A NOTE ON CLASSIFICATION

ASHOK K. SAXENA

Lucknow University

Consider the multivariate complex Gaussian distribution Π_j (j = 1, 2) as defined by Goodman [3].

$$\Pi_i: p_i(\xi) = \Pi^{-p} |\Sigma|^{-1} \exp \left[-(\overline{\xi - \mu_i})' \Sigma^{-1} (\xi - \mu_i)\right],$$

where $E(\xi) = \mu_j$ and $\cos \xi = \Sigma$ (Hermitian positive definite complex covariance matrix). Any observation ξ will be a point in the space R^2 , where R is the p-dimensional space. Partition R^2 into two subspaces R_1 and R_2 such that R_j identifies Π_j . Now if q_j is the a priori probability of drawing ξ from Π_j , the conditional probability (after the individual is drawn) of the same will be $q_j p_j(\xi) / \sum_{j=i}^2 q_j p_j(\xi)$. The expected loss to be minimized (which is also the probability of misclassification when the costs of misclassification are unity) is

$$q_1 \int_{R_2} p_1(\xi) d\xi + q_2 \int_{R_1} p_2(\xi) d\xi.$$

Then the Bayes solution, which consists of assigning the individual to the population with higher conditional probability, gives the subspaces as

$$R_1:q_1p_1(\xi) > q_2p_2(\xi),$$

and

$$R_2: q_1p_1(\xi) \leq q_2p_2(\xi).$$

When the costs of misclassification are not unity, these will be modified as

$$R_1: [q_1C(2/1)]p_1(\xi) > [q_2C(1/2)]p_2(\xi),$$

$$R_2: [q_1C(2/1)]p_1(\xi) \leq [q_2C(1/2)]p_2(\xi).$$

Where C(j/i); (i, j = 1, 2) is the cost of misclassification of the individual from the *i*th population. Using Π_j as defined above

$$R_1: U > \log k$$

$$R_2: U \leq \log k$$
.

Where $U = \bar{\xi}' \Sigma^{-1}(\mu_1 - \mu_2) + (\overline{\mu_1 - \mu_2})' \Sigma^{-1} \xi - \overline{\mu_1}' \Sigma^{-1} \mu_1 + \overline{\mu_2}' \Sigma^{-1} \mu_2$ and k is a constant depending upon q_j and C(j/i). It is easily seen that U is real valued. The distribution of U is ordinary univariate normal with $E(U) = (-)^{j+1} \nu$ and $\text{var}(U) = 2\nu$ where $\nu = (\overline{\mu_1 - \mu_2})' \Sigma^{-1}(\mu_1 - \mu_2)'$, according as $\xi \in \Pi_j$, (see [1]). $\nu = (\overline{\mu_1 - \mu_2})' \Sigma^{-1}(\mu_1 - \mu_2)$ is termed as the "distance" between the two populations. If the parameters are estimated from sample of size N_j from Π_j , then

Received 3 February 1967; revised 26 May 1967.

the estimated "distance" will be1

$$(\overline{\alpha_1 - \alpha_2})'S^{-1}(\alpha_1 - \alpha_2).$$

This is simply related to the complex analogue of Hotelling's- T^2 (see [4]) given by

$$T_c^2 = N_1 N_2 (N_1 + N_2)^{-1} (\overline{\alpha_1 - \alpha_2})' S^{-1} (\alpha_1 - \alpha_2)$$

Further it is known that

$$(N_1 + N_2 - p - 1)/p \cdot T_c^2/(N_1 + N_2 - 2)$$

is distributed as a non-central F with degrees of freedom $[2p,\ 2(N_1+N_2-p-1)]$ and non-centrality parameter

$$2N_1N_2(N_1+N_2)^{-1}(\overline{\mu_1-\mu_2})'\Sigma^{-1}(\mu_1-\mu_2).$$

Lemma. T_c^2 is almost invariant in the space of sufficient statistics (α_1, α_2, S) under the full linear group G of $p \times p$ non-singular complex matrices under multiplication.

For the proof the reader is referred to [1] and [2].

An extension to the case of more than two populations or when the sample consists of more than a single observation is obvious.

REFERENCES

- [1] Anderson, T. W. (1958). Introduction to Multivariate Statistical Analysis. John Wiley & Sons.
- [2] Giri, N. (1965). On the complex analogue of T^2 and R^2 -tests Ann. Math. Statist. 36. 664–670.
- [3] GOODMAN, N. R. (1963). Statistical analysis based on a certain multivariate complex Gaussian distribution (An Introduction). Ann. Math. Statist. 34. 152-176.
- [4] Saxena, A. K. (1966). On the complex analogue of T² for two populations. J. Indian Statist. Assoc. 4, 99-102.

 $^{^{1}}$ α_{1} and α_{2} are the maximum likelihood estimates of μ_{1} and μ_{2} and S is the standard unbiassed estimate of Σ based on $N_{1} + N_{2} - 2$ degrees of freedom.