ON A QUICKEST DETECTION PROBLEM!

By. J: A. BATHER

University of Manchester

1. Introduction and summary. In a recent paper A. N. Shiryaev [1] discusses
the problem of detecting the arrival of a ‘disorder’”” in an observed stochastic
process, as quickly as possible subject to a limitation on the number of false
alarms. He considers two versions of a simple model. In the first, the disorder
arrives at a discrete instant 8 according to a geometric distribution. The process
disturbed by this event consists of a sequence of independent observations
{&}, such that &, &, ---, &1 arise from a certain distribution Fo, whereas
£ , &1, - - - come from a different distribution F; . In the continuous time version
of the model, the a-prior: distribution of 6 is exponential:

PO>1) =e™ (t=0)

and the disorder is represented by a change in the mean drift of an observed
Wiener process {n(¢)}. More precisely, for any given value of 6, this process
has independent normal increments éy = (¢ + &) — 5(¢), with

E(5p) =0 (0=<t<9),
E(on) = ot (t=9),
Var (8n) = (t = 0).

In both versions it may be decided at any instant ¢ to carry out a detailed in-
spection in order to ascertain whether or not the disturbance has occurred. Then,
if it is found that 8 < ¢ the process terminates but observation must be resumed
immediately after a false alarm. Within these rules it is required to find a decision
procedure which determines the instants at which a thorough inspection is
worthwhile.

Assuming that N, the expected number of false alarms, is specified in advance
Shiryaev establishes the general form of policy which minimizes 7, the expected
delay in verifying the arrival of the disorder. The a posterior: distribution of 6
at any time, does not depend on anything which took place before the last false
alarm. For example, in continuous time

p(t) = PO =S tq(), 0=t 2t) =P0OSt|n(t),ss¢ =),

where s is the instant of the most recent false alarm. The geometric and ex-
ponential distributions have the useful property that

P(O>t+s|o0>s) =PO>t|o>0).
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He deduces that the optimal policy for the period following any false alarm must
correspond exactly with the procedure applied initially, before the first inspec-
tion. In addition, he proves the existence of a critical level p* = p*(N) such
that, in general, observations should continue so long as 0 < p(t) < p™* with an
immediate inspection as soon as p(t) = p*.

These and other similar results are established first for the discrete time model
and then extended to the continuous time version. For the latter, the paper also
gives more explicit calculations: the evaluation of = in terms of p*, for example.
But no attempt is made to determine the critical level p*(N) for the optimal
policy. In fact, as we shall see, a very simple relation holds:

p*(N) = (N +1)7\

However, the aim here is to show how the optimal policy can be found for a
more realistic specification of the minimization problem, involving given delay
and inspection costs. We shall concentrate entirely on the continuous time model
and suppose that each inspection incurs an instantaneous cost K > 0, not de-
pending on its outcome, whereas any delay in detecting the arrival of the disorder
leads to a cost ¢ > O per unit time. Hence the total expected cost is
K(N + 1) 4 c¢r, which depends both on the decision procedure and on the initial
condition p(0) = 0. The minimization will be based on the calculation of the
minimum expected future cost f«(¢), as a function of the current state ¢(t) =
p(t)/(1 — p(¢)), by solving a certain differential equation with special boundary
conditions.

A heuristic argument, in which one simply assumes that f«(¢) is suitably
differentiable, can be given without much difficulty. But, strictly speaking, it
is not clear that risk functions such as f«(¢), each of whose values is defined as
the infimum of a class of expectations, are sufficiently well behaved. This dif -
ficulty is often encountered in statistical applications of dynamic programming
to processes in continuous time. Typically, it is extremely difficult to establish
the required differentiability properties directly and it is necessary to seek an
indirect justification by means of existence and uniqueness theorems. In our
case the formal solution can be produced explicitly and, because of this, its
justification is much easier. Nevertheless, the approach is complicated by the
need to establish several preliminary results, and the discussion of these special
properties is limited to a brief indication of the main steps, in the hope that the
essential structure of the argument will be more generally useful.

Section 2 is concerned with the information process {¢(¢)}. Its relation to the
observed process {#(¢)} is described and certain properties of its increments are
collected for later use. The main argument begins in Section 3 with a discussion
of sub-optimal decision procedures defined by specifying an open continuation
set @ within the space [0, « ) of possible “initial”’ states ¢. It is shown that any
risk function f(¢) can be determined for each sub-interval of the corresponding
set € by solving the basic differential equation appropriately. Sections 4 and
5 consider the special solution f«(¢) which represents the optimal decision pro-
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cedure, and give the required verification that f«(¢) is uniformly minimal. The
final section contains a brief analysis of the operating characteristics of the
optimal policy and indicates the importance of evaluating the particular minimum
risk f.(0).

2. The information process. For the moment, let us disregard the possibility
of stopping for an inspection and consider the way in which the process {¢(¢)}
of a posteriorsi probability ratios is determined by the observations on {n(¢)}. It is
convenient to replace these always by

¢ = (@) + N — )t

Then the transition ¢(¢) — (¢ + h), generated by the realization of ¢(s) during
an uninterrupted period ¢ < s < ¢t + h, is given by the following:
THEOREM 2.1.

o(t 4+ k) = o(t) exp {s(t + h) — c(1)} + N [ exp {¢(¢t + h) — §(s)} ds.

Proor. This formula follows directly from equation (26) of Shiryaev’s paper.

We shall consider the implications of this result. It is immediately clear that,
since the original process {#(¢)} is a.s. continuous, we may restrict attention to
continuous realizations of {¢(Z)}.

In what follows, ¢ and the values {(t) = ¢, <p(t) = ¢ = 0 are treated as fixed
initial conditions, in considering the events of a short period of length &:. The
process increments are denoted by 8¢ and ép. The symbols 6, and 6, refer to the
corresponding maximum and minimum changes respectively. For example,

dul = max;<s<iae {$(8) — $()}.
For some purposes, Theorem 2.1 can be replaced by crude inequalities. Since
0 = [ exp{or — (£(s) — £(£))} ds < exp {8 — dnf}dt,
we have
(2.1) eexp (8f) = ¢+ 8¢ = pexp (8¢) + Notexp (8¢ — dml).

We need to calculate various expectations with respect to the distribution of
8¢, It will be enough to carry terms of order 8. The random variable §¢ is un-
bounded, but we can avoid this difficulty by introducing suitable restrictions of
the range of integration. Let E, denote expectation with the integration restricted
to those paths {¢(s); ¢t < s < t + &} which satlsfy loc] = (o). Slmﬂarly, let
E; refer to the smaller class of paths such that —( ) < Ol S 0l < (b‘t) Thus

(2.2) Ey(1) < Ey(1) < 1.

Most of the results collected here are consequences of the fact that the dis-
tribution of 8¢, given that ¢(¢) = ¢, can be represented a¢curately up to terms of
order 6t as a mixture of two normal distributions. Thus, if § < ¢ the distribution
.denoted by N(8t(N + 1), 6t) is applicable and if 8 > ¢ (or strictly speaking, when
6 = t -+ 8t) this becomes N(8t(\ — %), 8¢). Since p(¢) = (1 + @), the cor-
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responding weights must be ¢(1 + ¢)™" and (1 + ¢)7, respectively. Then the
following expressions can be obtained by direct calculation.

(2.3)  Eofexp (55)} = 1+ {\ + o(1 + )7}t + o(82),
(24)  Eolexp (260)} = 1 + {2N + (1 + 30)(1 + ) '}t + o(3t).

In each case it is easily verified that the term o(8¢) applies uniformly in ¢ = 0.
The extreme increments 8¢ and §,{ can be bounded by normal random
variables. For example,

0 < 0uf < maxsgocorae {(MN+ 3)(s — t) + w(s) —w(t)} = N+ 3)8 + d»w,

where {w(s)} is a standard Wiener process and, in particular, dw is distributed as
N(0, 8¢). It is not difficult to deduce from the symmetry of this process, that
8w has the same distribution as |8w|. Thus éx¢ and similarly §,.¢ have the same
order of magnitude as |dw| and clearly

(2.5) Ey(1) =1+ o(82)

uniformly in ¢.
We return now to the information process. Under the restrictions corresponding
to E , it follows from Theorem (2.1) that

(2.6) d¢ = olexp (8¢) — 1} + Not + o(dt),

which again holds uniformly in ¢. Again, if ¢ is bounded; ¢ < b say, then (2.1)
indicates that under E;

(2.7) —(b + 1)(88)} < dup < bup < (b 4 1)(31)},

provided that 8¢ is small. Then 8¢ and 8. are constrained in the same way as
du¢ and 8,¢. By (2.5), the probability of the event specified by the above in-
equalities is 1 + o(6t), uniformly in ¢ < b.

The main purpose of all these preliminaries can now be achieved. The re-
stricted moments Fj(8p) and E;(8¢°) are essential to the investigation of our
decision problem. In the first case, relation (2.6) shows that

Ei(d¢) = oEr{exp (87)} — ¢ + Not + o(t).

Since the integrand on the right is bounded under E, and since Ey(1) — Ey(1) =
o(8t), it follows that we can evaluate the expression by means of (2.3). The term
o(8t) still applies uniformly when E, is replaced by E,, provided that ¢ = .
Then we obtain

(2.8) Ei(80) = (N1 + o) + & (1 + ¢)7}8t + o(8t).

A similar argument, which also makes use of (2.4), shows that
(2.9) Ei(80°) = o't + o(t).

Both these formulae apply uniformly in ¢ =< b.
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Finally, we mention two results concerning the general variability of the
process {¢(¢)}. We note that 8x¢ and 6.¢ can be replaced by the corresponding
increments of a standard Wiener process apart from terms of order 8t. It follows
by considering the inequalities (2.1), that 8¢ and 8.¢ have similar properties, at
least when ¢ > 0. In particular, the events {8,¢ > 0} and {8,¢ < 0} have prob-
ability 1 and we can interpret this as follows. For any fixed 8¢ > 0, not necessarily

small,
(2.10) limgor P(8ue = 8| o(t) = ¢) = 1,
limg.op P(dmp = —B|o(t) = ¢) = 1.

The latter holds provided that ¢ > 0.
Suppose now that we place an absorbing barrier at the level b and that 7'(o) is
the expected time to absorption, starting at the point ¢ < b. Thus

T(¢) = Elinf {h > 0:¢(¢t + h) = b} | o(¢) = ¢,

which does not depend on ¢. We shall make use of the fact that T(¢) is bounded
forall ¢ = b. This can be established without difficulty by a simple argument. It is
enough to consider the independent increments of {¢(¢)} over a series of regular
intervals of time. The discrete time period % can be selected so that

Plo(t + h) = o(t) +ble(t) = ¢) =

for some ¢ > 0 and all ¢ = 0. Then 7'(¢) is dominated for every ¢ < b by the
expectation of a geometric random variable with parameter e. It follows that

(2.11) T(¢) = h/e (¢ =0).

3. Sub-optimal policies. We shall consider the class of decision procedures
which depend only on the quantity ¢, since a knowledge of ¢(¢) at any time con-
tains all the information relevant to the minimization of future costs. More
precisely, the decision maker is concerned with the behaviour of a homogeneous
Markov process {j(¢), 7(¢)}, where j(¢) is the mean drift of the observed Wiener
process which may be 0 or 1. This component has only one possible transition,
0 — 1 which occurs at a fixed random rate N. Furthermore, the delay and inspec-
tion costs to be considered by the decision maker, depend only on the state of the
above Markov process and his decisions cannot affect costs incurred previously.

Since
PG(t) =0|q(t),0 ¢ =¢t) = (1 + o),

it follows from the Markov property that, once the values ¢(¢) = ¢ and 7(¢) = g
are recorded, any events depending only on the future behaviour of the process
are conditionally independent of the previous observations 7(¢'),0 < ¢ < ¢ It is
also clear that the decision maker may choose a new origin for his future observa-
tigns, so that the minimization problem does not depend on the particular value
of 5. In other words, the decision problem specified for the period [¢, © ) by the
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observations n(#'), 0 < ¢ < t, with ¢o(t) = ¢, is identical with that specified for
the period [0, « ) by the initial condition ¢(0) = .

In view of these remarks, we shall seek an optimal policy within the class of
decision procedures covered by the following:

DerintTioN 3.1. A policy is specified by an open set € C [0, » ), which con-
tains 0 but does not include a neighbourhood of «. At each instant ¢, the pro-
cedure must be to continue observation if ¢(¢) ¢ € and to stop for an immediate
inspection if ¢(t) £ C.

The restriction to open continuation sets is possible without loss of generality
because, according to (2.10), any limit point of the stopping set is effectively a
stopping point. We suppose that 0 £ @, since otherwise observation could not
begin after a false alarm. Finally, if [¢, « ) C @ for some initial state ¢, then it can
be shown that the expected period of observation is infinite and hence that the
total expected cost is infinite.

Consider an arbitrary policy with continuation region € which must consist of
an interval [0, b), together with a countable family of disjoint intervals (a. , b;).
It follows from the continuity of the process {¢(¢)} that no state ¢ > b can occur
after the first inspection and the effects of the policy are largely determined by
the critical level b. We associate a risk function f(¢) with the policy by defining
f(o) as the total expected future cost, given the present state ¢(¢) = ¢ and using
the procedure determined by @ throughout. Thus, in the notation of Section 1,

(3.1) f(0) = K(N 4+ 1) + cr.

By (2.11), the expected length 7'(0) of any run of the process {¢(¢)} which
begins in the state 0 and ends with the first occurrence of the state b, is finite. But,
having reached b, an inspection occurs and with probability (1 + b) ™" this leads
to a renewal of the original state 0 and a second run of the process, independent
of the first. It follows that the total number of runs needed, including the last
during which the disturbance occurs, can be treated as a geometric random
variable. Hence

(3.2) N=1/b

and f(0) < (N + 1)(cT(0) + K), which is clearly finite.

It is instructive to study the risk f(¢) for an arbitrary starting point ¢. In
particular, if ¢ is a stopping point, there is an immediate cost K and with prob-
ability (1 + ¢)7", the original state is replaced by 0. Thus

(3.3) fle) = K + (1 + ¢)7f(0) (pz@).

It follows that f(¢) is bounded and continuous on the stopping set. Our next step
is to establish its continuity in general.
LemMA 3.2. The risk function f(¢) for any policy, is continuous in ¢ = 0.
Proor. We already know that f(¢) is continuous when ¢ £ € and each of the
component intervals of € can be treated separately. For convenience of notation
let us suppose that 0 < ¢ < b. In this case, the first run of observations leads to
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an expected cost not exceeding ¢T'(¢) + K, where T'(¢) is the expected time to
absorption at b, and hence

(34) 0=f(e) =cl(e) + K+ (1 +0b)f(0) =B (¢ = 0).

Here the upper bound, provided by (2.11), may depend on b. We can now apply
the properties (2.10) to show that f(¢) is continuous. Suppose for example, that
0 £ ¢ < ¢ < b and consider whether the information process, starting at
o(t) = ¢, reaches the level ¢’ during the period [t, ¢ + 8¢]. In the notation of
Section 2, we have

f(e) = Eff(¢ + 80)| due < ¢ — ¢, 0(t) = ¢}P(dup < ¢ — 0| o(t) = ¢)
+ f(&)P(oue = ¢ — ¢ o(t) = ¢) + 0(8t).

The last term here represents the possible delay cost and even if § < ¢, this can-
not exceed c¢dt. Since the risk is bounded, it follows that

1f(¢) — 7(&)| = 2BP(3up < ¢ — ¢ o(t) = ¢) + cot.
Then, by letting ¢’ — ¢+ and using the first part of (2.10), we obtain

lim supyrne+ [f(@) — f(¢)] < ct.

But 8¢ can be made arbitrarily small and hence the risk is right-continuous at ¢.
This holds whenever 0 < ¢ < b and a similar analysis, relying on the second part
of (2.10), shows that f(¢) is left-continuous when 0 < ¢ < b. This completes the
proof.

In addition to (3.3), the risk function satisfies a fundamental integral equation
in the continuation region. This can be established by considering the possible
trajectories {¢(s), ¢ = s =< ¢ 4+ 8t} and the costs incurred over a short period.
Suppose first that ¢(f) = ¢ < 8 < b and consider the paths included in the re-
stricted expectation E; . For these paths, the inequalities (2.7) are valid and &t
may be chosen sufficiently small to ensure that no inspection occurs during the
period. In this case, the cost is easily evaluated up to terms of order é¢. For any
other path, the total cost is bounded and (2.5) shows that the effect of such
paths is negligible. Hence

f(@) = Eife(1 4+ ¢)cdt + f(o + o)} + o(t)

holds uniformly in ¢ = B. Finally, using (2.5) and the fact that the risk function
is bounded, we can replace F; by the unrestricted expectation. The argument
extends without difficulty to show that in general,
(3.5)  fle) = E{f(e + do)e(t) = ¢} + o(1 + ¢)'cdt + o(dt) (pe€),
where the term o(8¢) applies uniformly in any closed subset of @. The uniform
validity of this term is important in establishing the following uniqueness
property.

TaeEOREM 3.3. The risk function for any policy, can be determined as the unique
continuous solution of equations (3.3) and (3.5).
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Proor. Since f(¢) is continuous and satisfies both equations, it is enough to
prove the uniqueness. For simplicity, it will be assumed that € = [0,b). Let d(¢)
be the difference between any two continuous solutions of (3.3) and (3.5). Then
we have

(3.6) d(e) = (1 + ¢)7 d(0) (¢ 2 D),
(3.7) d(e) = E{d(¢ + 50)| o(t) = ¢} + o(8) 0=¢=0).

We now choose a particular closed interval [0, 8] within which the discrepancy
o(8t) applies uniformly. Suppose for example, that d(0) = 0 and let
D = max,z {d(¢)} > 0. Since d(¢) < (1 + b)™ d(0) when ¢ = b, this maxi-
mum is attained at some point ¢y < b. Let p be any number such that (1 4+ )™ <
p < 1. Then, using the continuity of d(¢) as ¢ — b—, we can select 8 so that
d(¢) £ pD whenever ¢ = 8 and ¢ < 8 < b. Equation’(3.7) holds uniformly in
¢ €10, ). Thus, given ¢ > 0, there exists a A > 0 such that

(38) d(e) < E{d(¢ + d¢)| o(t) = ¢} + bt (0= ¢=8),

for all 8¢ < A. We shall interpret this result in the following way. Let & be a fixed
large number and for each positive integer r, let us choose ¢ = ¢(r) as small as
possible so that (3.8) holds with 8¢ = h/2". Then the sequence {e(r)} is non-in-
creasing and has the limit zero asr — «.

For the moment, let us regard r together with & = h/2", ¢ = ¢(r) as fixed
quantities and consider the random walk {¢,, n = 0, 1, 2, ---} where
on = o(ndt). Let

qn:P(‘P1<B:‘p2<ﬁ"";‘Pn—l<ﬁ;‘(’n§ﬁ): Q=Zir=l%p,

The initial condition ¢(0) = ¢ is omitted here to simplify the notation. Thus
Q = Q(r) is the probability that the discrete time process, starting at ¢, is
absorbed at some level ¢ = B before the time & = 278¢. For the first step in the
random walk, relation (3.8) and our choice of 38 indicate that

D = d(¢0) = et + pDgs + E{d(e1); o1 < B}.
It follows by induction that in general,
D < nedt + pD(qu + g2+ -+ + gu) + Eld(en) ;00 < B, 02 < B, -+, 00 < B}.

If we now set » = 2" and bound the last term, the result is D < he + pDQ +
D(1 — Q). This can be rewritten to exhibit its dependence on r, as follows:

(3.9) (1 = p)DQ(r) = he(r) (r=1,2"--).

It is easy to see that the inequality (3.9) contradicts our assumption that
D > 0. The sequence {Q(r)} of absorption probabilities, associated with a period
of fixed but arbitrary length A, is clearly non-decreasing. On the other hand
e(r) = 0 asr — . Thus, if D > 0 we must have Q(r) = 0 for every r and in
particular, lim,.., @(r) = 0. But this conclusion is inconsistent with the con-
tinuity of the original process {¢(¢)} and our previous result (2.11), which shows

v
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that the time taken for the process to reach absorption at the level b > B has
finite expectation T'(¢o). It follows that max,s {d(¢)} = 0, since we began by
assuming without loss of generality that d(0) = 0. Then of course, d(0) = 0
and the whole argument can be applied again to the function —d(¢). Hence
min,o {d(¢)} = 0 and this completes the proof.

TareOREM 34. Let g(¢) be a continuous function with the following properties: g(¢)
satisfies relation (3.3) when ¢ £ @ and has continuous derivatives g’ (¢) and g” (o)
when ¢ € C;

(310) W1+ (@) + NI+ )+ (0) +ew=0 (ece).
If the continuous region is bounded, then g(¢) satisfies equation (3.5) and hence
9(e) = f(e) . (¢ = 0).
Proor. We can verify that g(¢) is a solution of (3.5) by making use of the
results of Section 2. Since g(¢) is continuous and satisfies (3.3) when ¢ is large,
it is bounded for all ¢. Then by (2.5),
Efg(e + 00)| o(t) = ¢} = Eufg(e + ¢)} + o(dt) (pee).
Let [a, 8] be any closed interval contained in €. We can choose a slightly larger
interval in which ¢” (¢) is uniformly continuous, so that
gle + 80) = g(e) + deg'(0) + 386’{g" (¢) + o(1)}
as 8¢ — 0. This holds uniformly in ¢ ¢ [a, 8]. We now substitute this expansion in
the previous equation and apply (2.8) and (2.9). It follows from (2.7) that
E{o(1)60") = o(8t) and we obtain
E{g(e + 80)| o(1) = ¢}
= g(e) + B9 (0) + N1 + 0) + &(1 4+ ¢) g (o)]0t + o(5t).
Then equation (3.10) shows that
9(¢) = El{g(e + 8¢)| o(t) = ¢} + o(1 + ¢)7'cdt + o(t),

where o(8t) applies uniformly, ¢ ¢ [, 8]. It follows from Theorem 3.3 that g(¢)
coincides with the risk function.

REemARK 3.5. It is now clear that the risk function f(¢) can be determined, at
least if @ is bounded, provided that we can solve equation (3.10) subject to
boundary conditions obtained from (3.3). A consideration of the differential
equation as ¢ — 0 shows that

(3.11) g'(0) = 0.

This provides one boundary condition for the first interval [0, b) of @ and the
other is

(3.12) g(b) = K + (1 + b)7'g(0).
In principle, we can evaluate the risk for ¢ < b and then treat any other parts of
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€ separately, using (3.3) and the value of g(0) already found, to provide two
boundary conditions for each interval. In view of this, our assumption that € is
bounded can be eliminated. '

4. The optimal policy. In this Section, we calculate a special risk function
g«(¢) and a constant @ > 0 which determines the corresponding continuation
region €4 = [0, a). The following conditions will be needed:

(41)  (d/de){(1 + )™ Mgi'(0)} = —2c(1 + @) ¢ (¢ = 0),
(4.2) gele) = K+ (1 +¢)7'g+(0) (¢ 2 a),
(4.3) g« (0) =0,

(4.4) g+ (a) = —(1 + a)’g«(0).

Equation (4.1) is equivalent to (3.10) and the only extra condition here is (4.4),
which means that g’ (¢) is continuous at ¢ = a. The smoothing which this implies
is characteristic of optimal stopping procedures. As we shall see, (4.4) is the
necessary and sufficient optimality condition, which enables us to find a.This
will appear later when we verify that g«(¢) coincies with the minimum risk for
each ¢ = 0.

It follows from (4.1) and (4.3) that

g5’ (¢) = —2¢(1 + ¢) 76 ™ [o* (1 + z)2™ e " da.

Then we can express the integrand as (2M) 'z d(z™e™™'") and integrate by parts
to obtain

(4.5) g4 (0) = =1 + ) e — ¢ e *I(9)} (¢ < a),
where

(4.6) I(¢) = [o* e M da.

Condition (4.4) now shows that

(4.7) g%(0) = A Ya — a I (a)}.

Finally, we can apply relation (4.2) when ¢ = a. Hence
K = a(1 + a)7g«(0) + [o" 9+ (¢) de.
On substituting the expressions (4.5) and (4.7) here, we obtain
(4.8) K\ec=a—1log(1+a) — (1+ a)"a " I(a)
+ [0 (1 + ) e I (p) de.

This formula can be simplified by observing that the derivative of the terms on
the right reduces to 2ha ™ /*I(a). Hence
b .

(4.9) K/c = 2 [ a7 I (2) da.
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Equation (4.9) defines @ uniquely in terms of N and K/c. This follows since the
double integral increases through all positive values as a increases from zero.
Then g+(0) which is the most important risk value, is given in terms of a by (4.7).
These formulae will provide the basis for our later study.

6. Verification. In order to distinguish between particular solutions of the
basic differential equation (3.10) and risk functions, we shall adopt a slightly
different notation in what follows. Let g(¢) denote a solution of the differential
equation for all ¢ = 0, which may or may not coincide with some risk function
f(@) over part of its range. Then g«(¢) represents the risk associated with the
special policy of Section 4, within the continuation region €« = [0, a) and at the
boundary point, but not when ¢ > a. In general, the risk for this policy is denoted
by f+(¢). With this definition, we aim to prove the following:

THEOREM 5.1.

F+(¢) = inf {f(¢)} (¢ 2 0),

where the infimum s taken with respect to the class of all policies.

Proor. In order to see this, it is necessary to consider various solutions g(¢) of
equation (3.10). It is possible to find relations of the form gi(¢1) < f«(¢1) for
particular values of ¢, but we shall establish that in such cases, g1(¢) cannot form
part of a risk function in any interval containing the point ¢, . The proof of
Theorem 5.1 will be developed in three stages which cover the cases ¢ = 0,
0 < ¢ =< a, ¢ > a, respectively. But first we need a few preliminaries.

For any solution g(¢) of equation (3.10), let us define the function

(5.1) Yo(e) = K + (1 + ¢)7g(0) — g(o).

Then, writing v«(¢) for v,,(¢), we have

(5.2) (d/dp){(1 + ¢)’™¢ ™ *v: (0)} = 2(1 + ¢)¢™ "¢ ™ *{co — Ngx(0)}
since g«(¢) satisfies equation (4.1). Now v«(a) = v« (a¢) = 0 by our con-
struction of g«(¢). Also, (4.7) shows that

(5.3) a > Ngx(0)/c.

Since the expression on the right of (5.2) changes sign only once at ¢ = Ag«(0)/c
and since v+’(0) = —g«(0) < 0 by (4.3), it follows that v« (¢) has a unique
zero at ¢ = a. Hence v«(¢) is decreasing in ¢ when ¢ < a and increasing when
¢ > a. Thus

(5.4) vx(@) 2 0 (¢ 2 0),

with equality only when ¢ = a.

CasE (i). We now prove that f«(0) is minimal. Since every continuation region
must contain the state zero, it is enough to show that v,(¢) > 0 forall ¢ = 0
whenever g(0) < g«(0). Then the corresponding function g(¢) cannot form part
of any risk function near ¢ = 0. Equation (5.2) can be applied to v, (¢), with
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g«(0) replaced by ¢(0). Hence
(5.5) (d/de)[(1 + o)’ ™7/ (¢) — v« ()}]
= 2M(1 + )™ %™ *{x,'(0) — v+'(0)},

where v,'(0) — v+ (0) = g+(0) — ¢g(0).
If g«(0) > ¢(0), it follows from equation (5.5) that v, "(¢) > v« (¢) for all
¢ = 0 and since v,(0) = v«(0) = K, we have

(5.6) Yol@) > vx(p) 2 0 (¢ >0).

Hence v,(¢) > 0 for all ¢ = 0, as required.

We remark that, since f«(0) is minimal, it follows from relation (3.3) that, in
general, the risk f«(¢) cannot be reduced by stopping. It remains to consider the
possible risks which can be achieved by continuation from the point ¢.

CasE (ii). Let gi(¢1) < g«(¢1) at some point o1 = 0. We can express the
difference

gx(0) — g1i(¢) = (1 + @) {g+(0) — g1(0)} + {vale) — vx(e)}.

But, according to relation (5.6), the two terms on the right here must always have
the same sign. If g1(¢1) < g«(¢1), then gi(¢) < g«(¢) for all values of ¢. Making
use of (5.4), we have

(5.7) gi(e) < K + (14 ¢)7'f4(0) (¢ 20).

This shows that gi(¢) never attains the minimum stopping risk, so g1(¢) cannot
be interpreted as a risk for any state ¢. In particular, if ¢, < a and gi(¢1) < fx(e1),
then g1(¢1) is not an attainable risk at the point ¢, . Hence f«(¢) is minimal when
¢ = 0.

Cask (iii). Finally, suppose that gs(¢2) < fs(¢2) for some g2 > a. The pre-
liminary argument for case (ii) still applies and if ga(¢2) < gx(¢2), then ga(¢2)
cannot be regarded as a risk. Hence gz(¢2) = gx(¢2) and it follows, as before, that
g2(¢) = g«(p) always. Then there is a point ¢; with @ = ¢3 < ¢2, such that
g2(¢3) = f«(¢3). Now consider the function

o(¢) = K + (1 + ¢) " f«(0) — ga(e) (¢ = ¢3).
This satisfies the differential equation
(58) (d/de){(1 + @)’ ™% (9)} = 2(1 4 ¢)¢" "¢ *{ep — NMx(0)}.

By (5.3), the right hand side is strlctly positive for all ¢ = s - Wehaveo(p;) =0
and it may be assumed that o "(¢3) = 0. It follows that o '(¢) > 0 and hence
o(¢) > 0, whenever ¢ > ¢; . This eliminates the possibility that ga(¢2) is a proper
risk and the proof is complete.

6. Operating characteristics. We have established that the optimal decision
procedure is determined by the rule: stop for an inspection if and only if the cur-
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rent information level ¢(¢) = a. This policy alone attains the minimum risk
f«(@), for each possible starting point ¢. The critical level a, determined in terms
of the cost and process parameters by equation (4.9) and the particular risk value
f+(0) = g«(0) given by (4.7) togéther provide the main characteristics of the
optimal policy. In conclusion, let us consider some of these characteristics.

Suppose first that a run of observations on the process {¢(t)} starts from
¢(0) = ¢ < a. Then, since the run must terminate at the level a, the probability
that it ends with a false alarm is simply (1 -+ @)™, as we remarked at the begin-
ning of Section 3. It follows almost immediately that the expected number of false
alarmsis N(¢) = o~ Similarly if the starting point is ¢ = a, there is an immedi-
ate false alarm, leading to the state zero, with probability (1 4+ ¢)™" and hence
N(¢) = (1 + ¢)7'(1 4+ N(0)). Collecting these results, we have

(6.1) N(¢) = min {1, (1 + a)(1 + ¢)"}a™ (¢ 2 0).
Thus N(0) = o™ and if we fix N(0) = N in advance, without reference to any

costs, the critical level for the a posteriori probability p(¢) = ¢(¢)(1 + o(t))™"
is

(6.2) p*(N) = (N + 1)

Any risk function involves both the expected number of inspections and the
expected delay between the arrival of the disorder and its detection. In particular
the expected delay 7(¢) for the optimal policy can be obtained from a knowledge
of fx(¢). We have

(6.3) f«(e) = K(N(¢) + 1) + cr(e).
Then equation (6.1) shows, for example, that
(6.4) 7(0) = ¢ '{f«(0) — K(1 + a™)}.

The mean period occupied by any run of observations is also easy to evaluate.
We can define the stopping time S, conditional on ¢(0) = 0, as the first instant
s at which ¢(s) = a. Let Z be the total time which elapses during the succession of
runs needed before the disturbance is finally detected. By isolating the first run,
we have

(6.5) E(2) = B(S) + B(2)(1 + a)7,
E(8) = E(Z)a(l + ).

On the other hand, the toté,l delay is simply = — 6 and since E(8) = N7, it follows
that

(6.6) E(Z) =\ + (0).
Then relations (6.4)—(6.6) provide a formula for the mean run length,

(6.7) E(S) = {¢f«(0) + N a(l + o)™ — ¢ 'K.
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Finally, we remark that this expectation can be split into two components, con-
ditional on the presence or absence of the disorder.
(6.8) E(S)=EWS|8>8)(1+a) +EWS|6=8)a(l+a)™

One of Shiryaev’s results [1], Lemma 2, is a formula which refers to £(S |8 > S)
and from this, it is possible to calculate the second component which represents
the expected length of the terminal run of observations.
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