A NOTE ON SUMS OF INDEPENDENT RANDOM VARIABLES
WITH INFINITE FIRST MOMENT

By H. D. MiLLER

Imperial College, London

1. Introduction. Let X be a non-negative random variable with distribution
function F(x) such that E(X) = ». Put 8, = X; 4+ --- + X, where {X}}
is a sequence of mutually independent random variables each following the dis-
tribution of X. We consider the problem of finding positive monotonic sequences
{a,} and {b,} such that

(1.1) P(8S, > a, i.0.)
(1.2) P(S, < by i.0.)

0,
0.

It

Such sequences form ultimate upper and lower bounds for the sequence {S,}
of sums in the sense that

P(b, = 8. = a, for all sufficiently large n) = 1.

We require the bounds not to be too crude. If X has a finite variance then the
law of the iterated logarithm provides the required sharp bounds.

Feller (1946) has shown that if E(|X |) = « (here X is not necessarily
non-negative) and if a,/n is non-decreasing, then

(1.3) P(]| 8. | < a, for all sufficiently large n) = 1

if and only if 2., P(| X.| > a») < . However, for a very asymmetrical X
the statement from (1.3) that P(S, < —a, i.0.) = 0 may be rather crude. In
particular, for non-negative X, Feller’s result enables us to find sequences {ax}
satisfying (1.1) but not sequences {b,} satisfying (1.2). Other work in this
connection is by Chow and Robbins (1961) who show that if E(| X |) = « in
the general case, then for any sequence {c,} either

(1.4) P(lim $Upnae | Su/en | < ) = 1,
or
(1.5) P(lim infyae | Su/ca | > 0) = 1,

but not both of (1.4) and (1.5) can hold.

A corollary is that if E(| X |) = oo, then there is no sequence {¢,} for which
lim (8,/c.) = 1 with probability 1.

In the present paper we outline a method for determining sequences {b,}
satisfying (1.2) for the case of non-negative X, , but to obtain explicit results
it is necessary to assume something explicit about 1 — F(z) as * — . The
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general solution, if it exists in the form of a neat condition such as Feller’s for
the upper bound, eludes us. We examine the cases where as x — o, 1 — F(x)
varies regularly with exponent —a (0 < a £ 1), i.e.

(1.6) 1~ F(z) = L(z)/z* (z— ©0;0 < a=1),

where L(z) is slowly varying as x — o, i.e. L(cz)/L(z) — 1 as x — o for
each fixed ¢ > 0. Regularly varying functions were studied systematically by
Karamata (1930); a more recent and accessible exposition is given by Feller
(1966), p. 268.

An alternative way of expressing (1.2) is

(1.7) P(lim inf,.e Sp/by = 1) = 1.
Ideally we should like to obtain a precise lower bounding sequence {b,} satisfying
(1.8) P(lim inf,,, Su/b, = 1) = 1.

However we are only able to do this for the case 1 — F(z) ~ L(z)/x and even
then only provided L(z) does not grow too rapidly (Theorem 2).

In a final section we examine some conditions for convergence of S,/n to + «
in the strong law of large numbers (X is no longer non-negative). Previous work
in this connection is by Derman and Robbins (1955).

2. Preliminary results. One method, used for example by Derman and Robbins
(1955), for determining a sequence {b,} satisfying (1.2) is provided by the fact
that

(2.1) P(8, < by) < P{max (X1, ---, Xa) < ba} = (F(ba)}™

If {b,} is chosen so that ., {F(b,)}" converges (which is equivalent to the con-
vergence of . exp [—n{l — F(b,)}1), then by the Borel-Cantelli lemma,
P(8, < b, i.0.) = 0. For the case 1 — F(z) ~ &~ say, this method gives a
very crude lower bounding sequence {b,}. We can do better by using the strong
law of large numbers according to which P(S, < Kn i.0.) = 0 for any fixed
K > 0. It appears in general that the “closer” F(z) is to having a first moment,
the cruder is the sequence {b,} obtained from this method.
An alternative method is the following. Let

(2.2) U(z) = [5tdF(t), Ux(z) = [(£dF(t).

Define the truncated variables X, by |

(2.3) | X, =X, (0 < X, < pa)
=0 (X > pa).

Then E(X.') = Ui(p,) and E(X») = Us(py). Define

(2.4) Y. = {B(X.)) X,

Then E(Y,) = 1. If we choose p, T so that
(2.5) 2P V(Y,) < o,
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then n™(D 4y ¥Yi — n) — 0 with probability 1 by Kolmogorov’s theorem.
Thus P(D s Yi ~n) = 1, and if k, = o(n), then
(2.6) P(2 i, Vi ~m) = 1.

Hence for each ¢ > 0, -
(2.7) P{> i, Y > n(1 — ¢) for all n sufficiently large} = 1.
Now with probability 1,

Sp 2 Tia Xi' = e, Xi' Z B(Xh,) Dben Vi,
and so for each ¢ > 0 we have
(2.8) P{S, > (1 — e)nUi(ox,) for all n sufficiently large} = 1.

We have thus proved the following:
LemMa 1. If p, T satisfies (2.5), i.e. if

(2.9) 2t Us(pa) /M Us(pa)}* < oo
and if k, = o(n), then
(2.10) P(lim inf,. S./nUi(p,) = 1) = 1.

Thus for each ¢ > 0, the sequence b, = (1 — €)nUi(pz,) satisfies (1.2). It is
possible in some cases to choose k, so that Ui(pr,) ~ Ui(p.) and we then have
the tidier result than b, = (1 — €)nUi(p.) satisfies (1.2) for each ¢ > 0.

LemMA 2. If {o,} satisfies the two conditions

(2.11) 0 £ lim inf,., n{1 — F(o,)} < 1;
(2.12) limpee Ua(0n)/n{ Ur(on)}* = 0,
then

(2.13) P(lim inf,., S,/nU(c,) < 1) = 1.

Proor. We have, following Feller (1966), p. 231, equation (7.5),
P{|8,/nUs(ca) — 1| > & = Us(on)/én{Us(on)}* + n{l — F(on)}.
If (2.11) and (2.12) hold, then foreach e > 0
lim inf, e P(S./nUi(on) < 1 4+ €) > 0,

from which (2.13) follows.
LemMa 3. Let L(z) > 0 be slowly varying as x — . Then there exists a posi-

tive function H(z) satisfying
(2.14) H(z) — «, H(z) = o(z) (z — =)
$uch that as x — o,

(2.15) L{iz/H(z)} ~ L(z).
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Proor. If L(x) — ¢ (0 < ¢ < o) then the result is trivial. Otherwise, L(zx)
may be expressed in the form

(2.16) L(z) = c(z) exp { [3le(t)/tldY)

where as z — o, ¢(z) tends to a finite non-zero limit and ¢(z) — 0 and does not
vanish outside a finite interval. It suffices to show that we can find H(z) satisfy-
ing (2.14) such that as z — o,

(2.17) Jamen-1{e(t)/t}dt — 0.
Define
a(x) = supigq |e(t)].

Now provided 0 < z{H(z)}™* < z, the integral in (2.16) is bounded in modulus
by

{SUp.r—1<:<0 |€(t)]} log H(z).
Some calculation will now demonstrate that if H is defined by
log H(z) = {a(x)}! (a(z) 2 2/log z)
= (log 2)* (a(z) < 2/log ),
then (2.17) holds and the requirements of the lemma are met.
3. The case « = 1. Suppose E(X) = « and
(3.1) 1 — F(z) = L(z)/x,

where L(z) is slowly varying as £ — «, a property that is unaffected by how
L(z) behaves in any bounded interval. From the theory of slowly varying func-
tions the following two relations hold as  — oo

(3.2) L(z)/ [ €'L(t)dt — 0,

(3.3) aL(z)/ [§ L(t)dt — 1.

It follows from (3.2) and (3.3) that as x — o,

(3.4) SdF(t) ~ [3{1 — F(t)}dt = [3 ¢ L(t)dt,
(3.5) [fdF(t) ~ 2’1 — F(x)}.

We now take p, = n in Lemma 1. The series (2.9) behaves like
(36) et {1 = F(n)}/1f3 {1 — F(x)}dal'.
The terms of (3.6) are monotonic and since the integral

(3.7 J7 1 = F@)}/15 {1 — F(t)}aif da

is convergent, so is the series (3.6). Thus from Lemma 1, provided k., = o(n),

(3.8) P{lim inf,.., S,/n [i* {1 — F(z)}dz = 1} = 1.
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Now the slow variation of L(z) implies that of fﬁ {1 — F(¢)}dt. By Lemma 3
we may choose therefore k&, so that

Jir {1 = F(z)}de ~ [§ {1 — F()}da.
We have thus proved the following result.

TueoreM 1. If E(X) = « and if 1 — F(z) = o 'L(z) where L(z) s slowly
varying as x — « then

(3.9) P{lim inf,.., S,/n[¢ zdF(z) = 1} = 1.

In the next theorem we show that if we impose a restriction (in the form
(38.11) below) on the growth of L(x) in Theorem 1 then we obtain equality
inside the braces in (3.9). In a later remark we show that some such restriction
is also necessary for equality.

TueoreM 2. Suppose that in addition to the hypothesis of Theorem 1,

(3.10) o{l — F(z)}/ [3 dF(t) = o([log { [ tdF (£)}]™),
or equivalently,
(3.11) L(z) log { [3 t'L(t)dg}/ [5 € 'L(t)dt — 0 (z — ),
then
(3.12) P{lim inf,e, So/n [ tdF(t) = 1} = 1.
Proor. Let
(3.13) a(z) = z{1 — F(2)}/ [ {1 — F(t)}dt.

Now a(z) — 0 by (3.2) and (3.4). Since the expression on the right hand side
of (3.10) is non-increasing it follows that

(3.14) supez. {a(t)} = o(1/log [[5 {1 — F(£)}df]) (x— ).
Next let

(3.15) b, = n[s tL(t)dt.

We have, from integrating (3.13),

(3.16) for (1 = F)dt/[§ (1 — F)dt = exp { [o ta(t)dt}

and

|[or 7 a(t)dt] < {supsza a(t)} log bn/n — 0
in virtue of (3.10) and (3.15). Thus by (3.4), as n — «,
(3.17) oLt dt ~ [§ L(t)dt.
‘We now show that the conditions of Lemma 2 are satisfied with ¢, = b, . For

f?l‘ t—lL(t)dt g {L(bn)/bn} (bn - 'I’l),
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8o that
(3.18) n{l — F(ba)} = nL(bs)/bn < [t L(t)dt/ {(ba/n) — 1}
= [ 'Lt/ 3 £ L(t)dt — 1—0 (n — o)
in virtue of (3.17). Finally,
(3.19)  buL(ba)/n{ [¢* ' L(1)d* < [bu/n[§ £L(t)dM)- [L(ba)/ [or € L(8)d]
= L(b)/ [o" ' L(t)dt — 0

as n — o, by (3.2). Hence because of (3.17), the results (3.18) and (3.19)
show from Lemma 2 that

P{lim infoe So/nf7 C'L(t)dE < 1 = 1.

The proof is concluded by applying (3.4) and Theorem 1.
CoroLLARY. If in addition to the hypothesis of Theorem 1,

(3.20) 0 < lim inf,.., L(n) < 1,
then
Pflim inf,.., S,/n[§ xdF(z) = 1} = 1.

Proor. The result follows from Theorem 1 and the fact that Lemma 2 holds
with ¢, = n if (3.20) is true.

Remark. If, for example, 1 — F(z) ~z " (log z)* as ¢ — « for any fixed
positive &k then the conditions of Theorem 2 can easily be shown to hold. We then
have

P{lim inf,.., S,/n[(logn)/(k + 1)]*™ = 1} = 1.

However, there are slowly varying functions which exceed in magnitude any
power of log z, for example exp {(log z)/(log log z)}. If L(z) is such that

(3.21) [5 7 L(t)dt ~ exp (log z/log log x),

(take a(z) in (3.13) to be (log log #)™ — (log log )™ for all large z) then the
condition (3.11) of Theorem 2 does not hold. Nor in this case does the conclu-
sion of Theorem 2 hold. To see this we note that

pn = [n/(log n)(log log n)] exp (log n/log log n)

satisfies (2.9) of Lemma 1. If we take k, = [n/log log n], then p;, ~ p,/log log n
and

P(lim inf,., Su/nUi(p./loglogn) = 1).

Some calculation will show that Ui(n) = of Ui(p./log log n)} and hence, by
(2.2) and (3.4),

P(lim inf,.., S,/nf§ tdF(t) = ») = 1.
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It follows that some condition such as (3.10) is necessary for the conclusion of
Theorem 2 to hold.

4. The case 0 < a < 1. Suppose now that
(4.1) 1 — F(z) = 2 °L(x) 0<a<l)

where L(z) is again slowly varying as £ — . The relations corresponding to
(3.4) and (3.5) are

(4.2) Ur(z) = [§tdF(t) ~ [a/(1 — )] 2 °L(z),
(4.3) U(z) = [§£dF(t) ~ [a/(2 — a)] 2* °L(z).

These results follow from Feller (1966), Theorem 2, p. 275. From Lemma 1, we
then obtain the following:
Tueorem 3. If (4.1) holds, if p, satisfies

(44) 2one1 pa%/ML(pn) < o
and if k, = o(n), then for any A > 0,
(4.5) P{lim inf,.., S./Anps, “L(ps,) = 1} = 1.

It is worth noting that when (4.1) holds, the method based on (2.1) for ob-
taining a sequence {b,} satisfying (1.2) gives reasonably good results in special
cases, e.g. L(xz) — 1; but in such cases Theorem 3 gives better results. On the
other hand when « = 0, the opposite appears to be true, e.g. in the special case
1 — F(z) ~ (log z)™", the method based on (2.1) gives better results than

Lemma 1.

6. The strong law of large numbers. Suppose now that X can take positive
and negative values. We examine some conditions under which S,/n — + «
with probability 1. Let

X* = max (0, X), = —min (0, X).

Derman and Robbins (1955) showed that if for some constants 0 < o < 8 < 1
and C > 0,

(5.1) 1— F(z) = C/z°
(5.2) B{(X)} = »

then S,/n — » with probability 1.

We can use the results of Sections 3 and 4 to show that even if, in a certain
sense, the positive and negative tails of the distribution of X are much more
alike in order of magnitude than is implied by (5.1) and (5.2), we may still ob-
tain convergence to + « in the strong law of large numbers.

We write S, = T, — W, where T\, = X;" + -+ + X,* and W, = X\~
+ ... + X, . Suppose for example that as x — «, 1 — F(z) ~a “log z,
while F(—z) ~ 2 */log z (0 < a < 1). Using Theorem 3, we can show that
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for b, = n'/*(log n)"" ¢ (for any fixed ¢ > 0) we have P(lim inf T,/b, = 1) = 1
while from Feller’s (1946) Theorem 2 we have P(W,/b, — 0) = 1. It follows
that P(lim inf S,/b, = 1) = 1 and so 8,/n — + « with probability 1. When
a = 1, special cases may be approached in a similar way. Thus for example, if
as ¢ — »,1 — F(z) ~« " while F(—z) ~ {z(log log z)'t9™ for some fixed
e > 0, then S,/n — + « with probability 1. It seems difficult to make any
simple general statement along these lines.

As a last remark, we make a rather crude strong limiting statement for non-
negative X. Suppose

(5.3) 1 — F(z) = o “L(x) 0<a=s1l),

where L(z) is slowly varying (we assume E(X) = ® if o = 1). Since L(z)
= o(z°) for any ¢ > 0, it follows from (2.1) that for any ¢ > 0,

P(8, > n"* ¢ for all n sufficiently large) = 1,
while from Feller’s (1946) Theorem 2 we have
P(8, < nM** for all n sufficiently large) = 1.
Hence it follows that if (5.3) holds, then
P(lim,. log Sp/a " logn = 1) = 1.
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