. We seek éxpansions
for g.(e; y) in each of the following forms:

(17) gu(e;9) = 2o c”(=1)*(y/2)* 2T 1 20(n/2 + k)] (Power series),
(18) gu(e; y) = 2= ci’g(n; y/B)k! T(n/2)BT(nf2 + k)™ L (y/26)
(Laguerre series)

where 8 > 0 is to be chosen later, g(n; y) is the central x* density with n degrees
of freedom, and L;(z) is the generalized Laguerre polynomial defined by
Rodrigues’ formula.

(19) L (z) = (1/k!) e"z~*(d"/da") ("), a>1
or by '
(20) 2o Li®(x)t = (1 — ) exp (—at/(1 — ¢t)), el < 1.

(see Szego [13].)
Also, we seek an expansion of the form

(21) gn(a;y) = Do al(1/8)g(n + 2k; y/B) (Chi-squared expansion).

The coefficients ¢,”, ¢, ¢;° are required, as well as conditions for the con-
vergence of the indicated series (if these should exist).

In connection with the estimates of the coeflicients ¢ for various particular
cases the following formula is found to be useful:

LemMa 2. If ¢(6) = —ki0(1 — ko)™ where 6 is complex, ky and ke are real and
ki > 0,0 < ks < p, then

max;s|-, exp [q(0)] = exp [kp/(1 + ksp)].
Proor:
maxjs-, exp [g(0)] = exp [maxs-, Re ¢(6)]
exp [—Fk; minjg—, Re (1 — k:0)7'0]
exp [— (ky/ks) minjs—, Re {(1 — k)™ — 1}]
exp [(ku/ks) — (ku/ks) mingg—, Re (1 — k:8)7
exp [(ku/k2){1 — (1 + kap)™}}]
= exp [kip/(1 + kap)].

Il

It
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4. Power Series. In what follows the same notation is used as in the general
method outlined in equations (4) to (12).
We first need the relationship:

(22) [T (y/2)" (= 1) /20(n/2 + B)]-dy = (—1)"/(25)"*
Then, comparing (6) with (22), we have

(23) s) = (297" a(s) = —1/2s.
Thus, putting § = 75(s),

(24) s = —1/20 = £(9).
Finally

La(e; £(8))/£[c(8)] = M(6)
(25) = (=1/0)""TI}= (1 — a;/0)7*
= CJI5= (1 — 6/a;)7?,

where

(26) C = w7

We may expand (25) in powers of 6 provided

(27) l6/aj] < 1, i=1,2 - ,n,
S0

(28) 6] < min a; = a, .

By (26), (28) is equivalent to

(29) ~ ' ls| > 1/2a,

and this is true if

(30) Re s > 1/(2a,).

The cbefﬁcients c” may be obtained from (25) by noticing that the factor
(31) I3 (1 — 6/ay)™

is the moment generating function for the quadratic form

(32) 2251 (1/20) XS,

Hence, if w'(o) denotes the kth moment about the origin of g,(e; y), and if
o = (1/2an, -, 1/201), then

(33) Xilom' (o« /bl = [T ga(e’; y) dy = T3 (1 — 6/ap)™
+Thus, from (25), and (33)
(34) e’ = Cur'(*)/k!.
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Since

(35) 2o (1/2a) X7 < (200) 7 2 X7,

SO "

(36) w () = Bl(2541 (1/20) X)) £ (2aa) “EI( X521 X"
= (20) 72T (n/2 + k)/T(n/2),

since B[( 271 X;5)*] is the kth moment of x, . Thus, from (34),

(37) "] £ (C/an")T(n/2 + k)/k! T(n/2).

Thus, in the series (17),

20 la"(y/2)" 20 (n/2 + k)

(38) < (C/20(n/2))(y/2)" "™ 2ok (y/20)"/ !

= (C/2T(n/2))(y/n)""* " exp (y/2an), y > 0.

This proves the uniform absolute convergence of the series (17) for bounded y-in-
tervals, and also justifies taking the Laplace transform of the series term-by-
term if Re s > 1/2a, . Hence, using Lemma 1, and the uniqueness theorem for
the Laplace transform,

(39) ga(e;y) = (y/2)"" 7 2 e (—1)*(y/2)" /20 (n/2 + k).
Integrating (39) term-by-term,
(40)  Gu(esy) = (¥/2)"" X’ (—1)"(y/2)"/T(n/2 + k + 1).

The coefficients ¢,” are determined by equations (14) with M (0) = C, d,* =

12 e (B2 1)
The error terms ey’ and Ex” may be estimated, using (37). We have

en”(y) = | 2w & (y/2)"* 7 (—y/2)¥ /20 (n/2 + k)|
(41) < C(y/2)"" 7 2iews (y/200)* /20 (n/2)k!
< (1/2T(n/2))(y/20)" " ** /o, (N + 1)1, since C < o, "%

In fact, a better estimate of ex” () may be obtained by the method of Pachares,
as we shall indicate later.

For Ex"(y), we could use the method indicated in (41) to obtain a similar
estimate. However, we may proceed as follows: (cf. Pachares [6]). By definition,
if X = (X1, Xs, -+ X,)', and putting Z; = X;(a;/y)},

G (5 y) = (20) ™ [3axp<y exp (— 3| XIP) dx
= (20)7°CY""* [sapc1exp (—3y 25w Z7'/ ;) dZ
= (2m) " 0" i (—y/20Y(U/KY) (2201 (Do7= Z7 /i) dZ.

By the uniqueness of the power series expansion, comparing (40) and (42), we

(42)
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have
(43)  af = (CT(n/2 + &k + 1)/k! 7"") [32200 (227 Z1 /)" dZ.
For the exponential series, for ¢ = 0, and integer r,
(44) Do (=)l = et = DI (—1)* k!
Thus,
BEx"(y) = | 2w o (—1) (y/2)""*/T(n/2 + k + 1)|
C(y/2)" a7 [sap51 2oiews (1/k)(— by 231 Z7/a)* dZ|
S Cy/2)" ™" [3pp0 (1/(N + D)D) (3y Dim 22" dzZ
(using‘ (44), to estimate Y _w41)
= (y/2)" P h 1 /T(n/2 + N + 2), using (43) withk = N + 1
Now, using (37) to estimate cy41, one obtains
¥ (y) = (3/2)""7Cr(n/2 + N + 1)
(45) [ (N + 1)! T(n/2)T(n/2 + N + 2)]”
< (y/2a,)"""™ /(N 4+ 1) (n/2 + N + 1)T(n/2).
To estimate ey’ (y) by this method, note that, using (43)
ex’(y) = (y/2)""7C/x "
A S 2221 (0/2){ 2iewan (1/612)(— %y 5= 2/ 0;)"} dZ
+ [rzpg { X hawa (1/(k — 1)1 2)(— by 251 27 /e))*} dZ
(46) < (y/2)""7Cx
Al 2221 (0/2) - 3(—3y 2 im Z /)" AZ|-1/(N + 1)!
+ (1/ND|[ 325221 3( =3y 271 Z5/a)" " dZ]}
< (9/2)""™Mewn/20(n/2 + N + 1)
< (9/20)""™(n/2 + N + 1)/2(N + 1)!T(n/2)an .

This estimate is generally better than (41) except for quite small y.
Formulas (40) and (45) were obtained by Pachares [6] by a different method
and by Robbins [7], who gave a more complicated expression for the ¢;”.

If

5. Laguerre Expansion. We now seek an expansion of the form (18). From
Szego ([13], p. 370) we have

(47)  [§ ek 28T (n/2 + k)17 (y/28)" e P PP (y/28) dy
= (1 + 2s8)"**(2s8)".

Compa,ringr with (6), we have
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(48) E(s) = (14 28)7""  n(s) = 2s8/(1 + 2sB).
Thus, with 6 = »(s), we have
(49) s=0/28(1 —0) = ¢(8), and 1+ 2s8=(1—6)""
Then
(50) M(8) = (1 — 8) " ITi= (1 + (ai/8)-6/(1 — 6))™
= T~ (1 — v6)7,
where :
(51) vi =1 — a;/B, j=1,2 - ,n.

Note that M(6) is the moment generating function of gu(¥/2; y), where v =
(v1, - ,¥»)’, hence

(52) a” = w (v)/2%!, k=01, .
The conditions under which

(53) M(0) = 2",

are

(54) [v# < 1, forall j=1,---,n.

Hence, if

(55) € = maxiz;jza |vil,

we must have
(56) 6] < 1/e.

In order to be able to apply the Laplace transform to (18), the expansion (53)
must hold for Re s > b, where s = {(0) and b is some positive number.

Since ¢ is a bilinear mapping, the image of [§ | = p (where p is some positive
number) is a circle ¢, (or straight line) in the s-plane with center
(57) so = oo+ i1 = —p/28(p" — 1),
and radius
(58) ro = p/28(p* — 1.

(Note that Cy is the imaginary axis.) Figure 1 shows the circle c, .
Since 7y > 0,

(59) 1 <o
’I;hus, if the image of || < 1/eis to contain a half-plane Re s > b, we must have

(60) e < 1.
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/\ s-plane

cp, p > 1
Fia. 1
Equivalently,
(61) max; |1 — o;/B] < 1
or
(62) B > 3 max a; = ja,

and, in this case, the image of |§] < 1/ein the s-plane contains
(63) Res > —1/28(e + 1).

Bounds for the coefficients ¢;” from (59) may be obtained using exactly the
same method as in finding (39). They are:

(64) | & | £ €T(n/2 + k)/k! T(n/2).

In order to obtain a bound of the form (5), we use the generating function
(see (20)):

(65) Yoo L™ P(2)f* = (1 — )™ exp (—at/(1 — ¢)), for |f < L.
Using Lemma 2, we obtain:
(66) n(R; 2) = maxjy—r [(1 — )" exp (—at/(1 — 1))
< (1 —R)™?exp (zR/(1 + R)), for z = 0.

Moreover, by Cauchy’s inequality

|L" ()] £ 2(R; z)/R", for any R with 0 < R < 1,
(67) < (1 — R)™"R™ exp (sB/(1 + R))
6“2/(1 _ R‘)nlsz‘

A
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Inserting these bounds in (18), we have
(68) i |ex”|lg(n; y/B)k! T(n/2) /BT(n/2 + B)IIL" " (y/28)]
S (1/8)g(n; y/B)(1 — R) ™" (1 — ¢/R)7,

provided we choose R to satisfy ¢ < B < 1. This establishes uniform convergence
of (18) for all bounded intervals of ¥ > 0, so that the Laplace transform of the
series may be taken term-by-term for Re s = 0. Hence the series converges
uniformly for all ¥y > 0; provided 8 > Zay .

g:he ck: are determined by the equations (14) with M(0) = 1, dy=
325175

To obtain the series for G,(a; y), we use Rodrigues formula (19) to derive
(69) [ (1/28)e"*(x/28)" "L " (2/28) da
= (1/k)e "™ (y/28)" *Li* (y/28), for k = 1.
For k = 0, we have instead, by definition
(70)  J4(1/28) ("% /(n/2))(x/28)" "7 L™ (w/28) du
= (1/2""1(n/2)) [P 2" do = G(n; y/8)

where G(n; y) is the cumulative distribution function of x* with » d.f.
Then, from (18), since that series converges uniformly for all y = 0, we may
integrate term-by-term to obtain

(71) Gu(a;y) = G(n; y/B) + i (a™(k — 1)/T(n/2 + k))
(y/28)" % "L (y/28).
Or, using the definition of g(n + 2; y/28),
Gu(e;y) = G(n;y/8) + i a”(2(k — 1) IT(n/2 4+ 1)/T(n/2 + k))
-g(n + 2; y/8) Lii” (y/28)

where the series converges uniformly and absolutely for all y = 0, provided
B > joi.

Formulae (18) and (71) are being used as bases for constructing computer
routines for calculation of ¢,(e; ¥) and G,(e; ¥y).

An estimate for ey “(y) using (64) and (67) is

(73) ex"(y) = (1/B)g(n; y/B) infecraa {(¢/R)"(1 — ¢/R)7(1 — R)™"
-exp ((y/28)-R/(1 + R))}.

A choice of B which makes the formula take a simple form (but which may not
be best from other points of view) is R = €. Since R/(1 + R) < i forR < 1,

(72)

+ we have for this choice

(74) ex"(y) S (1/B)g(n; y/B)e" (1 — &)W,
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Similarly,
(75) Ex"(y) £ (n/(N + 1))g(n + 2; y/8)
‘Minera {R(1 — R)™""™lexp (yR/2(1 + R))I(¢/R)""/(1 — ¢/R)}.
Again taking the special case R = ¢, since exp (yR/28(1 + R)) < e*'*,
(76) Ex"(y) £ (n/(N 4+ 1))g(n + 2; y/B)e" P2 /(1 — &"™*,

Formulae (74) and (76) are being used in control of accuracy in the computer
routines referred to earlier.

In [2], Gurland derived formula (71) by inverting the characteristic function.
Pointwise convergence only was proved. In [3] Gurland investigated the error
term Ey(y) by use of the characteristic function. He showed then that the
series expansion for M () is uniformly convergent for all y, provided 8 satisfies

(77) Fa < B < 2a,,
so that the a; must satisfy
(78) Qn > %Ch .

There is no such restriction in the bounds (75) and (76).

The error estimate in [3] does not involve y, and hence does not tend to zero
with increasing y as do (75) and (76).

Since the rates of convergence of (18) and (71) depend essentially on the size
of € = max |1 — «a;/B|, it would seem wise to choose 8 so that e is as small as
possible. Hence, we consider taking 8 to make e equal to

(79) € = infpso maXi<j<n ll - ai/BI = (Otl - an)/(al + Otn)~

Straightforward algebraic calculations show that this requires 8 = (a1 + ).

(It should be noted that, for given 8, the bounds (73) and (75) for ex” and
Ex" are increasing functions of e.)

In an abstract [4], Hotelling indicated that he had obtained a Laguerre ex-
pansion for ¢,.(e; y). Grad and Solomon [1] gave a few more details of Hotelling’s
method, though neither [1] nor [4] gave an explicit formula for the coefficients
", and conditions for convergence of the expansion were not indicated. Essen-
tially, in Hotelling’s method, 8 is not mentioned explicitly but is taken at the
outset to be (1/n) X 7= oj , making ¢” = 0. The first five coefficients ¢, are
given in Grad and Solomon [1], when 8 = (1/n)) 7= a;, and were used by
them to compute G,(e; y) for various . For « = (1.2, 0.9, 0.9), the approxima-
tion is accurate to 4 decimal places. For « = (2.1, 0.6, 0.3), 8 = 1, for which
B > 30y is not satisfied, the approximation was quite poor, as would be expected,
since then the series (18) and (71) are not convergent.

It should be mentioned here that the numbers d;”, by which the coefficients
%L are determined using (14), may be obtained without explicitly determining
the eigenvalues of the matrix VA. For, the numbers 1 — (a;/8) = v, are the
eigenvalues of I — (1/8)V A4, and hence
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(80) A" =32 0 = ttr (I — (1/8)VA)-

6. Representation in series of x’s. We now seek the coefficients ¢;° in the
expansion of g,( «; %) in x° density functions, as in (21). By our general formula-
tion of the method of obtaining such: expansions, we shall need

(81) Jo e (1/8)g(n + 2k; y/8) dy = (1 + 28)™" .
Comparing with (6), we have

(82) Es) = (L+288)7""  n(s) = (1 + 2s8)7"
Hence, if 6 = 5(s), then

(83) s=(1—10)/280 = £6);  &(0)] = 6"

As described in the introduction (equation (7)), we expand M (6) in powers of
6, where in this case

(84) M(6) = [[5= (B/a){1 — (1 = B/ep)8)™
= E;c;o Ckcek,

provided

(85) 6] < min [1 — B/a,|™ = 1/e,

with € = max |1 — 8/aj|. From (82) this means

(86) [1 4+ 2s8] > max |1 — 8/ay|

and hence (84) holds at least for

(87) Re s > (1/28){max |1 — 8/aj| — 1}.

As in the previous two cases, we can recognize M () as a constant multiple of
the moment generating function of ¢,(v/2; ), where in this case

(88) vi=1—8/aj, v=v,7v2, """

('There should be no confusion with the values of ¥ given in the Laguerre ex-
pansion.) Thus, from (84) and (85)

(89) a’ = Aw'(v)/2%!,

where 4 = J]7= (8/a;)!. Then, just as in deriving (37) and (64), since
e = max |vy,

(90) w'(v) < €2°T(n/2 + k)/T(n/2),
so that

(91) loe’] < AéT(n/2 + k)/k! T(n/2)
hence

(92) Z;;O ICkGll(l/ﬁ)g(n + 2k; y/B)| = A(1/8)g(n; y/B)g‘y’”’
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which establishes the uniform convergence of the series on the right of (21) for
any bounded interval of ¥ (and for all y if ¢ < 1). Thus we can take the Laplace
transform of each side of (21) for Re s > 1/28(e — 1), and by (84) (and (87))
the transforms will be equal, so equality actually holds in (21), and the series is
uniformly convergent in any bounded y-interval of y > 0, for any 8, and uni-
formly convergent for all y > 0 if 8 is chosen so that e = max [1 — 8/aj| < 1.

Integrating term-by-term, we obtain the following series, uniformly convergent
on any bounded y-interval of y > 0.

(93) Gu(e; ) = i a’G(n + 2k; y/B).
The ¢’ are determined by (14) with M(0) = A; d° = 1274 (1 — Ba; )",
(k= 1).

To estimate the error terms ey’(y) and Ex°(y), we again use (91) (compare
(92)), and obtain

exn” = A(1/B)E™/(N + 1)1(y/26)"*™ exp [~ 3y(1 — €)/Bl2T(n/2)
(94) = (T(n/2 + N + 1)/T(n/2))A(1/8)(€™/(N + 1))
g(n + 2N + 2; (1 — e)y/B)(1 — "7, 0<e<l.
The choice of the bound to be used (i.e. value of €) will depend on circumstances.
The estimate for Ex°(y) is most simply obtained by integrating ex®(y), giving,
for 0 < e < 1,
(95) Ex‘(y) < AIN(n/2 + N + 1)/T(a/2)][€™/(N + D1 — o7
‘G(n + 2N + 2; (1 — €)y/B)
and, fore > 1,
(96) Ex(y) S [A/T(n/2)IT(n/2 + N 4+ 1)/ (N + 1)) (y/28)"*"*
-exp [(e — 1)y/28].

(A is defined in (89).)

Formula (93) was derived by Ruben in [9]. Recursion formulae for the co-
efficients and the error bound (96) were also derived by Ruben [9]. Particular
cases of (93) had been obtained in various ways by Robbins [7], when
8" = [I7-1 a;, and by Robbins and Pitman [8], when 8 = «, .

For some choices of 8, (21) and (93) are mixture representations. In this case
the coefficients ¢;° satisfy (see Robbins and Pitman [8]):

(97) 6’20, and D poc® = 1.

Ruben [9] considered the question of determining the values of 8 for which (93)
is a mixture representation. Some results are as follows: For 0 < 8 = a,, (93)
is a mixture. If ay is the harmonic mean of the «;, then for 8 > ax, (93)
is hot a mixture. For a, < 8 < ax the answer depends on the distribution of the
values of the «;, and examples are given in [9] of distribution of the o;, for
which 8 = ay does give a mixture representation.
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Ruben [9] also discusses the best choice of 8 for computational purposes and
suggests that the choice 8 = 2a1a,(1 + a,) ™ may be close to the optimal choice,
and is certainly better than 8 = oy or 8 = o, .

A justification for the choice 8. =2a1a,(e1 + @,) ™" can be given here, in much
the same way as it was done for the Laguerre expansion, if we observe that from
(94) it would seem that the best choice of ¢, independent of y is one in which
¢/p is as small as possible.

Ruben [9] points out that the fact that the series (93) converges uniformly
for all y if ¢ < 1 implies that, for such ¢, we make y = o in (93) to obtain

(98) Z[?:o Ckc = 1, if € <1
The condition ¢ < 1 means
(99) max [1 — B/a;] <1 or B < 2a,.

Ruben [9] shows that 8 < 2a, is necessary and sufficient in order that Z¢,° = 1.
We note that the numbers d;,° which are given by

(100) i’ =3 tr (I — BA™'VHE

may be computed without calculating the eigenvalues of VA. The matrix VA
must be inverted, but this is usually simpler than calculating the eigenvalues.
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