THE CONSTRUCTION OF SATURATED 2;” DESIGNS

By NorvaN R. DraPER AND ToBy J. MITCHELL
University of Wisconsin

0. Summary. If a 2;*7” design, of fixed resolution R and specified number of
runs 2%, accommodates the maximum possible number of variables, we say that
it is saturated. In this paper, we develop a method for constructing saturated
designs and apply it to an example.

We first show that when R is odd, the set of all distinet 2" 7 designs (where
¢ = k — pis specified) can be obtained easily from a particular class of 251 ?
designs. We then develop a stage by stage method for constructing this “parent”
class of designs of (even) resolution R + 1. This class is shown, incidentally, to
contain a saturated design. The complete set of 2z"? designs, which naturally
includes all saturated 2z"? designs, can then be obtained at once. The problem of
arranging the designs constructed into blocks of runs, so that the blocked designs
have certain desirable confounding properties, is also investigated, and a method
for obtaining optimal blocking arrangements is given. As an important part of
our method, a ‘“sequential conjecture’” procedure is developed and utilized to
test the equivalence of any two designs.

These procedures have been programmed for the computer, and are illustrated

by the example R = 5, ¢ = 7.

1. Introduction.

1.1. 27" fractional factorial designs. The construction of 2°? fractional
factorial designs and the study of their confounding properties has been
approached from several closely related points of view, e.g., geometrically ( Kemp-
thorne (1947)), as a special case of an orthogonal array (Rao (1947)), Bose and
Bush (1952)), and through the theory of groups (Fisher (1942)). (For a review
of these and other approaches to the construction of 277 fractional factorial
designs, see Addelman (1963).)

Box and Hunter (1961a), (1961b) have distilled the essential results and
presented straightforward techniques for constructing, blocking, and analyzing
257 fractional factorial designs of resolutions III, IV, and V. Throughout this
paper we shall often refer to this work.

We shall assume that the variables of a 2°7” design are labeled (1,2, - -- , k).
From any subset of these variables, or letters, we can form a word, e.g., 1357 is a
word composed of the letters 1, 3, 5, and 7. Associated with every 277 design
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CONSTRUCTION OF SATURATED DESIGNS 1111

is a set of p words, Wy, W,, ---, W, , called generators. If we define the product
of two words X and Y to be that word which contains the letters appearing in
X or Y, but not in both, then the set of words which is composed of all possible
products involving the p generators appears in the defining relation :

I=W,=Wy=... =W,
(1.1.1) =WiW,= ... = W,,W, (all products of 2W’s)
= WiWW; = - = W, W, W, (all products of 3W’s)
=WiWy--- W, (the product of pW’s).

(I is called the identity and is such that IX = XI = X for all words X.)

The length (i.e., the number of letters) of the shortest word in the defining
relation is called the resolution (R) of the design and is used to classify it. In a
design of resolution R all main effects are confounded with interactions in-
volving (R — 1) or more factors, all two-factor interactions are confounded
with interactions involving (R — 2) or more factors, and so on. If the
experimenter tentatively assumes that the importance of J-factor interactions
diminishes as J increases, then the higher the value of R, the more satisfactory
the design is with respect to the principle of confounding the “important” effects
with “unimportant” effects. Of course, given sufficient runs we can always make
R suitably large. In practice, when the number of factors k is specified, we may
want R to be as large as possible for some given number of runs. Or, if R is specified,
we may wish to minimize the number of runs necessary to examine & factors in a
2."7? design. Both of these problems can be solved if we have solved, in an ap-
propriate number of cases, the equivalent problem of accommodating the largest
number of factors in a 2;*7” design of given resolution and given number of
runs. It is this latter problem which we shall consider.

1.2. Saturated 2°77 designs of resolution R. FFor designs of resolution III, Box
and Hunter (1961a) used the word saturated to describe the two-level resolu-
tion III designs which incorporate N — 1 variables in N runs. This number
(N — 1) is the maximum number of variables possible. We shall extend the use
of the word saturated to two-level fractional factorial designs of general resolution
R as follows:

Suppose the number of runs, 27, and the resolution R, of a two-level fractional
factorial design are both specified. A 2;"7? design (where &k — p = ¢) which con-
tains the maximum possible number of variables & will be called a saturated
resolution B design in 2 runs or, simply, a saturated design.

It can be shown that for resolutions III and IV (Box and Hunter (1961a)),
the number of variables accommodated in a saturated design in 27 runs is 27 — 1
and 2%, respectively.

For designs of resolution V the situation is not as straightforward. Box and
Hunter (1961b) summarize the solutions of the problem for the cases ¢ = 4,
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5, 6, and 7 as shown in the following tabulation:

q 4 5 6 7
(1.2.1) no. of runs (= 27) 16 32 64 128
max. no. of variables which can be accom- 5 6 8 11

modated in a resolution V design

When ¢ = 8, the maximum number of variables which can be accommodated
in a resolution V design has not previously been determined. A specific 2v""*
design was given by Addelman (1965) who concluded that ¢. . . it is unlikely that
more than 17 factors can be accommodated in such a plan.”

For resolutions >5, no results have been published, though the simpler cases
can readily be solved by extending the methods applied by Box and Hunter
(1961b) to some resolution V examples.

In this paper we develop a general method for constructing saturated designs
of resolutions B and R + 1, where R is odd. The procedure, which has been
programmed for the computer, is illustrated in the case R = 5, ¢ = 7. A general
method for blocking 2°7? designs in such a way that the maximum possible
number of blocks are attained is also given. (The more extensive application of
these methods to the cases (i) R = 5,9 = 8 and (ii) R = 5, ¢ = 9 will appear in
subsequent papers.)

2. Development.

2.1. Preliminary definitions. We shall say that two designs D, and D, are
equivalent if and only if one may be obtained from the other by a relabeling of
the variables. A more precise definition is the following:

DEeriniTION. Designs D; and D., each of which incorporates the variables
(1, 2, ---, k), are equivalent (denoted by D; = D.) if and only if there is a
permutation of the variables (1, 2, --- | k) which creates a one to one mapping
of the words of D into the words of D, . (Note: For the sake of brevity, we shall
often use the expression ‘“words of D” to mean ‘“words of the defining relation
of D.”)

We shall say that two designs are distinct if and only if they are not equivalent.

It will be convenient to classify designs as even or odd, according to the follow-
ing definition.

DEFINITION. An even design is one whose defining relation consists entirely
of words of even length. (The identity I is considered to be a word of even length.)
An odd design is one whose defining relation contains at least one word of odd
length.

2.2. Preliminary remarks. We note that obtaining a 2;°” design which maxi-
mizes k = ¢ + p for given R and fixed ¢ is equivalent to obtaining a 2;* ?design
which maximizes p for given R and fixed ¢. Since p is the number of generators
of the design, we may consider a saturated design as one which has the greatest
number of generators (p) for fixed ¢ = k — p, these generators satisfying, of
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course, the restrictions imposed by the resolution R. We shall call a set of such
generators a maximal set for fixed ¢ and R.

Our procedure for building up a maximal set of generators for fixed ¢ and R
is based on a particular form of construction, which we obtain as a consequence
of the following observations.

REMARK 1. The defining relation of a 2°7? fractional factorial design contains
2" words (including I). Of these, either

(i) half are of even length and half are of odd length, or

(ii) all are of even length,
where I is counted as an even word. In particular, the defining relation of every
2°? design of odd resolution R, which by definition includes at least one word of
length R, must be composed of 2” " odd words and 2”~" even words (including I).
(Note: An equivalent form of Remark 1 can also be found in Brownlee, Kelly,
and Loraine (1948).)

REMARK 2. Given the defining relation D of an arbitrary 2z design, where
R is odd, we can “attach” an extra variable (k + 1) to each of the 27" odd words
of D. Then the resulting expression, which contains only words of even length,
is the defining relation, E say, of some 2%:1 " design. (Note: E is actually the
defining relation of the design obtained by associating the variable (k¥ + 1) with
the I column of the design matrix of D, then “folding over” this design. (See
Box and Hunter (1961a)).)

We note that, in Remark 2, D can be recovered from ¥ simply by erasing, i.e.,
removing from each word, the variable (k¥ + 1). Remark 2 implies, therefore,
that the defining relation D of any 2;*? design, where R is odd, can be obtained
from the defining relation E of some even 25" ~* design, by erasing a particular
variable wherever it appears in E.

Letting ¢ = k — p, we shall write the generators of £ in the form:

W, = Ki(q + 2),
W, = Ki(q + 3),
(2.2.1)
Wra = Kpa(q + p),
Wy =Ky(qg+p+1) = Ky(k+ 1),

where, foreachz = 1,2, - - - | p, the variable ¢ + 1 + 7 appears in one and only
one generator, namely W, .

The expression of a set of generators in a form such as (2.2.1), in which each of
p variables is isolated in one of the p generators, was introduced by Box and
Hunter (1961b). We shall call this form a standard form and shall refer to the p
isolated variables as indicator variables.

It can easily be shown that every defining relation has a set of generators which
can be written in a standard form. Every even 251" " design, where R is odd,
is therefore equivalent to a design whose generators are written as in (2.2.1).
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The set { K.} satisfies the conditions:

(i) K, is composed of letters of the set (1,2, ---, ¢ + 1);
(ii) K, is of odd length i.e. I( K;) is odd;
(2.2.2) (i) I(K:) z R,

(KK, =R —1,

(KKK, ---) 1 {R factors} (z#=j=k=.-+)

where [(word) is the length, i.e., the number of letters, of the word. Condition
(1) is a consequence of the requirement that the generators be in standard form,
condition (ii) ensures that the design is even, and condition (iii) is necessary if
the resolution is to equal B + 1.

Our procedure will involve the construction of the complete set of distinct
designs whose generators are written in the form (2.2.1), where the set {K,}
satisfies the conditions (2.2.2). This set, which includes the set of even 2-e
designs for specified ¢ = &k — p and odd R, is actually the set of distinet even
2:%™ 77 designs, where the resolution S is even and equals or exceeds R + 1.
The set of distinet 2;° 7 designs can then be obtained if we erase, in every possible
way, one variable from each design in the set of even 25"~ designs.

This approach may, at first, appear to complicate, rather than simplify, the
investigation. The contrary is true, however, since for each value of p, the number
of distinet even 2437 7 designs (for specified ¢ = k — p and odd R) never ex-
ceeds, and is generally less than, the number of distinet 2z*? designs. Thus, by
dealing with designs of the former type, as we build a maximal set of { K} which
satisfy (2.2.2), we shall reduce substantially the number of distinet designs which
need to be considered at each stage.

Another advantage to this approach is derived from the fact that the set of
even 247177 designs, which we use to obtain the set of 2;"? designs, always
contains a saturated design of resolution R + 1 in 2" runs (Mitchell (1966)).
This close relationship between saturated designs of odd resolution R and sat-
urated designs of even resolution B + 1, will allow us to construct saturated
designs for the two resolutions R (in 2? runs) and R + 1 (in 2™ runs) simul-
taneously.

2.3. Stage by stage construction of saturated designs. For a given odd resolution
R, our object will be to construct the set of all distinct even 294077 designs for
specified ¢ = k — p and all possible values of p. (We shall takep = 1,2, - -+, p*
up to the saturation point p = p*.) From the saturated designs of this set we can
then easily obtain the saturated 2;°? designs.

We shall construct, stage by stage, the set of even 2+~ designs of resolution
=R + 1 in the form (2.2.1), where the set {K;} must, at each stage, satisfy

the conditions (2.2.2).

I
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At the rth stage, i.e., for p = r, we construct a typical new design by adding to
the set of generators of one of the distinct designs {D((r — 1).4)}, 7 = 1, 2,

-, Jr—1, which have been found at the (r — 1)st stage, a generator of form
W, = K,(¢ + r + 1) which is compatible with (i.e., whose presence does not
violate the resolution conditions (2.2.2)) the (» — 1) generators already present.
All possible candidates K, are incorporated in a generator W, = K.(¢ 4+ r 4+ 1)
and tested for compatibility with D((r — 1).z). Hence, for the parent design
D((r — 1).7), there may be several new designs which can be formed, each cor-
responding to a particular W, which is compatible with the generators of
D((r — 1).z). We consider, in turn, each possible parent design D((r — 1).7),
1=12 -.- J,1,and obtain the set of new rth stage designs which are derived
from it. We then select one design from each set of equivalent rth stage designs.
The selected designs are distinct, and are denoted {D(r.0)}, ¢ = 1,2, --- | J,.
The designs {D(r.7)} are then used as parent designs for the next stage
(p =r+1).

At each stage 7, therefore, we obtain a set of distinct even 27V~ designs,
of resolution =R -+ 1, in 2" runs. We now show, by induction, that every
possible even 2“7 design of resolution =R + 1 is equivalent to a design
in this set.

Let us assume (for the purposes of induction) that every ever
design of resolution =R + 1 is equivalent to a design in the set {D((r — 1).7)},
t=1,2,---,J,1, which has been obtained by the procedures described above.
Now suppose we are given an arbitrary 27"~ design £ which is even and has
resolution =R -+ 1. When the generators of E are in standard form (2.2.1),
it is obvious that the first (r — 1) of them are the generators of some even
2@ ==D Jesign E’ of resolution =R + 1, where E’ is, by our assumption,
equivalent to a design, D’ say, in the set {D((r — 1).7)}. Let the rth generator
of E be denoted W, = K,(q +r + 1) and let L, = P(K,) where P is the permuta-
tion of the variables which transforms the defining relation of E” into the defining
relation of D’. Since the generator K,(q¢ + r + 1) is compatible with the set of
generators (Wy, Wy, -+, W,_1) of E’, the word L,(q + r 4+ 1) will be compatible
with the set of generators of D’. If we include the word L,(q + r 4+ 1) with the
set of generators of D', therefore, the resulting set will be a set of generators which
define some 2"+ design D of resolution =R + 1. (Note that D = E,
since P(D") = E" and P(W,) = L.{q + r + 1).) Now we need only show that °
design D is indeed produced in our stage by stage procedure. This is seen to be
the case if we replace the generator L,(¢ + » + 1) of D with M,(¢ + r + 1),
where M, is the product of L, with the word of D’ which contains that subset of
the indicator variables (¢ + 2, - - - , ¢ + r) appearing in L, . Since M, is composed
of the variables (1,2, --- , ¢ 4+ 1) and is of odd length, it will arise as a candidate
in the stage by stage procedure, with the result that design D is produced. Hence
D is equivalent to a design in {D(r.7)} and so E (which is equivalent to D) is
also equivalent to a design in {D(r.7)}. We have therefore shown that, if every
even 2777 degion of resolution =R + 1 is equivalent to a design in

1 r)('1+T)'—(r—l)
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{D((r — 1).9)},%5=1,2, -+, J,1, every even 27"V design of resolution
=R + 1isequivalent to a design in {D(r.2)},2=1,2, ---, J,.

To complete our inductive argument, we need only state the obvious fact that
the result holds true when » = 1, that is, that every 2“*? " design, of resolution
= R + 1, whose (single) generator has even length, is equivalent to a design
in the set {D(1.7)}, where the {D(1.7)} are chosen in sequence according to their
even word length (greater than or equal to R 4 1, of course).

We can therefore proceed, knowing that, at every stage r, each set {D(r.7)},
i=1,2, +--,J,, contains all the distinct even 2"’ designs of resolution
= R + 1 which exist at that stage. Our procedure will stop only when we reach the
stage p* + 1, say, when no candidate K yo;1 is compatible with the generators of
any design in the set {D(p*.7)}. The set {D(p*.7)} will therefore be the set of
distinet saturated even designs of resolution B + 1 in 2% runs. The set of all
distinct saturated resolution R designs in 2? runs can then be obtained from the
set {D(p*.7)} as indicated in Section 2.2.

2.4. Blocking designs of resolutions R and R + 1. In blocking any given 277
fractional factorial design, one can associate ‘“blocking generators” B, B,,
-+, By, say, with any ¢ independent columns in the estimation matrix of the
design. (See Box and Hunter (1961a).) The choice of ¢ blocking generators
provides 2’ blocks, each containing 2°7”~* runs.

The effects which are confounded with block effects for a given design can be
determined very simply as follows. We multiply through the defining relation of
the design by the product of any subset of the words (By, By, -+, B,). If we
do this for every possible subset of the { B;}, then the resulting expressions list all
the effects which are confounded with block effects.

In designs of odd resolution R, the effects which are tentatively assumed to be
the important effects are the main effects and the interactions of (R — 1)/2
or fewer variables. We want to ensure that such effects are not confounded with
blocks. The blocking generators By, B;, - -+, B;, together with the generators
Wy, Wy, ---, W, of the 2,77 design to be blocked (called the base design)
must therefore generate a defining relation which is of resolution R’ not less than
(R + 1)/2. Such a blocked design will be denoted as a 2%.4- * design.

It can be shown that every 2.4 design (where R is odd) can be obtained
through the erasure of a variable from some even 2515~ design, where S’ = R’
if R"isevenand 8’ = R' + 1if R'is odd, i.e., 8’ is even and 8" = (R + 1)/2.
(The argument is analogous to that suggested by Remark 2 of Section 2.2 to
show that every 2;*"? design can be obtained from an even 2%+’ ~® design.)

We can now rely on our stage by stage procedure to construct the set of distinet
generating relations associated with even 2515, >~ designs having a given base
design. The object of the procedure will be to add as many blocking generators as
possible, in order to obtain the maximum number of blocks.

The form of construction of the generators is as follows:

(24.1) Wi=Ki(qg+2), Wo=Kyqg+3), -, W,=Ky(¢g+p+1),
B, B, ---,B,.
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In other words, we first write the generators (W, W,, -+, W,) of the base
design just as they are obtained from the stage by stage construction of Section
2.3, and then complete the set of generators (2.4.1) with a set of words (B;, B,

-, B,) which are independent of each other and of the W’s. Without loss of
generality, we can insist that no word in the set {B.} contain any of the indicator
letters ¢ + 2,¢ + 3, .-+, ¢ + p + 1. For if one of the B’s—B,, , say—originally
contains some subset of these indicator variables, we can replace B, by a new
generator—the product of B, with the particular product of the W’s which con-
tains that subset of the indicator variables. In (2.4.1) we can therefore take the

words in the set {B3}, 7 = 1,2, --- , ¢, to be composed of letters from the set
(1,2, -+, ¢ 4+ 1). Since we are interested in even designs, each B; is of even
length. The generators (Wy, Wy, -+, W,, By, Bz, -+, B,) must, of course,

generate a defining relation whose shortest word is not less than (R + 1)/2,
to satisfy the resolution conditions.

In the stage by stage procedure which adds blocking generators to a given base
design, we discard, at each stage, any defining relation which is equivalent to a
defining relation already found at that stage. The argument which shows that we
obtain, in this way, the complete set of distinct defining relations associated with
even designs of type 24114/ 7 ¢, is analogous to that used in Section 2.3 in the
stage by stage construction of 2%tV 7? designs.

We should remark here that, although the defining relations of two blocked
designs may be equivalent, the designs themselves are equivalent if and only if
the transforming permutation also connects the defining relations of the base
designs. However, we shall not “lose” any designs by considering only the “com-
plete” defining relations (without regard to the labeling of the generators),
since we can always recover a design which has been discarded simply by relabel-
ing the generators of a design which has been retained, in addition to the usual
permuting of the variables.

The even 2¢5:% *~* designs (where 8’ = (R + 1)/2), which we use toobtain
the 2.2, designs (where R’ = (R + 1)/2), are themselves of interest. Among
blocked designs of resolution (R + 1; 8"), the importance of these even designs
is indicated by the fact that if we are given an arbitrary 2535 design F, where
k, p, and ¢ are specified, then there exists an even 2555 design E having the
same values of k, p, and ¢. If one is interested in using a blocked design of resolu-
tion (R + 1; 8'),-and one’s criteria for selection of a design involve only the
number of variables, runs, and blocks, one can thus restrict attention to the even
designs. This fact lends additional importance to this class of designs, which
was introduced for another purpose, namely that of constructing blocked resolu-
tion (R; R') designs.

2.5. Examining the possible equivalence of two designs. At the rth stage of the
procedure outlined in Section 2.3, we wish to construct a set of designs {D(r.7)},
i =1,2 ---,J,, which are distinct. In practice, we ensure that all members of
this set are distinct by refusing to accept, at the rth stage, any designs which are
equivalent to a design already found at this stage. A necessary requirement of
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this procedure is that we be able to recognize whether or not two specified designs
are equivalent.

Suppose we are given two 2°7” designs A and B, and we wish to determine
whether or not A = B. That is, we wish to investigate whether there is a relabel-
ing of the variables which will transform A into B. If such a relabeling, P say,
exists, the vector of variables (1,2, --- , k) in design A4 is transformed by P into
the vector (P(1), P(2), ---, P(k)) in such a way that the words of the defining
relation of A are transformed into the words of the defining relation of B.

We shall adopt the convention that the variables of both designs A and B are
labeled 1, 2, - - - , k. Hence the relabeling P will simply be a permutation of the
variables (1, 2, --- , k). There may be several such transforming permutations
which take design A into design B. The discovery of any one of these will suffice
to show that the designs A and B are equivalent.

Suppose design A is such that there are a; words of length ¢ in the defining
relation of A, wheret = 1,2 --- , k. The vector @« = (a1, a2, -, a;) will be
called the word length pattern of A. Similarly, we can define the word length pat-
tern of design B.

We note at once that two designs A and B which have different word length
patterns cannot be equivalent, since a transforming permutation P, if it existed,
could not change the word lengths. If the word length patterns of 4 and B are
the same, however, further investigation is necessary to determine whether or not
A = B.

Our approach will involve making a sequence of “conjectures” about the nature
of a possible transforming permutation P. Each conjecture will then be “rejected”
or “not rejected” on the basis of an examination of the defining relations of 4
and B.

We shall define a conjecture at the rth stage to be a tentative assumption that
there does exist a transforming permutation P which is such that P (4,3, -+ ,4,)=
(J1,Ja, ="+, Jr), where (41, 42, -+, %,) is a subset of the variables of 4 and
(71,32, *++ ,Jr) is a subset of the variables of B. The effect of P on the remaining
variables of A4 is left unspecified by the conjecture.

In order to develop a test which will allow us to reject certain conjectures, we
first note that any conjecture may be used to map sets of words in the defining
relation of A into sets of words in the defining relation of B.

Suppose we are given the conjecture: P(#1, %2, -+ , &) = (Ji, Ja, -+, Jr).
Each word of the defining relation of A contains a particular subset of the vari-
ables (41,72, - - - , %-). We may use this fact to divide the words of A into distinct
sets; two words will belong to the same set if and only if they both contain pre-
cisely the same subset of the variables (71,72, + - - , ). There are 2" such possible
subsets of (%1, - - - , %,), including the one which contains none of these variables.
The sets of words of the defining relation of A which are induced in this way will
be denoted by {4}, 7 = 1, 2, ---, 2. Similarly, we can use the variables
(1,42, , ) to divide the words of the defining relation of B into sets {B.},
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i="1,2, ---,2, where, for each 7, the words in B; include that subset of the
variables which is chosen from (ji, j2, - -+, j») in exactly the same way as the
subset of the variables associated with A; is chosen from (4, %, « - , 7).

We now define the mapping M, denoted by M (A;) = B;,7=1,2,---,2, to
be the mapping nduced by the conjecture P(41, %2, «-- , %) = (J1,J2, "= , Jr).
It is important to note that the elements involved in the mapping M are sets of
words and not the words themselves. If the conjecture is true, i.e., if there

does exist a transforming permutation P such that P(é4,%, - ,1%,) =
(J1,d2, *++ ,Jr), then the following properties hold for the words of the sets {4}
and {B ,'} :
(i) The number of words in A; is equal to the number of words in
(2.5.1) B, = M(4,),7=1,2,---,2".
(ii) The word lengths of the words in A; are equal to the word
lengths of the words in B; = M(A4;),i =1,2, -+, 2".

The conditions (2.5.1) are necessary but not sufficient for the truth of the con-
jecture. We can, therefore, use them to eliminate many, but not all, false con-
jectures.

If a conjecture induces a mapping M which satisfies (2.5.1), then we shall say
that the conjecture is consisteni. We now show that if a conjecture involving all
of the p indicator variables of A is consistent, then A and B are equivalent. We
first note that no two words of the defining relation of A contain the same subset
of the indicator variables, since each word isformed by a different product of the
generators. A conjecture which involves the indicator variables (¢, %2, - - , 7p)
therefore divides the words of 4 into sets {A.}, each of which contains one and
only one word. ’

induced elements of

% 12 . . . ip sets induced sets

— - . . . - Ay I
T W,

(2.5.2) — + . . . — A, W,
+ + : . . - Ay Wi,
+ -+ . . . -+ A.g’" W1W2 e Wp

('The plus signs in the 7th row of this array correspond to the particular subset of
the indicator variables which is contained in the word of A;. For convenience,
we have included the identity I as a word of the defining relation, namely the

word which includes none of the variables (¢4, %, -+ - , 2p).)
Now suppose the conjecture P(#, %2, -+, %) = (j1, J2, -+, Jo), Where
(j1,J2, - -+, Jo) are variables of design B, is consistent. This implies that there is

one and only one word in each of the subsets of B induced by the conjecture. In
particular, for each 7, there is one and only one word of the defining relation of B
which contains j; and none of the other j’s. Denoting this word by V;, and letting
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1=1,2 ---, p, we can write:
Vi = L),
(2.5.3) Ve = La(32),

Vo = Lp(j»),
where no element of the set (ji, j2, - -+, j») appears in any of the words {L.}.
The set (V1, Vo, ---, V,) is, clearly, a set of generators of B.

We could, at this point, construct a table for design B, similar to the table
(2.5.2) already available for design A, replacing the ¢’s by j’s, the A’s by B’s, and
the W’s by V’s. The consistency of the conjecture then implies that, for each ,
the length of the word in set A; must be equal to the length of the word in set B; .
That is,

(2.5.4) W) = UV, UWz) =1U(Vs),
UWiW,) = UViVa),  --oy  UWW, - W,) = ViV, --- V).

Now we need only to show that, if the generators of A and B are named:in such
a way that the vector of word lengths, when written as

[ UWy)
UW,)
(W, w,)
(Ws)

(25.5)

[ (W1 Wy - Wy

is the same for both designs, then the designs are equivalent. We can show this as
follows.

We first note that the letter which corresponds to each variable of design A4
appears in a particular subset of the generators (Wy, W, --- , W,), including
that “subset” which contains no generators. We shall represent this by the follow-
ing tabulation:

W, W, . . W,

—_— — . . —_— al

+ — — az
(2.5.6) - + - az

+ + - ay

+ o+ + |

where a;,j7 = 1,2, 3, -- -, 2%, is the number of letters which appear in that sub-
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set of the generators which is denoted by the minus signs in row j. (The use of
minus signs rather than plus signs facilitates the argument leading up to (2.5.12).)
We note that the sum of the elements in the vector a, wherea’ = (a;,az, - - - , az),
is equal to the total number of variables (k) of the design. At this point, we also
draw attention to a fact which we shall use later in this argument, namely that
if we label the variables associated with each a;,,¢=1,2,3,---,2°%
in any specified manner, we can use (2.5.6) to construct a set of gener-
ators (W, Wy, ---, W, , say) which are equivalent to the generators
Wi, Wy, ---, W, of A. For this reason we shall call the vector a a generating
vector of design A. If we have, in addition to a, a labeling of the variables which
correspond to each element of a, we shall refer to a as a labeled generating vector.

Now let M be the matrix of +1’s and —1’s which is derived by associating the
value 1 with each sign in the array (2.5.6). In terms of its column vectors, M can
be written

(2.5.7) M= [W,W- W,

We shall define a new matrix X in terms of the products of the columns of M,
where we define the product W,W; of two column vectors as follows.

DeriniTION. The product of two (N X 1) vectors W, and W; is the (N X 1)
vector whose uth element is the product of the uth elements of W, and W;, i.e.,
(WW) = (W)u(Wj)u, u = 1, 2, ---, N. The obvious extension of this
definition to products of more than two vectors can be made, since associativity
hOldS, e.g., (WinWk) = (W,W])(Wk) = (WJ(W,WA)

We can now define the (2° X 2°) matrix X, which is written in terms of its
column vectors as:

(2.5.8) X=[IW W. W,W, Wy --- W,W, --- W,]

where the first column Iisa (27 X 1) column of +1’s, and the remaining columns
are formed by taking (in the order indicated) all possible products of the columns
of M. We observe that the columns of X are orthogonal vectors.

We now use X to introduce a linear transformation L(a), which is defined as
follows:

(2.5.9) L(a) = (kj — X'a)/2
where j is the (1 X 27) vector (1,1, 1, ---, 1). If we write L(a) in terms of the
elements of a, we obtain
0 0

o+ a+a+ar+ .- I(W1)
(2510) L(a)=|ai+a:+a;+as + ---| = Uw,)

a+ a3+ as+ a7+ --- l(IVIIV2)

(W Wy Wp)
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i.e., L transforms the generating vector a into the vector of word lengths of the
design.

Suppose that the generators of two designs A and B are named in such a way
that the corresponding generating vectors, denoted a and b respectively, give rise
to the same vector of word lengths, i.e.,

(2.5.11) L(a) = L(b).

This means that X'a = X'b, so

(2.5.12) a=h,

since X is a nonsingular matrix. Suppose, for every j, (j = 1,2, - - - , 2%), we label

the variables of B which correspond to b; to be the same as the variables of A
which correspond to a;. Then the set of generators of design B which arise from
the labeled generating vector b will be identical to the set of generators of design
A which arise from the labeled generating vector a. Therefore 4 = B.

This is the result to which we have been led by the assumed consistency of the
conjecture (which involves the specified indicator variables of A) and the particu-
lar choice of generators (2.5.3) of design B. We have therefore shown that, given
A and B, if a conjecture involving all of the p indicator variables of A is consistent,
then A and B are equivalent designs.

In order to establish the equivalence of two designs A and B, we shall attempt
to formulate a consistent conjecture involving the indicator variables of design A.
We first make a conjecture P(#1) = (j1), involving only one of the indicator
variables of 4, and then test for consistency by inspecting the word lengths in the
sets of A and B induced by the conjecture. If thisconjecture is found to be incon-
sistent, a new conjecture involving 7; is made and tested. We proceed in this way
until we find a consistent conjecture P(71) = (ji+). We then make a conjecture
at the second stage, P(41, 42) = (Ji+, J2), which is chosen to incorporate the con-
sistent first stage conjecture. If this conjecture is inconsistent, we change j» and
test again. g

Continuing in this way : conjecture — test — conjecture — test, and so on, we
attempt to find at each stage a consistent conjecture, which we then incorporate
into a conjecture at the succeeding stage. If we obtain a consistent conjecture at
the pth stage, we can conclude that designs A and B are equivalent.

In the course of this procedure, it is possible that at the rth stage, r = p, none of
the candidates for 7, give rise to a consistent conjecture. If this happens, we say
that the consistent conjecture at the (» — 1)st stage has failed at the rth stage.
We must therefore return to the (r — 1)st stage and try to find another consistent
conjecture on which to base conjectures at the rth stage. (When we are forced in
this way to go back to the (r — 1)st stage, the conjectures we select to test are,
like all our conjectures, based on the consistent conjecture already found for the
previous stage (r — 2).)

We continue until one of two things happens. Either

(1) we find a consistent conjectureat the pth stage, in which case A and B are
equivalent; or
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(ii) every conjecture at the first stage is either inconsistent itself or fails at a
succeeding stage, in which case A and B are not equivalent.

3. An example: R = 5,q = 7.

3.1. Introduction. The procedures described in Section 2 were programmed for
the computer and run on the CDC 3600 located at the University of Wisconsin
Computing Center. We shall now illustrate the results of the programmed pro-
cedures in the case: R = 5, ¢ = 7, to find saturated designs of resolution V in 128
runs and of resolution VI in 256 runs.

3.2. Even 256-run designs of resolution =6. We first constructed the complete
set of distinct even 2777 designs of resolution =6, wherek — p = ¢ = 7. These
designs are listed in Table 3.1 together with their word length patterns.

TABLE 3.1
The even 256-run designs of resolution =6
Word Length Pattern

No. v 6 8 10 12 Ref. Delete
1.1 9 1 0 0 0 4.1 10, 11, 12
1.2 9 0 1 0 0 4.1 2,5,7
2.1 10 3 0 0 0 4.1 11, 12
2.2 10 2 1 0 0 4.1 9, 10

3.1 11 6 1 0 0 4.1 12

4.1 12 12 3 0 0 4.1 —

Generators of design 4.1:
W, = 123459 Wo = 12367(10) Wi = 12468(11) W, = 13578(12)

The number of each design in Table 3.1 is written in the form (p-a), where p
is the number of generators and a is a number which orders those designs having
the same value of p.

The column headed ‘“v”’ (= k + 1, in our previous notation) in Table 3.1 gives
the number of variables which are accommodated in each design. We see that the
single design (4.1) which was found at the last stage accommodates 12 variables,
i.e., 12 is the maximum number of variables which can be incorporated into a 256-
run resolution VI design. This implies at once that the maximum number of vari-
ables which can be accommodated by a 128-run resolution V design is 11 (in
agreement with Box and Hunter (1961b) ).

If we examine the word length patterns of the designs of Table 3.1, we see that
no two designs have identical word length patterns. Although this distinct pattern
property is not true in general, it does hold for many sets of designs which are of
interest, to the extent that it even merits consideration as a basis for testing the
equivalence of designs. (A more thorough discussion of this point will be included
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in a subsequent paper, together with an example of two distinct designs whose
word length patterns are identical. )

The five distinct 256-run even designs of resolution =6 which are not satu-
rated can all be obtained from the saturated reference design 4.1 through the
deletion of variables. (The deletion of a specified set of variables involves remov-
ing from the defining relation all words in which any of the specified variables
appear. Note that this is not the same as the erasure of a variable, discussed
above.) Table 3.1 gives, in each case, the appropriate variables to be deleted
from design 4.1. These deletions are not, of course, unique and the same designs
can be obtained from the saturated design through other deletion patterns.

We should remark that, although we see in this simple example that the com-
plete set of designs of the type constructed can be expressed in terms of deletion of
variables from a saturated design, this property is not true in general.

3.3. 0Odd 128-run designs of resolution 5. The set of distinet odd 128-run de-
signs of resolution =5 can be obtained directly from the designs of Table 3.1
through the erasure of a variable. In order to ensure completeness, the erasure of
each possible variable was performed on each design. During this procedure, de-
signs which were found to be equivalent to any previously obtained design were
discarded. The resulting set of designs, which is the complete set of distinct odd
128-run designs of resolution =5, is given in Table 3.2.

Each design in Table 3.2 is identified by means of a number written in the form
(p-a/b). The meaning of this notation is that (p-a) is the design of Table 3.1
from which the design (p-a/b) is derived (through the erasure of a variable),
and ((p — 1)-b) is the even design of Table 3.1 which corresponds to the even
words of (p-a/b).

We note that design 4.1/1 is the unique saturated resolution V design in 128
runs, i.e., every other 2y design is equivalent to it. Design 4.1/1 is therefore
equivalent to the 2y"'™ designs given, for example, by Brownlee, Kelly, and

TABLE 3.2
The odd 128-run designs of resolution 2§
Word Length Pattern

No. k 5 6 7 8 9 10 11 Ref. Delete Erase
1.1/0 8 1 0 0 0 0 0 © 4.1 10, 11, 12 9
1.2/0 8 0 0 1 0 0 0 0 4.1 2,5, 7 12
2.1/1 9 2 1 0 0 0 0 0 4.1 11, 12 10
2.2/1 9 1 1 1 0 0 0 0 4.1 9, 10 12
2.2/2 9 2 0 0 1 0 0 0 4.1 9,10 8
3.1/1 10 3 3 1 0 0 0 0 4.1 12 11
3.1/2 10 4 2 1 0 0 0 4.1 12 6

4.1/1 11 6 6 2 1 0 0 0 4.1 — 12
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Loraine (1948), National Bureau of Standards (1957), and Box and Hunter
(1961b).

Each of the designs in Table 3.2 can be obtained from the reference design 4.1
through the deletion of a set of variables followed by the erasure of a single
variable. Appropriate variables to be deleted and erased are given in Table 3.2
for each design.

3.4. Blocking the designs constructed. Two distinct optimum blocking arrange-
ments, each involving 8 blocks, were found for the saturated 2 design 4.1,
using the procedures described in Section 2.4, with R = 5. (We use the word
“optimum” to refer to those arrangements which provide the maximum possible
number of blocks.) The blocking generators for each arrangement are as follows:

(34.1) (i) B, = 1238, B, = 1478,  B; = 2456,
(ii) By = 1258, B, = 1368,  B; = 2467.

12—4—3

The resulting blocked design is, in each case, of type 2vi;iv .

It is of interest to determine whether or not an optimum blocking arrangement
for each of the other designs of Table 3.1 can be found by deleting variables from
the optimally blocked saturated design. Since the deletion of variables does not
affect the number of blocks, each of the designs of Table 3.1 can be obtained in 8
blocks by deleting the appropriate variables from design 4.1. We now show that
8 is indeed the maximum number of blocks which can be accommodated in such a
design (which must be even and of type 295’ 2", where S’ = 4).We first note
that each block of a 22?77 design is itself a 2577"”~®* design and can
therefore accommodate no more than 2% variables, if S° = 4. Hence
g+ 1+ p = 27" When ¢ = 7, as in this example, we have 8 + p = 2" or
8 < 2" since p > 0. This implies that 7 — ¢ > 3, i.e.,, ¢ = 3. The number of
blocks, 2°, cannot, therefore, exceed 8. We have thus shown that any of the designs
of Table 3.1 can be obtained, optimally blocked, by deleting variables from design
4.1, blocked according to arrangement (i) or arrangement (ii) of (3.4.1).

We can also block any of the designs of Table 3.2 optimally (in blocks of 8) as
follows. Given the base design (p-a/b), say, we

(i) first write down the generators of the saturated 2Vrav. design, using either
set of blocking generators given in (3.4.1);

(ii) delete and then erase the appropriate variables (given in Table 3.2) to

obtain the desired design (p-a/b).
In step (ii), the variables to be deleted should first be isolated as indicator
variables in the generators of the base design. (To isolate the variable ¢, say, in
generator W, replace each generator G which contains ¢ (including the blocking
generators but excluding W itself) with the product GW.) The erasure procedure
follows, where the appropriate variable must be erased from all the generators,
including the blocking generators.
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