A NOTE ON SUMS OF INDEPENDENT RANDOM VARIABLES WITH INFINITE FIRST MOMENT

BY H. D. MILLER

Imperial College, London

1. Introduction. Let X be a non-negative random variable with distribution function F(x) such that $E(X) = \infty$. Put $S_n = X_1 + \cdots + X_n$ where $\{X_i\}$ is a sequence of mutually independent random variables each following the distribution of X. We consider the problem of finding positive monotonic sequences $\{a_n\}$ and $\{b_n\}$ such that

(1.1)
$$P(S_n > a_n \text{ i.o.}) = 0,$$

(1.2)
$$P(S_n < b_n \text{ i.o.}) = 0.$$

Such sequences form ultimate upper and lower bounds for the sequence $\{S_n\}$ of sums in the sense that

$$P(b_n \le S_n \le a_n \text{ for all sufficiently large } n) = 1.$$

We require the bounds not to be too crude. If X has a finite variance then the law of the iterated logarithm provides the required sharp bounds.

Feller (1946) has shown that if $E(|X|) = \infty$ (here X is not necessarily non-negative) and if a_n/n is non-decreasing, then

(1.3)
$$P(|S_n| < a_n \text{ for all sufficiently large } n) = 1$$

if and only if $\sum_n P(|X_n| > a_n) < \infty$. However, for a very asymmetrical X the statement from (1.3) that $P(S_n < -a_n \text{ i.o.}) = 0$ may be rather crude. In particular, for non-negative X, Feller's result enables us to find sequences $\{a_n\}$ satisfying (1.1) but not sequences $\{b_n\}$ satisfying (1.2). Other work in this connection is by Chow and Robbins (1961) who show that if $E(|X|) = \infty$ in the general case, then for any sequence $\{c_n\}$ either

$$(1.4) P(\limsup_{n\to\infty} |S_n/c_n| < \infty) = 1,$$

 \mathbf{or}

$$(1.5) P(\liminf_{n\to\infty} |S_n/c_n| > 0) = 1,$$

but not both of (1.4) and (1.5) can hold.

A corollary is that if $E(|X|) = \infty$, then there is no sequence $\{c_n\}$ for which $\lim_{n \to \infty} (S_n/c_n) = 1$ with probability 1.

In the present paper we outline a method for determining sequences $\{b_n\}$ satisfying (1.2) for the case of non-negative X_i , but to obtain explicit results it is necessary to assume something explicit about 1 - F(x) as $x \to \infty$. The

Received 15 July 1966.

general solution, if it exists in the form of a neat condition such as Feller's for the upper bound, eludes us. We examine the cases where as $x \to \infty$, 1 - F(x) varies regularly with exponent $-\alpha$ ($0 < \alpha \le 1$), i.e.

$$(1.6) 1 - F(x) = L(x)/x^{\alpha} (x \rightarrow \infty; 0 < \alpha \le 1).$$

where L(x) is slowly varying as $x \to \infty$, i.e. $L(cx)/L(x) \to 1$ as $x \to \infty$ for each fixed c > 0. Regularly varying functions were studied systematically by Karamata (1930); a more recent and accessible exposition is given by Feller (1966), p. 268.

An alternative way of expressing (1.2) is

$$(1.7) P(\liminf_{n\to\infty} S_n/b_n \ge 1) = 1.$$

Ideally we should like to obtain a precise lower bounding sequence $\{b_n\}$ satisfying

(1.8)
$$P(\liminf_{n\to\infty} S_n/b_n = 1) = 1.$$

However we are only able to do this for the case $1 - F(x) \sim L(x)/x$ and even then only provided L(x) does not grow too rapidly (Theorem 2).

In a final section we examine some conditions for convergence of S_n/n to $+\infty$ in the strong law of large numbers (X is no longer non-negative). Previous work in this connection is by Derman and Robbins (1955).

2. Preliminary results. One method, used for example by Derman and Robbins (1955), for determining a sequence $\{b_n\}$ satisfying (1.2) is provided by the fact that

$$(2.1) P(S_n < b_n) \leq P\{\max(X_1, \dots, X_n) < b_n\} = \{F(b_n)\}^n.$$

If $\{b_n\}$ is chosen so that $\sum \{F(b_n)\}^n$ converges (which is equivalent to the convergence of $\sum \exp \left[-n\{1-F(b_n)\}\right]$), then by the Borel-Cantelli lemma, $P(S_n < b_n \text{ i.o.}) = 0$. For the case $1 - F(x) \sim x^{-1}$ say, this method gives a very crude lower bounding sequence $\{b_n\}$. We can do better by using the strong law of large numbers according to which $P(S_n < Kn \text{ i.o.}) = 0$ for any fixed K > 0. It appears in general that the "closer" F(x) is to having a first moment, the cruder is the sequence $\{b_n\}$ obtained from this method.

An alternative method is the following. Let

$$(2.2) U_1(x) = \int_0^x t \, dF(t), U_2(x) = \int_0^x t^2 \, dF(t).$$

Define the truncated variables X_n' by

(2.3)
$$X_n' = X_n \qquad (0 \le X_n \le \rho_n)$$

$$= 0 \qquad (X > \rho_n).$$

Then $E(X_n') = U_1(\rho_n)$ and $E(X_n')^2 = U_2(\rho_n)$. Define

$$(2.4) Y_n = \{E(X_n')\}^{-1} X_n'.$$

Then $E(Y_n) = 1$. If we choose $\rho_n \uparrow$ so that

$$(2.5) \sum n^{-2} V(Y_n) < \infty,$$

then $n^{-1}(\sum_{k=1}^{n} Y_k - n) \to 0$ with probability 1 by Kolmogorov's theorem. Thus $P(\sum_{k=1}^{n} Y_k \sim n) = 1$, and if $k_n = o(n)$, then

$$(2.6) P(\sum_{k=k_n}^n Y_k \sim n) = 1.$$

Hence for each $\epsilon > 0$,

(2.7)
$$P\{\sum_{k=k_n}^n Y_k > n(1-\epsilon) \text{ for all } n \text{ sufficiently large}\} = 1.$$

Now with probability 1,

$$S_n \ge \sum_{k=1}^n X_k' \ge \sum_{k=k_n}^n X_k' \ge E(X_{k_n}') \sum_{k=k_n}^n Y_k$$
,

and so for each $\epsilon > 0$ we have

(2.8)
$$P\{S_n > (1 - \epsilon)nU_1(\rho_{k_n}) \text{ for all } n \text{ sufficiently large}\} = 1.$$

We have thus proved the following:

LEMMA 1. If $\rho_n \uparrow$ satisfies (2.5), i.e. if

(2.9)
$$\sum_{n=1}^{\infty} U_2(\rho_n) / n^2 \{ U_1(\rho_n) \}^2 < \infty$$

and if $k_n = o(n)$, then

$$(2.10) P(\liminf_{n\to\infty} S_n/nU_1(\rho_{k_n}) \ge 1) = 1.$$

Thus for each $\epsilon > 0$, the sequence $b_n = (1 - \epsilon)nU_1(\rho_{k_n})$ satisfies (1.2). It is possible in some cases to choose k_n so that $U_1(\rho_{k_n}) \sim U_1(\rho_n)$ and we then have the tidier result than $b_n = (1 - \epsilon)nU_1(\rho_n)$ satisfies (1.2) for each $\epsilon > 0$.

Lemma 2. If $\{\sigma_n\}$ satisfies the two conditions

(2.11)
$$0 \leq \lim \inf_{n \to \infty} n\{1 - F(\sigma_n)\} < 1;$$

(2.12)
$$\lim_{n\to\infty} U_2(\sigma_n)/n\{U_1(\sigma_n)\}^2 = 0,$$

then

$$(2.13) P(\liminf_{n\to\infty} S_n/nU_1(\sigma_n) \le 1) = 1.$$

PROOF. We have, following Feller (1966), p. 231, equation (7.5),

$$P\{|S_n/nU_1(\sigma_n) - 1| > \epsilon\} \leq U_2(\sigma_n)/\epsilon^2 n\{U_1(\sigma_n)\}^2 + n\{1 - F(\sigma_n)\}.$$

If (2.11) and (2.12) hold, then for each $\epsilon > 0$

$$\lim \inf_{n\to\infty} P(S_n/nU_1(\sigma_n) < 1 + \epsilon) > 0,$$

from which (2.13) follows.

Lemma 3. Let L(x) > 0 be slowly varying as $x \to \infty$. Then there exists a positive function H(x) satisfying

$$(2.14) H(x) \to \infty, H(x) = o(x) (x \to \infty)$$

such that as $x \to \infty$,

(2.15)
$$L\{x/H(x)\} \sim L(x)$$
.

Proof. If $L(x) \to c$ (0 < $c < \infty$) then the result is trivial. Otherwise, L(x) may be expressed in the form

$$(2.16) L(x) = c(x) \exp\left\{ \int_{1}^{x} [\epsilon(t)/t] dt \right\}$$

where as $x \to \infty$, c(x) tends to a finite non-zero limit and $\epsilon(x) \to 0$ and does not vanish outside a finite interval. It suffices to show that we can find H(x) satisfying (2.14) such that as $x \to \infty$,

$$(2.17) \qquad \qquad \int_{x\{H(x)\}^{-1}}^{x} \{\epsilon(t)/t\} dt \to 0.$$

Define

$$\alpha(x) = \sup_{t \ge x^{\frac{1}{2}}} |\epsilon(t)|.$$

Now provided $0 < x\{H(x)\}^{-1} < x$, the integral in (2.16) is bounded in modulus by

$$\{\sup_{xH^{-1}\leq t\leq x} |\epsilon(t)|\} \log H(x).$$

Some calculation will now demonstrate that if H is defined by

$$\log H(x) = \{\alpha(x)\}^{\frac{1}{2}} \qquad (\alpha(x) \ge 2/\log x)$$
$$= (\log x)^{\frac{1}{2}} \qquad (\alpha(x) < 2/\log x),$$

then (2.17) holds and the requirements of the lemma are met.

3. The case $\alpha = 1$. Suppose $E(X) = \infty$ and

$$(3.1) 1 - F(x) = L(x)/x,$$

where L(x) is slowly varying as $x \to \infty$, a property that is unaffected by how L(x) behaves in any bounded interval. From the theory of slowly varying functions the following two relations hold as $x \to \infty$:

(3.2)
$$L(x)/\int_0^x t^{-1}L(t)dt \to 0,$$

$$(3.3) xL(x)/\int_0^x L(t)dt \to 1.$$

It follows from (3.2) and (3.3) that as $x \to \infty$,

(3.4)
$$\int_0^x t dF(t) \sim \int_0^x \{1 - F(t)\} dt = \int_0^x t^{-1} L(t) dt,$$

(3.5)
$$\int_0^x t^2 dF(t) \sim x^2 \{1 - F(x)\}.$$

We now take $\rho_n = n$ in Lemma 1. The series (2.9) behaves like

(3.6)
$$\sum_{n=1}^{\infty} \{1 - F(n)\} / [\int_{0}^{n} \{1 - F(x)\} dx]^{2}.$$

The terms of (3.6) are monotonic and since the integral

(3.7)
$$\int_{0}^{\infty} \{1 - F(x)\}/[\int_{0}^{x} \{1 - F(t)\}dt]^{2} dx$$

is convergent, so is the series (3.6). Thus from Lemma 1, provided $k_n = o(n)$,

(3.8)
$$P\{\lim \inf_{n\to\infty} S_n/n \int_0^{k_n} \{1 - F(x)\} dx \ge 1\} = 1.$$

Now the slow variation of L(x) implies that of $\int_0^x \{1 - F(t)\} dt$. By Lemma 3 we may choose therefore k_n so that

$$\int_0^{k_n} \{1 - F(x)\} dx \sim \int_0^n \{1 - F(x)\} dx.$$

We have thus proved the following result.

THEOREM 1. If $E(X) = \infty$ and if $1 - F(x) = x^{-1}L(x)$ where L(x) is slowly varying as $x \to \infty$ then

$$(3.9) P\{\liminf_{n\to\infty} S_n/n \int_0^n x dF(x) \ge 1\} = 1.$$

In the next theorem we show that if we impose a restriction (in the form (3.11) below) on the growth of L(x) in Theorem 1 then we obtain equality inside the braces in (3.9). In a later remark we show that some such restriction is also necessary for equality.

THEOREM 2. Suppose that in addition to the hypothesis of Theorem 1,

$$(3.10) x\{1 - F(x)\} / \int_0^x t dF(t) = o([\log \{ \int_0^x t dF(t) \}]^{-1}),$$

or equivalently,

(3.11)
$$L(x) \log \{ \int_0^x t^{-1} L(t) dt \} / \int_0^x t^{-1} L(t) dt \to 0 \qquad (x \to \infty),$$

then

(3.12)
$$P\{\lim \inf_{n\to\infty} S_n/n \int_0^n t dF(t) = 1\} = 1.$$

PROOF. Let

$$a(x) = x\{1 - F(x)\} / \int_0^x \{1 - F(t)\} dt.$$

Now $a(x) \to 0$ by (3.2) and (3.4). Since the expression on the right hand side of (3.10) is non-increasing it follows that

$$(3.14) \sup_{t \ge x} \{a(t)\} = o(1/\log \left[\int_0^x \{1 - F(t)\} dt \right]) (x \to \infty).$$

Next let

(3.15)
$$b_n = n \int_0^n t^{-1} L(t) dt.$$

We have, from integrating (3.13),

$$(3.16) \qquad \int_0^{b_n} (1 - F) dt / \int_0^n (1 - F) dt = \exp\left\{ \int_n^{b_n} t^{-1} a(t) dt \right\}$$

and

$$\left| \int_{n}^{b_n} t^{-1} a(t) dt \right| \le \left\{ \sup_{t \ge n} a(t) \right\} \log b_n / n \to 0$$

in virtue of (3.10) and (3.15). Thus by (3.4), as $n \to \infty$,

(3.17)
$$\int_0^{b_n} t^{-1} L(t) dt \sim \int_0^n t^{-1} L(t) dt.$$

We now show that the conditions of Lemma 2 are satisfied with $\sigma_n = b_n$. For

$$\int_{n}^{b_{n}} t^{-1}L(t)dt \geq \{L(b_{n})/b_{n}\} (b_{n}-n),$$

so that

$$(3.18) \quad n\left\{1 - F(b_n)\right\} = nL(b_n)/b_n \le \int_n^{b_n} t^{-1}L(t)dt/\left\{(b_n/n) - 1\right\}$$
$$= \int_n^{b_n} t^{-1}L(t)dt/\int_n^{0} t^{-1}L(t)dt - 1 \to 0 \ (n \to \infty)$$

in virtue of (3.17). Finally,

$$(3.19) \quad b_n L(b_n) / n \{ \int_0^{b_n} t^{-1} L(t) dt \}^2 \leq [b_n / n \int_0^n t^{-1} L(t) dt] \cdot [L(b_n) / \int_0^{b_n} t^{-1} L(t) dt]$$

$$= L(b_n) / \int_0^{b_n} t^{-1} L(t) dt \to 0$$

as $n \to \infty$, by (3.2). Hence because of (3.17), the results (3.18) and (3.19) show from Lemma 2 that

$$P\{\lim \inf_{n\to\infty} S_n/n \int_0^n t^{-1} L(t) dt \le 1\} = 1.$$

The proof is concluded by applying (3.4) and Theorem 1.

COROLLARY. If in addition to the hypothesis of Theorem 1,

$$(3.20) 0 \le \lim \inf_{n \to \infty} L(n) < 1,$$

then

$$P\{\lim \inf_{n\to\infty} S_n/n \int_0^n x dF(x) = 1\} = 1.$$

PROOF. The result follows from Theorem 1 and the fact that Lemma 2 holds with $\sigma_n = n$ if (3.20) is true.

REMARK. If, for example, $1 - F(x) \sim x^{-1} (\log x)^k$ as $x \to \infty$ for any fixed positive k then the conditions of Theorem 2 can easily be shown to hold. We then have

$$P\{\lim \inf_{n\to\infty} S_n/n[(\log n)/(k+1)]^{k+1} = 1\} = 1.$$

However, there are slowly varying functions which exceed in magnitude any power of $\log x$, for example $\exp \{(\log x)/(\log \log x)\}$. If L(x) is such that

(3.21)
$$\int_0^x t^{-1} L(t) dt \sim \exp(\log x / \log \log x),$$

(take a(x) in (3.13) to be $(\log \log x)^{-1} - (\log \log x)^{-2}$ for all large x) then the condition (3.11) of Theorem 2 does not hold. Nor in this case does the conclusion of Theorem 2 hold. To see this we note that

$$\rho_n \, = \, [n/(\log \, n)(\log \, \log \, n)] \, \exp \, (\log \, n/\log \, \log \, n)$$

satisfies (2.9) of Lemma 1. If we take $k_n = [n/\log \log n]$, then $\rho_{k_n} \sim \rho_n/\log \log n$ and

$$P(\liminf_{n\to\infty} S_n/nU_1(\rho_n/\log\log n) \ge 1).$$

Some calculation will show that $U_1(n) = o\{U_1(\rho_n/\log\log n)\}$ and hence, by (2.2) and (3.4),

$$P(\liminf_{n\to\infty} S_n/n \int_0^n t dF(t) = \infty) = 1.$$

It follows that some condition such as (3.10) is necessary for the conclusion of Theorem 2 to hold.

4. The case $0 < \alpha < 1$. Suppose now that

$$(4.1) 1 - F(x) = x^{-\alpha}L(x) (0 < \alpha < 1)$$

where L(x) is again slowly varying as $x \to \infty$. The relations corresponding to (3.4) and (3.5) are

$$(4.2) U_1(x) = \int_0^x t dF(t) \sim [\alpha/(1-\alpha)] x^{1-\alpha} L(x),$$

(4.3)
$$U_2(x) = \int_0^x t^2 dF(t) \sim [\alpha/(2-\alpha)] x^{2-\alpha} L(x).$$

These results follow from Feller (1966), Theorem 2, p. 275. From Lemma 1, we then obtain the following:

THEOREM 3. If (4.1) holds, if ρ_n satisfies

$$\sum_{n=1}^{\infty} \rho_n^{\alpha} / n^2 L(\rho_n) < \infty$$

and if $k_n = o(n)$, then for any A > 0,

$$(4.5) P\{\liminf_{n\to\infty} S_n/An\rho_{k_n}^{1-\alpha}L(\rho_{k_n}) \ge 1\} = 1.$$

It is worth noting that when (4.1) holds, the method based on (2.1) for obtaining a sequence $\{b_n\}$ satisfying (1.2) gives reasonably good results in special cases, e.g. $L(x) \to 1$; but in such cases Theorem 3 gives better results. On the other hand when $\alpha = 0$, the opposite appears to be true, e.g. in the special case $1 - F(x) \sim (\log x)^{-1}$, the method based on (2.1) gives better results than Lemma 1.

5. The strong law of large numbers. Suppose now that X can take positive and negative values. We examine some conditions under which $S_n/n \to +\infty$ with probability 1. Let

$$X^{+} = \max(0, X), \qquad X^{-} = -\min(0, X).$$

Derman and Robbins (1955) showed that if for some constants $0 < \alpha < \beta < 1$ and C > 0,

$$(5.1) 1 - F(x) \ge C/x^{\alpha},$$

$$(5.2) E\{(X^{-})^{\beta}\} = \infty$$

then $S_n/n \to \infty$ with probability 1.

We can use the results of Sections 3 and 4 to show that even if, in a certain sense, the positive and negative tails of the distribution of X are much more alike in order of magnitude than is implied by (5.1) and (5.2), we may still obtain convergence to $+\infty$ in the strong law of large numbers.

We write $S_n = T_n - W_n$ where $T_n = X_1^+ + \cdots + X_n^+$ and $W_n = X_1^- + \cdots + X_n^-$. Suppose for example that as $x \to \infty$, $1 - F(x) \sim x^{-\alpha} \log x$, while $F(-x) \sim x^{-\alpha} / \log x$ (0 < \alpha < 1). Using Theorem 3, we can show that

for $b_n = n^{1/\alpha} (\log n)^{1-\epsilon}$ (for any fixed $\epsilon > 0$) we have $P(\liminf T_n/b_n \ge 1) = 1$ while from Feller's (1946) Theorem 2 we have $P(W_n/b_n \to 0) = 1$. It follows that $P(\liminf S_n/b_n \ge 1) = 1$ and so $S_n/n \to +\infty$ with probability 1. When $\alpha = 1$, special cases may be approached in a similar way. Thus for example, if as $x \to \infty$, $1 - F(x) \sim x^{-1}$ while $F(-x) \sim \{x(\log \log x)^{1+\epsilon}\}^{-1}$ for some fixed $\epsilon > 0$, then $S_n/n \to +\infty$ with probability 1. It seems difficult to make any simple general statement along these lines.

As a last remark, we make a rather crude strong limiting statement for non-negative X. Suppose

$$(5.3) 1 - F(x) = x^{-\alpha} L(x) (0 < \alpha \le 1),$$

where L(x) is slowly varying (we assume $E(X) = \infty$ if $\alpha = 1$). Since $L(x) = o(x^{\epsilon})$ for any $\epsilon > 0$, it follows from (2.1) that for any $\epsilon > 0$,

$$P(S_n > n^{1/\alpha - \epsilon} \text{ for all } n \text{ sufficiently large}) = 1,$$

while from Feller's (1946) Theorem 2 we have

$$P(S_n < n^{1/\alpha + \epsilon} \text{ for all } n \text{ sufficiently large}) = 1.$$

Hence it follows that if (5.3) holds, then

$$P(\lim_{n\to\infty}\log S_n/\alpha^{-1}\log n=1)=1.$$

REFERENCES

- [1] Chow, Y. S. and Robbins, Herbert. (1961). On sums of independent random variables with infinite moments and "fair" games. Proc. Nat. Acad. Sci. U.S.A. 47 330-335.
- [2] DERMAN, C. and ROBBINS, HERBERT. (1955). The strong law of large numbers when the first moment does not exist. Proc. Nat. Acad. Sci. U.S.A. 41 586-587.
- [3] Feller, W. (1946). A limit theorem for random variables with infinite moments. Amer. J. Math. 68 257-262.
- [4] Feller, W. (1966). An Introduction to Probability Theory and Its Applications, 2. Wiley, New York.
- [5] KARAMATA, J. (1930). Sur un mode de crossance régulière des fonctions. Mathematica (Cluj) 4 38-53.