SOME FIXED-SAMPLE RANKING AND SELECTION PROBLEMS!

By D. M. MAHAMUNULU
University of Minnesota and State University of New York at Buffalo.

1. Introduction and Summary. In recent years considerable research has been
devoted to a class of problems which is concerned with ranking and/or selecting
a subset of k given populations where the ranking or the selection is defined in
terms of a (scalar) parameter of the populations. In these problems the interest
is often centered on the populations having large (small) values of the ranking
parameter. One usually refers to the {(< k) populations with largest (smallest)
values of the ranking parameter as the ¢ best populations. In this paper we
consider a problem of selecting a subset of specified size, from a given set of k
populations, which contains a subset of the ¢ best populations.

Suppose that IT, , ITz, - - - , II; is a given set of k populations, where the dis-
tribution function of each observation from I; is F( -| 6;). The parameter 6, is un-
known, but it belongs to the interval, ©, of the real line (1 < 7 < k). We assume
that the functional form of F is known. Let ;) < 05y < --- < 6, be the ranked
6;; we assume that it is not known with which population 8, is associated
(1 = ¢ £ k). The t populations with largest 8-values are defined as the ¢ best
populations and we refer to 6 as the ranking parameter.

The problem of selecting the ¢ best populations in an unordered manner has
been studied extensively from the sampling point of view, in relation to several
distributions. The usual formulation of the problem is the following: the ex-
perimenter’s goal is to select the ¢ best populations in an unordered manner. He
specifies two positive constants d* and P*, where (})™ < P* < 1. He desires to
have a fixed-sample procedure which has a probability of at least P* of selecting
the ¢ best populations whenever 6j._.,1; is at a distance not less than d* from
Ope—aq -

Bechofer [3] developed a procedure based on predetermined number of observa-
tions from each population when F is the normal distribution function with un-
known mean ¢ and known variance. Bechhofer and Sobel [4] considered a similar
problem in relation to normal populations where the ranking parameter is the
variance. Sobel and Huyett [9], Sobel [8], Rizvi [7], Baar and Rizvi [2] considered
similar problems for other distributions.

Here we consider a generalized version of the above selection problem. We
solve the problem in broad generality by not considering a specific family of dis-
tributions F(-|8), but by assuming certain properties of F. Thus many of the
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available results (concerning the above selection problem) can be obtained as
special cases of our results.

Let ¢, s, t be integers such that max (1,s +¢t 4+ 1 — k) < ¢ =< min (s, t), which
implies that max (s, t) < k — 1. The experimenter’s goal, which is referred as
Goal 1, is to select a subset of size s which contains at least ¢ of the ¢ best popu-
lations. The experimenter specifies two positive constants d* and P*(<1). He
desires to have a fixed-sample procedure for which the probability of selecting the
desired type of subset of populations is not less than P* whenever the distance
between 0y_y; and g4y is at least d*.

Two particular cases of this goal are of special interest: (1) Selection of a sub-
set of size s( =t) which contains the ¢ best populations, (2) Selection of a subset
of size s( £t) which includes any s of the ¢ best populations. Sobel pointed (see
the footnote on page 22 of [3]) out that sometimes Case 2 is of interest. These
two cases correspond to ¢ = ¢, s = tand ¢ = s, s = {. Further when ¢ = s = ¢,
Goal I reduces to the goal of selecting the ¢ best in an unordered manner.

The proposed selection procedure, R,, is based on suitable statistics
Ty, Ty, ---, Ty, where T, is computed from a random sample of size » from
(1 = ¢ £ k). The procedure R, selects the subset of populations which cor-
responds to the s largest T-values. Having specified the procedure as above,
the problem is to determine the common sample size n so that the probability
requirement imposed on the procedure is satisfied. This problem has been solved
under the assumption that 7T'; is an absolutely continuous random variable and
its distribution function is stochastically increasing in ; for each value of n. This
has been done in Section 5.

It should be noted (by considering the subset not selected) that the above
selection problem is logically equivalent to similar selection problem where the
experimenter’s goal is to select a subset of size (k — s) which contains at least
(k —t) — (s — ¢) of the (k — t) populations with smallest §-values. Thus
solutions to the above problem for all admissible values of ¢, s and ¢ (with fixed
k) will provide solutions to the selection problem where the goal is the selection
of a subset of size s, which contains at least ¢ of those ¢ populations with smallest
values for the ranking parameter.

Section 6 gives results for the two above mentioned particular cases of Goal I.
A theorem, which relates the sample sizes necessary to achieve Goal I, and its
particular cases, is given in that section. Section 7 deals with an easily verifiable
sufficient condition for the existence of the required sample size. In Section 8, the
general results have been applied to normal distributions with unknown mean
and known common variance.

2. Formulation of the problem. Let 6 denote the vector (0, 0121, -, O1a)
and let Q stand for the parameter space, which is the set of all admissible vectors
0. Further let d(z, y) be a continuous non-negative real-valued function defined
for z = vy, where x and y are both real, such that d(z, y) = 0if and only if x = y.
For fixed ¥, it is a strictly increasing function of z and for fixed z, it is a strictly
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decreasing function of y. We also assume that d(z, y) can take on indefinitely
large values. We shall call such a function a distance measure. Let d*bea specified
position number. The parameter space Q is partitioned into a “preference zone”
Q(d*) defined by

(2.1) Q(d*) = {0:d(Op—rsnr , Op—n) = d*}

and its complement @(d*), the “indifference zone.” The choice of the distance
measure depends on the class of distribution functions § = {F(- |6), 8 ¢ ©} under
consideration in a specific example.

Let B be a subset of size t of the set § = (1, 2, --- k) with the property that
a ¢ B implies 6, = 6 for all 8 ¢ 9 — B. Let B, be a subset of size s, of g such that
B n B, contains at least ¢ elements. A correct selection (CS) is defined to be the
selection of a subset, II(s), of populations where I1(s) = {II;:7 ¢ B,}. The ex-
perimenter desires to have a fixed-sample selection procedure for which the prob-
ability of a CS satisfies the condition

(2.2) P(CS|6) = P* forall 6cQ(d%).

(Here P* is a specified positive number less than 1.)
Without loss of generality we can assume that P* is not less than P(c, k, s, t)

where
(2.3) P(e, ks, t) = (5)7 2T (H(DD).

If P* were less than P(c, k, s, t), we can meet the requirement (2.2) by choosing
the subset at random. So, to make the problem non-trivial, we will assume that
P* is not less than P(c, k, s, t). We also need the restriction that P(c, k, s, t) is
less than one, which is satisfied by our choice of the integers c, s, ¢ in relation to k.

3. Proposed procedure R,. Let {X;;} (1 =7 = n) be independent observations
from II; (1 =1= IC) and let T'; = T(Xﬂ, Xiz, ey, X,',.) (1 <7 = k) where
T,,T,,---,Tyis an independent set of statistics and T';’s have density functions.
Let G,( - | 8;) be the distribution function of T'; (1 = ¢ = k). The choice of the
function 7' will depend upon the distribution function F(-|[6); in general
Ty, Ty, ---, T are statistics relevant to the estimation of 6, 6, - - - , 6, respec-
tively. The proposed procedure is based on the statistics T’ .

PROCEDURE R, : Let T'yyy < Ty £ --+ = T be the ordered T';. The set of
populations corresponding to T'—s413, * -+, T’y is the set to be selected.

ReMArk. In practice we do encounter situations in which two or more T';
may be equal, even when T is a continuous random variable. In such cases the
equal T-values should be ranked by using a randomized procedure which assigns
equal probability to each possible ordering of those values.

Once the common sample size n is specified, the procedure R, is completely
defined ; our problem will be that of determining this sample size so that the prob-
ability requirement (2.2) is satisfied. As to the existence of the required n-value
one can argue heuristically as follows: if 7' is a consistent estimator of 6, then the
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largest T-values will come from the populations with largest 6-values with a
probability that tends to one as » tends to infinity. Thus the probability of a CS,
under the procedure R, , will tend to one as n tends to infinity. Hence by choosing
n sufficiently large we can meet the probability requirement (2.2).

Remarks about choice of 7'; . Whenever a sufficient statistic (which has fixed
dimensionality for all n) for 6; exists, then the proper choice of T'; is some appro-
priate function of the sufficient statistic. The choice of T'; becomes a problem
only when such a sufficient statistic does not exist. The results to be obtained
will be applicable only when the chosen statistics T'; are such that the family
G = {G.(-]0):0 0} is a stochastically increasing (SI) family of distribution
functions (for the definition of an SI family of distribution functions one may
refer to (5] p. 73). It may be pointed out that in some cases of interest F contains
two or more unknown parameters. The results to be proved will also be applicable
to such cases provided the distribution of 7'; depends only on 6; (the ranking
parameter), but not on the nuisance parameters in addition to the above men-
tioned property. For simplicity (with a slight loss of generality) we have assumed
that F involves only one unknown parameter 6.

In the next section we determine the infimum of the probability of a CS (PCS)
over the preference zone 2(d”*). The sample size is then determined as the smallest
integer for which this infimum is not less than P*.

4. Probability of a correct selection and its infimum. As a first step towards
obtaining the infimum of PCSS we prove a theorem dealing with its monotone
properties. To prove this theorem we need the following results on an SI family
of distribution functions.

Lemma 4.1, Let F(x|60) = Fo(x) where 8¢ O, be an SI family of distribution
Sfunctions on the real line. If ¢ is any non-decreasing (non-increasing) function of
z, then Egp(X) is a non-decreasing (non-increasing) function of 6.

This result is a simple consequence of a problem given by Lehmann ([5],
p. 112, #11). So the proof is ommitted.

Lemma 4.2°. Let F(x|0) = Fy(z) where 6 ¢ © be an SI family of distribution
functions on the real line. Let X1, X2, - -+, Xi be independent random variables,
where the distribution function of X, is F(x;|0:). For any fixed ¢ (1 < ¢ £ k), if
¥ =Y(a1,22, -+, L) 1S a non-decreasing (non-increasing) function of x; when all
z; for j # 1 are held fixed, then EYy(X,, X, - -+ , Xi) s a non-decreasing (non-
increasing ) function of 6; .

Proor.

(41) BY(X:, X, -, X)) = [y [[iadF(a:]6))
= [{f v dF(x:]6)) [ 51 dF (2] 6;).

Since ¢ is a non-decreasing (non-increasing) function of x; when all x; for j # ¢

2 After obtaining this lemma, I learned that Alam and Rizvi [1] have independently
derived a similar lemma.
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are held fixed, from the Lemma 4.1 it follows that
(4‘2) E{¢(X1,X2> ctt )Xk) ixl7x27 ety i1y, Ligry t 0t ,xlc} = f‘de(leoz)

is a non-decreasing (non-increasing) function of 8; . Since this holds for each value
(%1, X2, **+, Ti1, Tiz1, * -, Tx), the right hand member of (4.1) and hence
Ey is a non-decreasing (non-increasing) function of 6;. Since this holds for each
fixed 7, the lemma follows.

Let Y, be the statistic based on the sample from the population with the param-
eter 0;; (1 <7 < k). That is, the set (Y1, Y2, - -+, Y}) is same as the set (T}, ,
Ti,, -+, Tj) where (j1, j2, -, ji) is some unknown permutation of (1, 2,
-«+, k). Our procedure R, is defined in terms of the statistics T'; and hence it is
based on the statistics Y;. We make the following assumptions on the sta-
tistics Y.

AssumpTION 4.1: The statistics Y; are absolutely continuous random variables.

AssumpTioN 4.2: The family G = {G.(-|6):0 £ ®} of distribution functions
is an SI family for each positive integer n.

It is easy to see that the following two events are equivalent:

{CS} = {cth largest of (Yi—er1, Yiesp2, -+, Yi) > (s — ¢ + 1)st largest of
(Yl, Y2’ Ty Yk—t)}

so that the PCS at the parameter point 0 is
(4.3) P(CS|6) = Plcthlargest of (Yi—i1, Yi—tya, -+, Ya) > (s —c + 1)st
largest of (Y1, Y, ---, Yi—)]

where Y;, ---, Y, is a set of independent random variables such that the
distribution function of Y;is Gu(- |01a), (1 = 7 < k).

THEOERM. Under the Assumptions 4.1 and 4.2 the P(CS | 8) is a non-increasing
function of 01y (¢ = 1,2, -+, k — t) and a non-decreasing function of 6is) (8 =
E—t+1L,E—t+2 ---,k).

Proor. By (4.3) the set of points in R* where a CS occurs is the set {(y1, ¥2,
<o+, yi):u < v} where u and v are, respectively, the (s — ¢ 4 1)st largest of

(41, Y2, - - Yr—t) and the cth largest of (yx—i11, Yk—es2, ---, yx). If ¢ is the
indicator function of this set, then
(4.4) P(CS|0) = EY(Yy,Y,, -+, Yi).

It is easy to see that « is a non-decreasing function of yo (a = 1,2, --- , k — 1)

when all y; for 7 # a are held fixed and also that v is a non-decreasing function
ofyg (B=k—t+ 1,k —t+ 2, ---,k) when all y,, for m # B are held fixed.
Hence ¢ is a non-increasing function of ¥, (a = 1,2, - -+, k — t) when all other
y’s are held fixed and it is a non-decreasing function of g (8 = k — ¢t + 1,k — ¢
4+ 2, ---, k) when all other ¥’s are held fixed. By applying the Lemma 4.2 to
the function ¥ we obtain the desired result.
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This theorem represents a valuable tool in obtaining the infimum of P(CS | 8).
It forms one of the key results of this investigation.

Infimum of P(CS|0) over the preference zone 2(d*) (see 2.1). From the theo-
rem it follows that any distance measure d, we have

(4.5) infg.@v P(CS|0) = infgues,e0 P(CS|0)
where (8, 6) is that set of points 8 £ 2(d*), for which
(4.6) b = O = -+ = Ou—y = o (say),
O—t41] = Opp—eqz) = -+ = Oy = 0 (say).
Here 6 and 6, are arbitrary values belonging to © such that d(6, 6,) = d*. A
configuration of the parameters 6,8, - - - , 6 for which (4.6) holds is, sometimes,

called a generalized least favorable (GLF) configuration. The P(CS | 6) for the
GLTF configuration (4.6) is given by

(4.7) P8, 60) = [Z.U(zx|6)dV(z|8) = [Z[l — V(z|6)]dU(z|6,),
where
(48) Uz ]8) = 2 a0 (<G (x| 6o)[1 — Gu(x]60)]"
= I[G.(x|80); ¢, s — ¢ + 1]
and
(49) V(z|6) = 2 i5(L)GX(x|0)[1 — Gu(z|0)) "
= I[G.(z|0);t —c+ 1,¢c};
here
(410) ¢ =k —t—s+c¢ and I(z;p,q)
= L(p, ¢) = [8(p, 917 [37(1 — )" dt.

Since Gn(z | 6o) is a non-increasing function of 6, for each z, from (4.8) it follows
that U(x|6) is a non-increasing function of 6, for each z. Thus P(6, 6) is a
non-increasing function of 6, for fixed 6. From (4.5) and (4.7), for any distance
measure d we have

(4.11) infeca@y P(CS|0) = inf((s,00):0,00¢8,a(8.80) za*) P(8, 60).

From the monotone properties of the distance measure d (see Section 2) and of
the function P(6, 6,), it follows that for fixed 6

(412) infoo,d(o'go);dt P(0, 00) = P(O, 0,) = Q(O, n) (say),
where 8 is that function of 8 determined by d(6, 6') = d*. Hence
(413) infecg(d*) P(CS l 0) = info,;e Q(O, ’n).

Using (4.8) and (4.9) in the first expression for P(6, §’) (see 4.7), we obtain
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Qo n) = (t/(t — e)l(c — DY XL (") [Za G T (2 ]6)
(4.14) M = Gz |G (2|0 — Ga(x]8) " dGa(z|6)
= [“ I[G.(2]0); ¢y s — ¢ + 1]1dI[Gu(x]8);t — ¢ + 1, cl.

Using the second expression of (4.7) for P(8, 8") one can obtain two other equiva-
lent expressions for Q(6, n).

The determination of the infimum of Q(8, n) over the admissible values of 8
calls for the exact knowledge of the distribution function G.(-|6). We need
separate analysis to obtain this infimum for each particular distribution function
G.(- |8). But when 6 happens to be either a location parameter or a scale param-
eter for the family G, this infimum can be obtained ‘“automatically”, i.e., without
any further analysis by adopting a suitable distance measure.

Infimum of P(CS|0) over the entire parameter space Q:

From the theorem
(4.15) info.o P(CS|0) = inf((,00):0,00:0.0260 P(0, 6o).

Since P (6, 6) is a non-increasing function of 6, for fixed § we have
(4.16) infe.o P(CS|6) = infee P(6,0) = [3 I(,s—c+1)dl,(t—c+ 1,¢)
= J(c¢, k, s, t) (say).

Lemma. J(c, k, s, t) = P(c, k, s,t), where P(c, k, s, t) is defined by (2.3).

Proor. Expressing I(y; ¢, s — ¢ + 1) as a finite series, we obtain
(4.17) J(c, by s,t) = 2326 (11/(t—e)t(e — DD(EL) [3y (1 —y) 7 dy

= ()7 X (2 (=D).
Let X denote the number of red balls in a random sample of size s chosen, without
replacement, from an urn containing k balls of which ¢ are red. Also let ¥ denote
the number of balls needed to be drawn without replacement from the above
urn so as to include exactly ¢ red balls in the sample. Then, from (4.17), we have
(4.18) J(c, k,s,t) = P(Y £8)
=P(X 2c¢) = P(c, ks t).

This completes the proof of the lemma.
In view of the lemma, from (4.16) we obtain

(4.19) info.o P(CS|8) = P(c, k, s, t).

5. Determination of the required sample size. The required sample size is
the smallest value of n for which

(5.1) infoc@s P(CS|0) = infreQ(6, n) = P¥
where Q(6, n) is given by (4.14). Let us denote the infimum of Q(6, n) by
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H(n; d*). If H is a non-decreasing function of n, then the required sample size
is the smallest integer not less than the solution of the equation

(5.2) H(n;d*) = P*,

In such a case the required sample size is unique. Further if the limit of H as
n — o, is one then the above equation has a solution for any specified P* < 1.
Remarks on the need and definition of the preference zone. Now we can answer
the question—why we restrict our attention to the preference zone in writing the
probability requirement (2.2)?
If there were no such restriction, then the sample size necessary is the smallest
integer value of n for which

(5.3) info.o P(CS|0) = P*.

We have shown that regardless of the sample size the infimum of the P(CS | 0)
over Qis P(c, k, s, t), which is the lower bound for P*. Thus without the restric-
tion to the preference zone, we cannot achieve our goal however large our sample
may be.

The choice of the preference zone is equivalent to the choice of the d-function.
This choice is governed by the behavior of P(6, 6') which depends on the form
of G.(- |8). It should be noted that in some problems, it is sufficient to define
the preference zone through one restriction such as d(Op—i41y, Op—y) = a*,
whereas in other problems it may be desirable to introduce more than one restric-
tion. One such example is the problem where 6 is the mean of a Poisson popula-
tion [8]. The particular definition of the preference zone given in any specific
case enables us to determine explicitly the infimum of P(6, 6'). In some cases
obtaining this infimum may not be a simple matter and may even have to be
obtained by numerical methods. One such example is the problem where 6 is
the probability of success for a Bernoulli variable; this problem, for the case
¢ = s =t = 1, is considered by Sobel and Huyett [9].

We shall now see how the Equation (5.1) simplifies in the cases when 6 is either
a location or a scale parameter for the family G.

Case (i) 0 is a location parameter for the family G:

In this case we have that for all «

(54) G.(z|0) = Gu(x — 0), where Ga.(z) = G.(z]|0).

Using (5.4) in (4.7) and transforming the variable of integration, we have

(5.5) P(6,600) = Hu(n;8) = |2 I[Gi(z +8);k —t—s+¢,s—c+1]
-dIG.(z);t — ¢+ 1, ]

where 6 = 6 — 6. Since H.(n; §) depends on 6, 6, only through §, we define the

“natural” distance measure for such a problem as

(5.6) d(a,b) = a — b.

It is easy to see that
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(5.7) infocaary P(CS|0) = infsnas Hi(n; 6) = Hy(n; d*_).
Hence the Equation (5.1) reduces to
(5.8) Hy(n;d*) = P*

H.(n;d*) can be expressed in any one of the following equivalent forms.
Hy(n;d%) = (8/(t — o)!(c — 1)) i (7)) [2u Gtz + d%)
Al = Gu(z 4+ d*)*G(2)[1 — Ga(2)) ™ dGa(2)
= [ZoI[Gu(z + d¥);¢, s — ¢ + 1] dI[Gu(2);t — ¢ + 1, ¢]
(5.9) = ((k—t)Y(s —e)l(c — 1)) 25 [ G(x — a*)
= Gu(z — d]7°C @)L — Ga(2)] " dGa(x)
= [2.{1 — I[Gu(x — d*);t — ¢ + 1, ]}
dIGn(2); ¢, s — ¢ + 1.

Case (ii) 0 is a scale parameter for the family G:
In this case we have that for all x.

(5.10) Gn.(z]|6) = Gu(x/6), where G.(z) = G.(x|1) and G,(0) = 0.
By transforming the variable of integration we obtain
(5.11) P(6, 6)) = Hs(n; &) = [§I[Ga(81);k —t— s+ ¢, 8 — ¢ + 1]
<AI[Gu(z);t — ¢+ 1, ]

where 8, = 6/6,. Here we define the distance measure as

(5.12) - d(a, b) = a/b.
Arguing as in the case (i) one can see that the Equation (5.1) reduces to
(5.13) Hs(n; d*) =z P*.

One can obtain the various (equivalent) expressions for Hs(n; d*) from those
of Hy(n, d*) by changing z + d* to zd*, z — d* to z/d* and changing the
lower limit of integration from — o to 0.

6. Particular cases of goal I which are of special interest. Two particular cases
of Goal I, corresponding to ¢ = ¢t when s = ¢t and ¢ = s when s < ¢, are of special
interest. These are:

GoaL 1. Selection of a subset of size s which includes the ¢ best populations,
where s = ¢.

GoaL 2. Selection of a subset of size s which includes any s of the ¢ best popula-
tions, where s = .

It should be noted that these two goals coincide when s = ¢. Then the common
goal is the selection of the ¢ best populations (without ordering). The solutions
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to -the selection problem in relation to the above goals have been mentioned
earlier by the author in an abstract [6]. We shall now give the final results for these
particular cases.

GoaL 1. Here the lower bound for P* is (:2¢)/(%). Selection of a subset which
includes the ¢ best populations (those with parameter values 6y _.41y, Or—ss2) -
-+, 0uy) is a correct selection. Now the sample size needed to achieve this gos!,
when the procedure R; is used, is the smallest value of n for which

(6.1) infoe Qu(6, n) = P*

where

(6.2) Qu(6,n) = (i5) [Zall — Gu(z|0)]'1L — Ga(z|6)] " d[G* (x| 6)]
2ol — I[Ga(x]0); 1, t]} dI[Gu(2|6'); k — 5,8 — t + 1]-

Here 6, as a function of 6, is determined by d(6, 6') = d*.

GoaL 2. In this case the lower bound to P*is (%)/(%). Selecting any subset of
size s of the ¢ best populations constitutes a correct selection. The sample size
necessary is the smallest value of n for which

(6.3) infee @:(6,n) = P*

where

Q(8,n) = (t1/s!(t — s — 1)) [Z,G.F ' (2]6)G. (x| 0)
(6.4) 1 = Gu(z|60))" " dGa(z ] 0),
2 IGu(x|0'); k — t,1]dI[G(x|6);t — s + 1, s].

Here also 6 is determined by the relation d(6, §') = d*.

It is easy to see that Goal I is less “stringent” than both Goal 1 and Goal 2.
So one expects that, for fixed ¢, k, t, P* and d*, the sample size necessary to achieve
Goal T will be smaller than the sample size necessary to achieve Goal 1 (if
s = t) or Goal 2 (if s < t). This result follows directly from the theorem given
below. Let n(c, s) denote the sample size necessary to achieve Goal I.

THaEOREM. For fized k, t, s, P*, d*, and for any distance measure

(6.5) n(c + 1,s) 2 n(c, s),
provided ¢ + 1 £ min (s, t), 1.e., provided Goal I is meaningful with ¢ replaced
byc+ 1.

Proor. Let ¢y be an arbitrary integer such that ¢, and ¢y + 1 are admissible
values of ¢. The result directly follows from the fact that, when the procedure R,
is used, a correct selection for Goal I with ¢ = ¢, + 1 implies a correct selection
for Goal I with ¢ = ¢,.

From the theorem, it follows that n(c, s) = mi(s) and n(c, s) < ne(s) where
n;(s) is the sample size necessary to achieve Goalz (7 = 1, 2).

7. A sufficient condition for the existence of the required sample size. It
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has been shown that the required common sample size is the smallest value of n
for which

(7.1) infs.0 Q(6, n) = P¥,

where Q(6, n) is given by (4.14). The required sample exists provided the left
side of (7.1) tends to one as n tends to infinity. We will now obtain a sufficient
condition for the same, under the assumption that the infimum of @(6, n) is its
value at § = 6, . This assumption is satisfied in many cases of interest; in particular
this is true when 6 is either a location parameter or a scale parameter for the
family G. Thus we need to find a sufficient condition for the limit of Q(6, »),
as n — «, to be one. Now

Q(6y, n) = Plcthlargest of (Yi—t11, -+, Ye) > (s — ¢ + 1)st largest of
(7.2) (Y1, -+, Y]
= Plmin (Yi—ep1, +++, Y%) > max (Y1, -+, Vi)l

where Y1, ---, Y} is a set of independent random variables such that the cdf
of Y{(12¢=<k—1)isG(-|6) and thecdf of Yi(k —t + 1 S35 = k) is
G(- | 60). The constant 6, is given by the relation d(6o, 6') = d*. From (7.2),
we obtain

i=k—t+1,---,k
l—Q(oo,’n)él—P[I:Ij{Yi>Yi}’j 1Lk —t :l

(73) _ p[u (v; <Y,-}]

0
< 2 PIY: < Y=tk —t) P[Y. < Yi.
7
From (7.3), a sufficient condition for the existence of the required sample size is
(74) lim,., P[Y, < Y1) =0
e, limy.w [Zo Ga(z | 60) dGu(z|65) = 0

In some particular cases it may not be easy to verify this condition. So we will
obtain an easily verifiable sufficient condition for (7.4) to be true, on the assump-
tion that the variances of the distributions defined by G.(- |6,) and G.(- [60)
are finite. Let

(15) Z = [(Yiy — Y1) — E(Yx — Yy)]/[Var (Vi — Y1)P,
a = E(Y, — Yy)/[Var (Vi — Yy)]\

From Lemma 4.1, it follows that a is non-negative. Using Chebyschev’s in-
equality, we obtain

(7.6) PlY, < Yi] = P[Z < —d)] £ P[|Z]| < a] = 1/d
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Thus a sufficient condition for (7.4) to be true is
(7.7) lima.e [Var Y + Var Y4)/[EY, — EY,) = 0.

8. An example. In this section we apply the general results to the case where
the distributions F(-|6) (which characterize the populations) are normal
distributions. Let ¢(z) and ®(x) be the density and the distribution functions
of the standard normal distribution. Here

(8.1) F(z|0) = ®[(x — 0)/o].

We assume that the variances of all the & populations are equal and the common
value o° is known. Clearly one chooses T; = X, (the mean of the sample from
II;), so that

(8.2) Gu(z]6:) = ®[{(z — 6:)n'} /o).

Since § = {G.(-|8):0 ¢ R} is a location parameter family we define the dis-
tance measure as d(a, b) = a — b. Here H.(n; d*) (see (5.9)) reduces to

(83) HW\) = [2.I[®(x + N); ¢, s — ¢+ 1]dI[®(x);¢t —c+ 1, ]

where A = (d*n!) /o and ¢’ = k — t — (s — c¢). It is easy to see that H is an
increasing function of n and it tends to one as n tends to infinity. Using results
of Section 5, we obtain that the required common sample size is the smallest
integer not less than

(8.4) no = (\o/d*)’
where \ is given by
(8.5) H(\) = P*.

This equation has a unique solution since H is an increasing function of .
Tables giving A-values (the solutions of (8.5)) for various ¢, %, s, ¢ and P*
values are under preparation and will be published in the near future. When
t < sand s = ¢, H(\) reduces to

(t/(t — s)i(s — 1)) [Z,8 Tz + N (z)[1 — &(2)]""¢(z) da.

This expression is given by Bechhofer (see (25) in [3]). We have to find the value
X for which the above expression is P* and use that value in (8.4) to obtain the
sample size when Case 2 of Goal I is the experimenter’s goal. More details of this
case and other particular cases of the distributions F will be reported in a separate
paper.
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