PROPERTIES OF THE STATIONARY MEASURE OF THE CRITICAL
CASE SIMPLE BRANCHING PROCESS!

By SamueL KAruiN AND JAMES McGREGOR
Stanford University
1. Introduction. Consider a simple discrete time Galton-Watson Markov
branching process ® = {Z,,n = 0} whose state space is the non-negative in-

tegers. Its transition probability matrix P = ||P;;|| and iterates possess the repre-
sentations

T P’ = [f(@)) and 2350 P2’ = [fu(2)])

where f.(z) = fa1(f(z)) is the nth functional composition of a specified prob-
ability generating function f(z) = Yo mat, 4 =0,k =0,1,2, -+, f(1) = 1.
Interpretations and elementary properties of simple branching processes are
elaborated in [1], Chapter 1, see also [2], Chapter 11.

In this paper, we deal exclusively with the critical case branching process cor-
responding to f'(1) = > oo kar = 1. We assume throughout unless stated
explicitly to the contrary that f¥(1) < o. Furthermore, we exclude the trivial
case f(z) = x from all future considerations.

A set of stationary probabilities for ||P;;|| is a set of numbersp; ,7 =0,1,2, - --
satisfying

pi = :'°=0piPij: j=0;1’2a"';pfg()’z:;(’pi:l'

If we drop the requirement that > 70 psis finite then a non-negative solution
is referred to as a stationary measure (or alternatively as a set of generalized sta-
tionary probabilities). The importance of stationary measures is familiar; discus-
sions of their relevance and interpretations in the study of boundary theory of
Markoff processes can be found in numerous texts dealing with Markoff chains.

In the case of a branching process where 0 is an absorbing state it is only mean-
ingful to consider the existence and uniqueness of a stationary measure corre-
sponding to the truncated system of equations

(1) p; = 2= piPsj, j=1,2 ---;and p; = 0 (p: not all zero)
where the 0 state has been deleted. It is easily established (see [1], page 23) that
the generating function p(z) = > 7. pix’ of any such stationary measure, has
radius of convergence p = f(0) > 0, p(f(0)) is finite, and p(x) satisfies the func-
tional equation
(2) p(f(x)) = p(z) + p(f(0)).
Conversely, if p(z) = 2 .i=1 pi&’ is a non-trivial solution of (2) with non-nega-
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tive coefficients, then the sequence {p,} determines a set of generalized stationary

probabilities.
It is proved in [1], page 25, that if /(1) < o then
(3) A(z) = limuw [1/(1 = fa(x)) — 1/(1 — £2(0))]

exists for [z| < 1 and solves the functional equation (2) with A(f(0)) = f"(1)/2.
Moreover, A(z) is analytic in |z] < 1, A(0) = 0 and A(x) satisfies the asymp-
totic relation

(4) A(z) ~1/(1 — z), x T L
Examination of (3) readily reveals that A(x) admits a power series expansion
with non-negative coefficients and A”(z) > 0,0 < z < 1,7 =1,2,3, --- . It
follows that x = B(w) = A™'(w) (the inverse function of A(x)) exists for posi-
tive w and satisfies 0 < B(w) < 1on0 < w < o,

It had been pointed out by Fatou that if the coefficients are not required to be
non-negative then (2) has infinitely many linearly independent solutions. More
recently, Kingman [5] has shown than when f'(1) 5 1, the solution of (2) can be
non-unique even when the coefficients are required to be non-negative. His
counterexample, surprisingly is the simple case of f(s) = (1 — p)/(1 — ps),
p # 3. It seems possible that the non-uniqueness of positive solutions of (2)
always prevails when f (1) 5 1. Uniqueness of the stationary measure (up to a
multiplicative constant) in the case of a eritical (f'(1) = 1) branching process is
proved in Karlin and MeGregor [3] under a restriction more severe than necessary
but widely satisfied in applications. By exploiting Martin boundary theory and
the precise form of the asymptotic behavior of the Green’s function of the process,
Kesten, Ney and Spitzer [4] demonstrate the uniqueness of the stationary meas-
ure subject to the moment restriction f” (1) < .

The principal objective of this paper is to ascertain precise information con-
cerning the asymptotic growth behavior of the generalized stationary probabili-
ties. In particular, Theorem 4 stated below settles and refines a conjecture of
Harris ([1], page 27). The importance of this study pertaining to applications in
genetics is described in Karlin and MeGregor [3], see also Harris [1] and Fisher [6].

In order to formulate the principal theorem of this paper, we need the follow-
ing definition: A probability generating function f(2) = D r-o as2* is said to be
aperiodic if ged {k|ar > 0} = 1 (ged = greatest common divisor) or equiva-
lently if 1 — f(z) = 1 — D rep axz” vanishes in || < 1 only at z = 1. .

THEOREM 4. Assume f is aperiodic, f*(1) < o« and let A(z) = D iu A’
denote the generating function of the stationary measure defined in (3). Then

(5) A; =1 —c/i + e/, i=1,2,3,--,
where
(6) 2tae’ < o and c¢=[(f"(1)/2)° —f"Q)/6)/a, a=f"(1)/2.

The above result provides in a sense a partial asymptotic expansion for the
generalized stationary probabilities.
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It is worthwhile to review the recent history leading up to Theorem 4. Harris
with (4) in hand and taking account of the fact that A, = 0,7 = 1,2, ---,
deduced the average asymptotic relation (1/n) > .7y A; — 1 by direct appeal to
the classical Hardy-Littlewood Tauberian theorem for power series with non-
negative coefficients. With the aid of some delicate refinements on local limit
theorems for the critical case simple branching process, Kesten, Ney, and Spitzer
[4] improved the average convergence to that of limi,. 4; = 1 merely subject to
the condition f"(1) < . Observe that our result (5) entails the assumption
(1) < indispensably since the coefficient ¢ visibly involves the value of
f'(1). Actually, the hypothesis f”'(1) < « alone will not suffice to prove (5).
Somewhat more is needed. We have imposed the requirement fiv(1) < o but
probably the condition )_; k*’a; < « for some 8 > 0 is enough.

The assumption that f(z) is aperiodic is essential for the validity of (5) since
clearly A (z) is periodic to the same extent that f(z) is.

The proof of Theorem 4 depends on the following two theorems of independent
interest. Theorem 1 asserts a substantial strengthening of the uniqueness criteria
for solutions of the functional equation (2). Theorem 2 develops a representation
formula for A (z) from which we can discern the growth behavior and properties
of A(x) more easily.

THEOREM 1. There exists a unique (up to an additive constant) solution p(x) of
the equation

(7) p(f(z)) = p(z) + 1

analytic in |x| < 1 with the property that p'(x) and p”(z) are positive on a real

interval (1 — ¢, 1) for some positive e. Subject to the additional condition p(0) = 0

there exists a unique analytic (in x| < 1) solution of (7) for which p'(x) and p” ()

are positive on (1 — ¢, 1).

THEOREM 2. The function A(x) possesses a representation of the form

(8) A(z) =1/(1 —z) 4+ clog(l —=z) + ¢(xz) +d (dis a constant and

¢ is defined in (6))

valid in the neighborhood Ds = {x | |x — 1| £ §, |x] < 1,z 5 1} for some 5 > 0.
Moreover (x) is bounded in Ds and admits the series expression

(9) ¥(2) = Dm0 8(fu(z)), (fo(z) = z by definition)

where 8(z)/(1 — x)* is bounded for x in Ds for any 3,0 < 8 < 1 and the series
converges uniformly in the region |x| £ 1 — e for any positive e. Furthermore ()
s analytic on the open unit disc.

The convergence in (9) relies on the estimate

(10) 1/(1 — fu(x)) = 1/(1 — x) + na + O (logn), a = f'(1)/2,

proved in [1], page 23, where the O symbol indicates a uniform bound with re-
spect to x in D; for some positive 8.



980 SAMUEL KARLIN AND JAMES McCGREGOR

We give a brief outline of the remaining contents of the paper. Various pre-
liminaries are set forth in Section 2, including properties of the infinitesimal gen-
erator of the semi-group B(A(x) + t) = f.(x). More specifically, Section 2 is
devoted primarily to estimating the growth of the series

20l = L@ (),  Zialf @) and 234 f"(@)(1 - fu(x)
for |x] £ 1,z # 1 and x — 1—. In Section 3 we establish the existence of a solu-
tion of (7) of the form (8). The growth behavior of ¥(x) for x near 1 is deter-
mined.

The proof of Theorem 1 is in Section 4.

We frequently use symbols K, K, K”, C, C' to denote absolute positive con-
stants which may differ from equation to equation.

In a separate publication we will give some applications of Theorem 3 to some
questions of interest in evolutionary theory.

2. Preliminaries and estimates. This section is devoted to developing a variety
of estimates and inequalities for certain series which occur in connection with the
proofs of Theorems 1-4. Several of the individual lemmas of this section may

have independent interest.

Let A (x) be determined as in (3). Since A’(z) > 0,0 < z < 1 it follows that
r = B(w) = A7'(w) (the inverse function of A(z)) exists for positive w and
satisfies 0 < B(w) < 1 on 0 < w < . Notice that B verifies the functional

equation
f(B(w)) = B(w +a), for 0 =w < w(a=75"(1)/2)).

In terms of A(x) and B(w) we can embed f in an analytic semigroup, viz,
fi(x) = B(A(z) + ta), 0 < |z| < p., whose infinitesimal generator is

(11) w(z) = 9f(x)/dt |10 = a/A’ ()

and u(z) is analytic in a neighborhood of 0 < z < 1.
Taking account of the functional equation satisfied by A (x) we infer that

A,(f"(x))fﬂ,(x) = A,(x)y n = 1) 2) ]
and therefore
(12) w(fal(2)) = u(@)fs (2), n=12--;0<z<L

For later purposes it is essential to know the nature of u(x) for x approaching
1—. In this direction the next lemma is fundamental.
LemMA 1. The infinitesimal generator u(x) satisfies

(a) limgi_ u(z)/(1 — 2)* = a,
(13) (b) limg,- —u'(z)/(1 — z) = 2a,
(¢) u”"(z) is uniformly bounded on 0 < a < z < 1.

Proor. Let 0 < o < 1 and consider the intervals I, = [fou(a), fa(a)l.
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The map « — f(x) sends each I, onto I,41, and f,(a) — 1, so for any function
F(x) defined on [a, 1], to show that F(z) — L as x — 1— it suffices to show
that as n — o, F(f,(z)) — L uniformly on I, .

The convergence of the analytic functions in (3) is uniform in any dise |z| <
1 — ¢, in particular, uniform in 7; . It follows by differentiation of (3) that

M/ =f)' =4 and £,"/(1 = f)" 4 2(0) /(1 = fa)' = 4"
uniformly in I;. Since (f.)’/(1 — f.)* —0 we also have f," /1, — A"/A’
uniformly in I, .

We first apply these results to F(z) = u(z)/(1 — z)°. Using (11) and (12)
we have for n — o«

(14) F(fu(x)) = w(@)fa' (2)/(1 = fa(2))" = u(z)A'(z) = a
uniformly in 7; . This proves (a). By differentiation of (11)

W (fa()) = o' (z) + w(@)fa" (@) /fa () = u'(x) + u(z)A" (z)/A(z) = 0
uniformly in I . It follows that u’(x) — 0 as  — 1—. From the relation «'(f(z))
— ¥/ (z) = b(z)u(z) where b(z) = " (z)/f (z) we obtain
(15) W (fa(@)) — W (2) = 2205 b(fi(2))u(fi(x))
and letting n — «,

—u'(x) = 20 b(fu(x))u(fi(x))
where the series converges uniformly in I; . For the function F(z) =
—u'(z)/(1 — x) we have
F(fa(x)) = (1/(1 = fu(2))) 2250 b(fi(@)) (u(fiu(2)) /(1 — fu(x))*) (1 — fi())".
When k¥ — « we have, uniformly in 7, (see (10)),
b(fu(e)) = 2a, u(fi(2))/(1 = fi(2))’ = a, Ka'(1 — fi(x))* =1
and hence
F(fa(2)) = 2a(1/na(l — fu(x)))[n2 i Cu(x)k "]

where Ci(x) — 1 uniformly in I; as k — . It follows by a standard summability
argument that, as n — «, F(f.(x)) — 2a uniformly in I; and this proves (b).
From (10) follows |1 — fi(z)| < C/k where C is a constant independent of k&
andz, |z| £ 1,k = 1,2, --- . In the identity
(16) —u"(z) = 250 b (fu(@))u(fi(@))fi (x) + 2000 b(fe(2))w (fulx) )i ()
we see, from the facts that b'(z) is uniformly bounded, |f; (z)| = 1 and u(fi(x))
< K/K* for 0 £ z = 1 by the above inequality and part (a) of the lemma, that
the first series on the right represents a function G(x) which is bounded on
0 =2 = 1. Now

—GQ(f(2)) — W (fo(x)) = 2 im0 b(furr(@))U (fi r(2) )i (fo(2))
= (1/f/(x)) 220 b(fu(@))W (fiu(2))fi (2)
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and we show this is uniformly bounded for x in I; and » — «. For x in I,
/(1 = i) — A" so fi’ £ M/k® where M is independent of k or z. By part
(b) of the lemma |u'(fi(z))| £ M,/k where M, is independent of k or = (in I).
Since b(x) is bounded and 1/f,’ () £ My” it is seen that

—G(f(2)) — u" (fi(2))

is bounded in I; as r — » and part (¢) follows.

We now prove

LeMMA 2. The series Y er (1 — fi(2))fi (z) is uniformly bounded with respect
to x satisfying 0 < 6 < x < 1 and any 6§ > 0.

Proor. The result of (13¢), the inequality u(fi(z)) < K/k* for 0 < z < 1
and the fact that b'(x) is bounded on 0 < z < 1 imply on examination of (16)
that
(17) 250 b(fe())u (fu(@))fi (2)
is uniformly bounded for x traversing 0 < § < = < 1.

Next observe that 0 < b(z) < €' for 0 < z < 1. Furthermore, note that
W (z) = —a(A"(z))/[A"(x)]* is of one sign on the interval 0 < z < 1. Thus all
the terms of the series D _neo b(fi(z))% (f(z))fs’ (z) maintain a constant sign
for0 < & =<z < 1. Since b(x) = by > 0 for the indicated z interval and the sum
is uniformly bounded per demonstration above, we deduce that

Do (U (fi (@)f (@)

converges boundedly on 0 < 6§ = ¢ < 1. This convergence together with the
fact

(18) lime- (—u'(2))/(1 —2) =22 >0
(Lemma 2) manifestly implies the bounded convergence of the series
2 (L = fu(@))fi (), 0<ssz<l

With the result of Lemma 2 in hand we have available the apparatus needed
to estimate the growth of the series
2ino ()" and 200 (1 — fu(@)fi" (2)

for x approaching 1—.
LeMma 3.

2@ S K/ —2), 28l — @A (@) £ K/(1 - 1),
0<o=sz<1,
where K and K’ are constants independent of x in the indicated range.

Proor. The starting point is the relation u(fi(z)) = u(z)fs (z) which multi-
plied by fi'(z) and summed gives

2kmo [w(fi(2)) /u(@)(f (2)) = ke [f ()"
Lemma 1 tellsus that 0 < n S u(z)/(1 —2))’ S D < oon0<d <z <1
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for some 7 and D. Moreover, fi(z) is convex on [0, 1) and therefore
(1 = fu@)/(1 — =) S£/(1) = 1.
Using these facts, we estimate D> e [ ()] as follows:
S [ @) = ¢ Xia L = fe(@)]/(1 — )1 (2)
< [0/ —2)] Ziw [l — fil(@)]fi'(2) £ K/(1 — @)

where the last bound is assured by virtue of Lemma 2.
In order to deal with the second series we differentiate (12) to obtain

W (fu(@))f () — W (@)f (z) = £ (z)u(z),
and thus
(19) o[l — fu@)fi" () = 2otmo [ (fu(2))/u(@)]L — ful@))fi (=)
— [ () /u(x)] 2t 1 — fu(@)Ifi ().

Lemma 1 and Lemma 2 guarantee the validity of the inequalities | u'(z)/u(z) | =
K"/(1 — z) and

o (fu(z)) /u(z) = K"(1 — fi(2))/(1 — 2)° = K"/(1 — x).

These facts in conjunction with the assertion of Lemma 2 applied to the right
side of (19) yield the desired inequalities.
For the proof of Theorem 4 we will need an estimate of the series

2o fi () (1 = fu(2))
where z varies in a complex neighborhood of the form
Ds={z|lz -1 =5zl =121

where 8 is a positive number not exceeding 1. If z traverses any fixed angle % in
|z| = 1 with vertex at 1, i.e.,

(20) U = {x |z satisfies |l — 2| < E-(1 — |z])

and z belongs to D; for some § > 0}
for some positive constant E, then
(21) ol (x) (1 = fulx)| £ E, forzeDsn A

where E’ is a constant depending on . In fact when z ¢ we have, since

f’\(l) = 1’
(22) 1 — fi(z)]

I

| 2o pa(1 — )]
< E Xiopa(l — |2|') = E-[1 = fi(lzD].
Also trivially
(23) 7' ()| = £ (lz)) for [z| = 1.
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The inequality (21) is a consequence of Lemma 2 taking account of (22) and
(23). The above discussion has proved the first part of the following lemma.
Lemma 4. (i) If x traverses Ds n U then

2o I (@)1 = fiulz)| = E

where the bound E’ depends on the region defined by the angle % but not on the choice
of e ¥
(ii) If x traverses Ds , then

(24) Do [ (2) (1 — fu(z)] < Cslog (1/[1 — z|)

where Cs is a positive constant depending only on 6.
The proof of part (ii) relies on the following lemma.
LEmMMA 5. Let x ¢ D, where 0 < ¢ < 1. Then

(25) I’ (z)| = M/l — z|*

for some positive a and constant M.
Proor. Clearly f, (z) = f (faux(2)) f;_l(x) and after iteration we have

£ (@) = (TIi= 9(fe(2))] where g(z) = f'(2).
Multiplying by #* and taking logarithms we have
H,(z) = log (W’f)'(z)) = 2005 log [1 — {1 — g(fu(2)}] + 2 log n
forfz| S 1,]x — 1| S gz #= 1.

The function H,(z) is well defined since f, (x) converges uniformly to 1 for |z| < 1
and f'(1) = 1. Expanding the logarithm we have

Ha(x) = =245 225 (1/)[L = g(fu(@)] + 2 log n.
It is convenient to separate the terms with r = 1. With this done we obtain
(26)  Ha(2) = — 255 [1 — g(f(2))]
+2logn — 2050 Doree (1/r)[L — g(fu(z))]
Now the partial Taylor expansion
g9(z) = f(z) =14 2a(z — 1) + v(z)(z — 1)*

where @ = f”(1)/2 and y(z) is uniformly bounded, is valid in a neighborhood of
1 and |z| =< 1. Inserting this expression in (26) and performing obvious rear-
rangements produces the formula

Hu(z) = 20 2505 (flx) — 1) + 2logn 4+ 205 v(fu(e) (1 — fiu(2))*
(27) — 205 2= ((=1)7/1)2a(fi(z) — 1)
+ v(fu()) (fe(z) — 1.
Using the estimate |1 — fi(z)| < C(z)/k, k = 1,2, 3, --- , where C(z) is uni-
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formly bounded for |z| < 1 it is easy to see that the last two series of (27) con-
verge uniformly and boundedly for |z| < 1. In order to bound H,(x) it remains
to estimate the series

2205 [fu(e) — 1 + 1/ka).
For this purpose we avail ourselves of the asymptotic formula
1 — fi(x) = 1/[1/(1 — z) + na 4+ O(log n)]

where the O(-) term is uniform with respect to |z < 1,z # 1, |2 — 1] < ¢
(cf.(10)). We get

w5 — fulx) — 1/ak]]
= 205 {1/11/(1 — =) + ka + O(log k)] — 1/ak}|
(28) = 2%5'[0(log k) + 1/[1 — z|)/ak(1/(1 — z) + ka + O(log k)|]
i5 [0(log k) /ak|1/(1 — z) + ka + O(log k)|]
+ 225 /|1 — al/ak|1/(1 — @) + ka + O(log k)]].
Since Re 1/(1 — z) = 0 for |z| < 1 it follows that
2t [0(log k)/ak|l/(1 — z) + ka + O(log k)|] < C(x) 2= [log k/k’]

and C(z) is uniformly bounded for |z] < 1,z 5 1, |x — 1| £ ¢ and so this series
converges boundedly. Finally, we split the second sum of the right side of (28)
as indicated

2.k (/|1 — z|/akl1/(1 — ) + ka + O(log k)]
(29) < (1/a) 2V [1/k]1 + ka(1 — z) 4+ (1 — 2)0(log k)|]
+ (1/a) 2 s (/KL + (1 — 2)ka + (1 — 2)0(log k)|).
Since |1 — z|k! = 1 for the k values of the second sum we infer that
(1/a) 22i-ar—ern (/|1 + (1 — z)ak + (1 — 2)0(log k)]
S O 2 ey K 2 C7

where ¢’ and C” are positive constants independent of .
For |z] = 1 we have Re (1 — z) = 0 and therefore

1 4 ka(1 —z) + (1 — 2)O(logk)| =2 8= 0
provided k is sufficiently large k¥ = ko (a fixed integer) consequently
(1/a) 23 (17K + ka(l — z) + (1 — 2)0(og k)|] = C log |1 — a|™

The above analysis established that the series ot {l1 — fu(z)] — 1/ka} con-
verges for all |z| < 1, z 5 1 and its value is estimated above by « log |1 — z|™
where o is some positive constant. The conclusio  f the lemma now follows by
exponentiating H,(z).
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REMARK. It seems likely that the precise estimate in (25) has @ = 2. Some evi-
dence for this conjecture is indicated by the validity of the local limit law

. 2 j
lim, ., n’e’"P{}’ = 1/a

where j is restricted such that 0 < ¢ =< j/n £ ¢ < =, see [4].

Proor oF (ii) or LEmMmA 4. Let = belong to D;. The terms of the series
Do lfe (2) (1 — fi(z))] are grouped in two parts

T 4 > et = L+ I

where « is the exponent appearing in the estimate of Lemm~a 5. In the sum I,
we use the bounds |fi'(z)| < fi'(1) = 1 and |1 — fi(z)| < C/k,k=1,2,---,
remembering that C is independent of z, || < 1. Obviously I; < C log|l — x|~
For the terms of I, where k|1 — z|* = 1 we use the estimate of Lemma 5

If (@) = M/K|L — o < M/k
and again the inequality |1 — fi(z)| < C/k. Manifestly I is uniformly bounded
for |z| < 1. The proof of Lemma 4 is complete.

3. Representation of generating function of stationary measure. This section
is principally concerned with the proofs of Theorems 1 and 2 (see Section 1).

Consider the functional equation (2) (altered by a multiplicative constant) in
the form

(30) o(f(x)) = =(z) + 1, 0<z<1(cf (7))
We attempt to find a solution of the form
(31) m(z) = a/(1 —z) +vlog (1 — ) + ¢(x), 0<z <D

where « and v are constants to be determined and ¥(x) is a bounded funetion for
0=z<1
Substituting (31) into (30) yields the identity

(32) a/(1 — f(z)) + v log [1 — f(z)] + ¢(f(2))

=a/(1 —z) +vlog (1 — z) + ¢(z) + 1.
Our hypotheses imply that
(33) 1—f(x)=1—z—a(l —xz)’+b(1 —2)° —d1 —z)* + o(2),

a=3%"1),b=r"1)/6,d = fiv(1)/24, p(z) = o(1 — z)* valid for |z| < 1
and |z — 1| = ¢, with e positive and sufficiently small. We define

(34) 6(z) = of1/(1 — f(=)) — 1/(1 — 2)} + vlog[(1 — f(x))/(1 — x)],
¢ =1, =1,
and set

(35) o =1/a, v = (a*@—b)/d.
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Straightforward manipulations using the expansion (33) with the special choices
of @ and v given in (35) reduces (34) to an expression of the form
(36) 6(z) = e(l — 2)° + 5(x)
where e is a suitable constant and the function 6(x) satisfies

lim,.;_ [6(x)/(1 — z)*] = 0.

Because of the specifications (35) and the definition of (34) it is simple to see
that (32) becomes an identity provided ¢(z) is determined to satisfy the func-
tional equation

(37) 0(z) + ¢¥(f(z)) = ¢(2), 0<=z<lLl
We exhibit a solution of (37) outright, namely
(38) Y(z) = Limo 0(fi()).

The uniform convergence of this series is validated as follows. In view of (36) we
have 8(z) < K[1 — z|*for |x| £ 1,z # 1, |[xr — 1| £ ¢ and moreover the in-
equality |1 — fu(z)| = C/k, k = 1,2, ---,0 =z <1, where C is a positive
constant, implies the estimate

lo(fk(x))l = C,/k27 k= 17 27 IR

and consequently the convergence in (38).

Examination of the definition of 6(z) reveals that this function is analytic on
the interior of the unit circle. Evidently each term of the series (38) is likewise
analytic in any compact part of |z| < 1. Since fi(z) — 1, the convergence is
uniform for || £ 1 — € and any positive ¢ and we infer that ¢(z) is analytic
in the same region.

Note the following important fact: If f(x) is aperiodic then the estimates

0(z) =C(|1—2) and |1 —fu(zx) EC/k|, k=1,2,---,

holds for all complex z satisfying || < 1, where C is a positive constant and
consequently y(z) is uniformly bounded over the region [z| < 1.

We sum up the conclusions of the preceding discussion as the following the-
orem.

TueorREM 3. There exists a solution w(x) of the functional equation

([l

(39) 7(f(z)) = =(z) + 1
of the form

n(z) = (1/a)/(1 — z) + (c¢/a) log (1 — z) + ¥(x),
(40) ¢ = [If"(1)/21 = §"(1)/6/a,

a =f"(1)/2,
where y(x) defined in (38) s analytic in |x| < 1 and bounded in the region D; =
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{z|lzl £ 1, |x — 1| £ 5, 2 5 1} with & appropriately small but fixed. If f(x) s
aperiodic then Y(z) is uniformly bounded for all |x| < 1,z #= 1.
The growth properties of the function represented by (40) as x T 1— are
easily determined. The following lemma contains the desired information
LemmA 6. Let ¢(x) be determined as in (38) where 6(zx) is defined in (34) and
a and vy in (35). Then

(41) V() = 228 0'(fule))f u(z)

18 uniformly bounded on 0 < ¢ < 1 and

(42) ¥(2) = i 0" (@) (@) + 2280 6" (i(2))f (=)

obeys the growth condition

(43) (@) = C/(1 —2), 0<z<l1.

Proor. The term by term differentiations in (41) and (42) for |z| < 1 are
justified by appealing to the standard theorem on convergence of series of ana-
Iytic functions. From the definition of 6(z) it is easy to show that |6'(x)| <
K|l — z| and |6"(z)| < K,0 < z < 1, where K denotes, as usual, an absolute
constant. The series in (41) is clearly bounded by

KX ool — ful@)fi (2), 0<é<z<l

which according to Lemma 2 is uniformly bounded.

The first series of (42) can be estimated above by KD i [fi (x)]* and the
second by KD im0 [ — fi(x)lfs” (). The growth property expressed in (43) is
verified by citing the results of Lemma 3.

A direct corollary of Theorem 3 and Lemma 6 is

LemMA 7. Let w(z) be the solution of (39) constructed in the proof of Theorem 3
(see (40)). Then

(44)  limg (1 —2)7(z) = a =1/a, limyy_ (1 — 2)7'(2) = a,
limgie (1 — z)°7" (z) = 2a.

Proor. The assertions of (44) are checked by direct differentiation of the ex-
pression (40) taking account of the conclusions of Lemma 6.

We are now in a position to prove Theorem 1.

Proor or TeEOREM 1. We denote by 7 (x) the solution of (39) represented in
(40). Notice that 7~ (w) = I(w) exists (= '(w) is the inverse function of =(x))
for w sufficiently large. In fact, by virtue of (44) we infer that =(z), =’ (x) and
=" (z) are strictly positive in an appropriate interval (1 — ¢, 1) with ¢ > 0.

Let p(z) denote another analytic solution of (39) for which p’(z) and p” ()
are both positive on (1 — ¢, 1). Consider

(45) p(I(w)) —w = g(w), w<w< o (W=7l —¢).

It is straightforward to verify, as a consequence of (39), that g(w) is periodic of
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period 1 for w e [w*, = ). Observe that

(46) p(z) = m(2) + g(n(z)), l—e=sz <1
On differentiating (46) and multiplying by [r(z)]*/=’(z) we obtain
(47) p@)' @)/ (z)] = (@)1 + ¢'(r(2))], 1—esz<1

We claim that the left hand side of (47) is non-decreasing on (1 — ¢, 1) where
€ is an appropriate positive number satisfying e; < e. Indeed, note that

(d/dz)([r(2)]'/7'(2)) = 7"(2)8 — =(2)7" () /I’ (2)]]

which is certainly positive for 1 — ¢ < x < 1 because of (44). Since p’(x)
and p”(z) are positive by hypothesis and certainly =°(z)/x’(x) is positive on
(1 — &, 1) we may conclude that p'(z)7°(z)/= (z) is monotone increasing on
(1 — e, 1) as claimed.

The derivative of the right hand side of (47) is

(48) = (z)7'(2)[3 + 3¢"(w) + wg” (w)], w = (z).

Since ¢ is periodic on [w*, «) it follows that ¢'(w) is uniformly bounded. Now,
if g(w) is not constant then there exists infinitely many values of the form
we =wo+ k> w withk =ko,ko+ 1, -+, ko an integer (obviously w;, — )
such that ¢” (wi) = ¢”(wo) < 0. As x approaches 1 —, w = w(x) — « and (48)
is manifestly negative at w; when £ is sufficiently large. This fact contradicts the
statement following (47). The only tenable inference is that g(w) = do = con-
stant w* < w < . Since 7(z) and p(x) are analytic on 0 < x < 1 it follows
from (45) that

m(z) = p(x) + do, 0<z<l1.

The validation of the last statement of Theorem 1 is clear.

Proor oF TurorEM 2. This requires simply putting together the results of
Theorems 1 and 3.

4. Proof of Theorem 4. We have available most of the apparatus to complete
the proof of Theorem 4. To ease the exposition we divide the analysis into stages
by stating four further lemmas. It is convenient at this point to introduce some
additional notation. Let D; be a small region about z = 1 of the form

Di={z|lx—1 24, |z| =1,z = 1}.

Let @, = {z|arg (x — 1) < 7/2 + ¢ and Ds,. = Ds — G, the complement of
Q. in D; . Finally S shall denote the unit circle S = {z | [z| < 1}.

LemMa 8. If f(x) is aperiodic then for each & (8 > 0) there exists €(8) such that
fmaps 8 — Dsinto 8 — Q..

Proor. Suppose to the contrary that for each ¢ > 0 there exists 2. in S — D;
such that f(z.) lies in S n ®@¢. Let 2o be a limit point of z. as ¢ — 0. Obviously
f(xo) = 1 and z # 1 in violation of the hypothesis that f(z) is aperiodic. The
proof is complete.
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We need to study the growth behavior of ¢'(z) = D reo 6'( fe())fi (x) for
z in a neighborhood of 1. (For the definitions of ¢ and 6 see (34) and (38) re-
spectively.) Recall the property |6'(z)| < K|1 — x| valid for z in D, provided
d is small enough. Thus,

(49) W ()| = K205 1 — fi(@))fx()], zeDs,d < 1.

Furthermore for any ¢ > 0, Lemma 4 part (i) informs us that the series in (49)
is bounded by a constant E.” for z & D.,. where the bound depends on e. More-
over, part (ii) of the same lemma provides the estimate C' log [I — z|™ valid
forallzeD;,0 <6 < 1.

Lemma 9. Let f(x) be aperiodic. There exists & positive and small such that
[/ ()] is uniformly bounded for x e 8 — D; and

(50) W (x)| < Clog |1 — z|™ for x e Dy .

Proor. Let 6 be chosen sufficiently small such that (49) is valid for z £ D; and
consequently (24) holds. Corresponding to & there exists ¢ (by Lemma 8) such
that f(z) ¢ S — @. for all z ¢ S — D;. Moreover, we can suppose that e is so
small that f(z) g D forz e S — D;.

We know by Lemma 4 that

(51) ¥ (z)| < E. forallz e Ds — D..
Now y(z) satisfies (37) and therefore
(52) I @Y (f(2) + 6'(z) = ¢/ () for all [o] < 1.

Since f(x) is aperiodic it is clear from the definition that 6'(z) is bounded for all
ze8 — D.. Let D;* denote the set of points in S — D; which are mapped by
f(z) into D; . By virtue of the specification of ¢ , we have f(Ds*) c D; — D..
Both terms on the left in (52) are absolutely uniformly bounded on D;® since
for these « values f(z) ¢ D; — D.and (51) applies. Therefore |y’ ()| is uniformly
bounded on D;. Next consider the set D,* in S which f maps into D;®. A
parallel argument as above demonstrates that |¢'(z)| is uniformly bounded on
D@, Obviously, any z ¢ 8 — D; is mapped by some fi(z), k¥ = 1,2, ---, N,
(N is a suitable fixed integer) for a first time into D; — D. . It follows from
suitable repetition of the above analysis that |¢'(z)| is uniformly bounded on
S — D; as asserted in the lemma. The proof is complete.

Lemma 10. If f(x) is aperiodic then the function ¢ () is of class H® in the unit
circle, i.e.,

(53) Jo W (re")[* do < C*, 0=r<l1,

where C* is a bound independent of r.
Proor. The estimates described in Lemma 9 clearly suffice to establish (53).
Lemma 11. Let ¢(z) = D reotuz® denote the power series expansion of ¥(x)
about the origin. Then @, = (1/k)er, k = 1,2, -+, where Y s |e]° < .
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Proor. For 0 < r < 1 we have by Lemma 9
21 >y [ln|r™ = [ [/ (re) [P dO < C*.
Since C™* does not depend on r we obtain, by letting r — 1—,
2 2 i [kl = C*

and this proves this result.
Proor oF THEOREM 4. By Theorem 2 we have

A(z)/a = w(z) = (1/a)-1/(1 — z) + (¢/a) log (1 — z) + (1/a)¥(z) + do
and therefore
7' (z) = (1/a)/(1 — 2)* — (¢/a)/(1 — z) + (1/a)¥'(=).
Comparing coefficients on both sides yields
7"i=1/a—(c/a)/j+31/j’ Jj=12 .-
The proof of Theorem 4 is complete.
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