ON TWO K-SAMPLE RANK TESTS FOR CENSORED DATA!
By A. P. Basu?

University of Minnesota and University of Wisconsin

1. Summary and introduction. Let X;; ( = 1,2, -+ ,n;;¢ = 1,2,--+ , k)
be k independent samples of sizes ny , 2, - -, ni respectively from & populations
with continuous cumulative distribution functions Fy, F,, - - - , Fj respectively.
We assume that the F /s belong to a family & of distribution functions indexed by
a parameter 6. Let all the N = Y_i_; n; observations be put together and ordered
to form a single sequence and suppose that only the first » ordered observations
are available. That is, let us have a combined (right) censored sample of total
size 7.

Such a censored sample occurs naturally in many physical situations as for
example, in problems of life testing where we are interested in comparing the mean
life of several physical systems, or in clinical trials or bio-assay problems where we
want to compare the efficacy of several drugs but we cannot afford to wait indefi-
nitely to get information on all the sampling units put on test. For details see Basu
[2]. For facility of discussion, we shall use the terminology of life testing.

Any test based on the first » ordered observations (out of a combined sample of
size N') will be termed an r out of N test. In this paper we propose two k-sample r
out of N rank tests which generalize the rank tests proposed by Kruskal [7],
Jonckhere [6] and Terpstra [10], [11].

In the first part of the paper we propose the statistic B, (large values being
critical) to test the null hypothesis

(or equivalently, Ho:6 = 6, = --- = 6, = 0 say, under location alternatives)
against the alternative hypothesis
(1.2) H:F(x) = F(z, 6;) (z=1,2,---,k)

In Section 2 we define the statistic B, and show its relationship with other
statistics. The mean and variance of B, under the null hypothesis is derived in
Section 3. In Section 4 we find the asymptotic distribution of B, both under
the null and the non-null case. The computation of B, has been illustrated by
an example in Section 5.

In the second part of the paper we consider the statistic V(N, r) (to be de-
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fined later) for testing the hypothesis (1.1) against the ordered alternative

for all z, where the F;(z) are labeled in such a way that (1.3) is the ordered
alternative being considered. The.second formulation is useful in life testing where
the & cdf’s might be associated with & different processes and the experimenter
wishes to test whether the k processes give rise to units with the same life-time
distributions against the alternative that the processes can be ordered in aparticu-
lar manner, in the sense that the k life-time distributions can be ordered uni-
formly with respect to x, (that is, according to their reliabilities).

In Section 6 we define the statistic V(N, r) and in Section 7 we have derived
the mean and variance of V(N, r) under H, . Section 8 is devoted to investigate
the extreme values of V(N, r) and the asymptotic normality of V(N, r) is proved
in Section 9. )

Both the statistics B, and V)N, r) may be considered as k-sample extensions
of the V, statistic proposed by Sobel [9]. The definitions of B, and V(N, r) are
slightly different from what is given earlier in Basu [2].

2. Definition of B,®, The statistic B,® is defined below. Let the combined N
observations be ordered and define

(2.1) Z,” =1 if the ath ordered observation is from the sth population
=0 otherwise (a=1,2,---,N;t=1,2,---,k).

The statistic B, is then defined by

(2.2) B, = @ 25 (1/n:)(8i + my/2N)*

which depends only on the first r ordered observations from the combined sample;
here

(23) Si= Yia(@a— N —r — D2N)ZS  (i=1,2 -,k
and
(2.4) @ = 12N*(N — 1)/r[(+* — 1) 4+ 3N(N — »)].

Define n,, as the cumulative number of failures from the sth population among
the first r failures and R, as the sum of the ranks of these n, failures. Clearly,
then we have both

(2.5) D Ny =7, S aRe =1r(r +1)/2
and
N, = NiNn (i=1,2,°°',k).

In terms of the quantities
(2.6) N = ZZ=1 Za(‘), Rir = ZZ:I aZa(i)
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we can rewrite (2.3) as

(2.7) N8: = Ry — ni(N + r + 1)/2.

Substituting the value of S; from (2.7) in (2.2) we obtain

(28) B" = GN* 2 aini (Ru/ni — (N 4+ r + 1)/2)na/n: + r/2)%
Putting » = N in (2.8) we get

(2.9) By = (12/N(N + 1)) Ziani(R: — (N + 1)/2)},

which is the H-statistic proposed by Kruskal [7] and is related'to' Terpstra’s
k-sample statistic [10]; here R; = Ri/n; and R; = Ry is the sum of ranks of all
the n; observations from the ¢th population. Thus B,”” may be considered asa
generalization of the Kruskal H-statistic. It is also instructive to note that

(2.10)  Ra/ni — (N + r + 1)/2ni/n: + /2 = Rig/ni — (N + 1)/2
where
(211)  Rir = Ra + (N + 7 + 1)/2)(ni — nir)

=Ri + [(ni — na) / (N — )] (N(N + 1)/2 — r(r + 1)/2)

is the expected sum of ranks of observations from sth sample (of which 7, have been

observed only).
If we sum both sides of (2.7) we obtain

(2.12) Dok a8 = —r/2.

Using (2.12), Equation (2.2) can be written in the form

(2.13) B, = G[X i8¢ /n: — 1*/4N].

For the special case k = 2 we obtain from (2.13)

(2.14) B, = (NG/mm2)(81 + nar/2N)™.

The statistic V, proposed by Sobel [9] is defined by

(215) V, = 2 ici (nami — manas) + (N — 1 — 1)/2)(name — ninay)
and it has been shown by Basu [3] that '

(2.16) G™ =" 1 ((2¢ = N —r — 1)/2N)Z," + nr/2N

8 + mr/2N = —V,/N".

Hence by (2.14) and (2.16) the two-tailed tests based on any one of the four
statisties B,"”, 8, G\ and V, are all equivalent for k = 2.

3. Mean and variance of B,” under the null hypothesis. In this section we
shall find the mean and variance of B, under the null hypothesis.
Let { X;} be a random permutation of N fixed numbers {b;;,j = 1,2, -+ ,n;;
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1 =1,2 , k; D% inm; = N} such that each permutation is equally likely to
oceur. We also deﬁne k addltlonal associated sequences {a,"}(¢ = 1,2, --- , k)
with N fixed numbers in each and to each of the N'! possible observations (i.e.,
permutations) on {X i} we assign in a 1:1 manner a fixed permutation in each of
the associated {a,”} sequences (7 = 1, 2, , k). Let the random sequences
associated with {aa(')} be denoted by {Ea(’)} S0 that the one sequence of random
variables {X ]} is associated with k sequences of random variables (£}

(i =1,2,--+, k). For each ¢ we define k linear statistics
(3.1) Yi= 2 ucaba” (i=1,2-,K
where the coeﬂicients c.’s are arbitrary constants. Let ¢ = N ' D hi Ca,

a® = N 3% 0.2 =1,2, -, k) and let E(Y;), o( Y,) and o(Y;, Y;)
denote as usual the mean of Y, the variance of Y; and the covariance between
Y. and Y; respectively (¢, j = 1, 2, -- , k). We now prove the following useful
theorem.

TuEOREM 3.1. For the above structure with Y ; defined in (3.1)

(32)  B(Y:) = Nea®,
(33) (Y = O — D7 Xl (e — 8 Xpa (a5” — a?)’,
and
(34) o(Yi,Y;) =N — 1) D0 (ca — 8)°
.Zg;l (aﬂ _ d(‘))(ag _ dm) (i,j=1,2-,k)r
Proor. Result (3.2) is obvious. To prove (3.4) we have for any pair (3, j)
o(Y:, Y;)
= DN cao(Ea®, £ A N st et Calpo(Ea”, £57)
= e {( i (a5Pag®/N) — aPaP}
+ {(XChaca)® — 2o e Diwra 0570, /N(N — 1) — a®a”)
= Za_l AN a5Pa,? /N — 6P
+ (Zhae)’ = i e} {a%a?/(N = 1) = 25 a0 /N(N — 1)}
= (N — D7 X (ea — 8)° 28w (a5 — @) (g — a?).

Proof of (3.3) follows from that of (3.4) by taking ¢ = j.

In tying the above theorem up with our problem it may be noted that the null
hypothesis corresponds to the case in which all permutations of {X;} are equally
likely. Hence letting Eo( - ), o0(+), oo( -, +) denote the mean, variance and co-
variance under H, we have the following corollaries.

CoroLLARY 3.1. Under the null hypothesis Hy

(3.5) Eo(8;) = —rny/2N,
(3.6) o0 (S:) = n(N — n;)/GN,
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and
(3.7) ao(8i, 8;) = —nm;/GN (3, = 1,2, -+, k; 3 5% 7).
Proor. The results directly follow from Theorem 3.1 by taking
(3.8) Ce = 20 —N —r — 1)/2N, 1Zasr
=0, r+1=a=N

and the definition of Z,” as given in (2.1).
CoroLLARY 3.2. Under the null hypothesis

(39) : Ey(B™) = I — 1.

Proor.
Ey(B,"") = @G 2 iani Eo(S: — EiSi)* = (k — 1).

It is important to notice that the expected value of B, is independent of r, the
point of censoring.

To find the variance of B, under the null hypothesis we first compute
E(B,")%. The details of the computation are given in Appendix I.

4. Asymptotic distribution of B,™. In this section we shall find the asymp-
totic distribution of B,"” when N, n; and  all become infinitely large in such a
way that

(4.1) liMyow?/N = p >0, limyowni/N =N (i=1,2, k)

where0 < AN =N =1—-N<1(i=1,2, ---,k) and\is a constant not greater
than 1/k. Asymptotic normality of B, will be shown with the help of the
k-sample version of the Chernoff-Savage theorem [4] as given by Puri [8]. We
accomplish this by showing that B,”" is an L-statistic as defined in [8].

We shall give Puri’s theorem and show how the theorem applies to our case.
Define

(4.2) H(z) = 22 \Fi(x)

and '

(4.3) Hy(z) = ZLl NF (x5 mg)

where F(x; n;) is the empirical edf based on zi1, %, - - - , Tim; and Hy then de-
notes a combined sample cdf with weights \; . Now define

(4.4) Ty =i 2t By oaZie

where the Ey,’s are givén numbers, and Z,(v’fx have been defined before as

Z$ = 2,9, ('The additional subseript N in Z$ ), is needed to study the asymp-

totic properties as N — «.) We can represent T’y ; by

(4.5) Tri = [Zo InlHw(2)]dF (x; ns) (t=12---,k)
W

where Jy(u) is an arbitrary weight function defined on the interval (0, 1]. We shall
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use JY(H) forj = 0, 1, 2 to denote, respectively J(H) and the first two deriva-
tives J'(H) and J”(H) of J(H). Puri’s theorem can now be stated.

Turorem 4.1. If
(a) J(H) = limy.e Jv(H) exists for 0 < H < 1 and is not a constant,
(0) [y Un(Hy) — J(Hy)] dF(x; ni) = op(N ), where

Iy = {x:O <1HN(CIP) < 1},

(¢) Jx(1) = o(N%)
(d) WOH) £ MHQ — H)]
forj =0, 1,2, and some § > 0 and almost all z; here M s a generic constant.
(e) the quantity ox,; defined in (4.8) below is positive, then the random vector

(4.6) o N%(TN,I — BNyttt N%(TN,k — )
where .
(4.7) Cvet MN,s = ffoo JIH(z)] dF (=)

has a limiting (k — 1) variate normal distribution with mean vector zero and:co-
variance matriz given by

z = (O'N,i,j) 17.7'__ 1,2 .- k
where

on,ii = Nox,i
= Dbt 2N [mocacycn Fi(@)[L —F () (H(2))
(4.8) J'(H(y)) dF (z) dF (y)
+ (2/N) [—aacoco Fi(@)[L — Fu(y)V'(H(z))
J(H(y)) dH(z) — NFo(2)]dH(y) — NFo(y)].
on,ii = BE{N(Tx,i — pn,i)(Tw,; — wn,i)}
o= Z’f=1,t¢i,j [f f—oo<z<y<oo Fy(x){1 — F;(y)}J'(H(x))
J'(H(y)) dF(z) dFi(y)
+ [ [cacacuco Fu(){1 — Fu(y)}'(H(y))
J'(H()) dF (y) dF ()]
— | [acacuc Fi(2) (1 — F(y)}J'(H(y))
(4.9) J'(H(w)) dF () d{H(y) — NFo(y)}
— | Jmocacuco Fi(@){1 — Fo(y)}J (H(x))
J'(H(y)) dFs(y) d{H(z) — NFi(x))
— [ [—ocecuce Fi(@){1 — Fi(y)}J'(H(z))
J'(H(y)) dF (z) d{H(y) — NFi(y))
— [ Jeococvcn Fi(@){1 — Fi(y)}J'(H(y))
J(H(w)) dF(y) d{H(z) — NFi(x)}.
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We now define

(4.10) A = [§J%u) du — ([3J(u) du)?,

(4.11) Wi = nd(Ty: — un.i(0))/4 (i=1,2-,k)
where uy,:(6) is the mean of TN,,: ﬁhen F(z) = F(z#;), and

(4.12) L= 200We= 2 ind(Tws — un.i0))/A})

It follows from the normality result above that the limiting distribution of L is
a chi-square (xi—1) with (k — 1) degrees of freedom.

To show that the asymptotic distribution of B, is the x’-distribution all we
need to show is that the conditions of Theorem 4.1 are met and that B,*is an
L-statistic as defined in (4.12). Define the statistic T'y; by

(413) nTwi = > s (22 — N — 1)/2N)Z.° + E’Lm (r/2N)-Z,®
= 2t ((2a = N — 7 — 1)/2N) 2. + (rny/2N)
or equivalently
Twi= [ZodnlHy(x)|dF(z;ns)  (i=1,2,---,k).
Clearly then, by (3.5)

(4.14) pn,i(0) = Eo(S;) 4 /2N = 0.

From (4.13) we easily see that

(4.15) limy.w Jn(u) = J(u) = u — 3, Osu=sp
= p/2, u > p,

which can be seen to satisfy the first four conditions of Theorem 4.1. Also we note
from (4.15) that

(4.16) [8J(u) du = 0.
Now
(4.17) B™ = @Yk n(Si/n: + r/2N)?

=>4, {nz%( Tw,i — uw,#0))/Ax)’
which is of the form of an L-statistic where Ax> = G* and ‘
limy.., Ax' = A® = [3J%(u) du = (p/12)(p* — 3p + 3).

Hence, under the H, the statistic B, is asymptotically distributed as a XCk-1)
with (k — 1) degrees of freedom. It follows directly from Puri [8] that under the
alternative hypothesis Hi:Fy(x) = F(z, 6;) where the 0;s are not all equal the
limiting distribution of B,* will be a noncentral x?_; with (k — 1) degrees of
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freedom and with noncentrality parameter given by
NH; L) = (12/p(p" — 3p + 3)) Xhalimuww [nd [217 2tciNa
{F(z + (6. — 0.)/N) — F()} dF (2)T".
In the special case where p = 1, i:h;, above reduces to
(12/N%) 2han: 2 b nallimy.w [Zo N{F(z + (6. — 6:)/N') — F(z)} dF(2))"

which is the corresponding expression for the noncentrality parameter associated
with the Kruskal statistic H and was derived by Andrews [1].

5. An example. The following example will illustrate the computation of B, @,
In a bio-assay problem a certain drug is administered simultaneously to 21
animals belonging to three groups A, B and C until all of them are dead. Table I

' TABLE I
Group Lethal dose
A 84, 47, 34, 41, 60, 45
B 40, 108, 117, 95, 86, 59, 98, 67, 61, 92
C 90, 93, 100, 46, 93

gives the lethal dose (in some suitable unit) of each animal at death. The data
in Table I can be naturally ordered as:

34, 40, 41, 45, 46, 47, 59, 60, 61, 67, 84, 86, 90, 91, 92, 93, 95, 98, 100, 108, 117
A BAACABABBABG CGC CBT CBIBC B B

Denoting the data from group A as first population, from group B as second
population and data from group C as third population we have

n =6 R, = 33 N =21
n2=10 R2=131
’IL3=5 R3=67.

Using (2.9), the Kruskal statistic H(= By") can be computed as 6.61. By
comparing the above value with that of x_ with 2 degrees of freedom we see that
the H, of equality of the three populations will be rejected.

Now, let » = 14. We can then compute from above

My = 6 R1r = 33 NS1 = —75
Nor = 5 Rzr = 40 NS2 = —50
Ngr = 3 Rar = 32 NS;; = —22

21)

so that using (2.13) we find that B @V = 6.88 which also leads to the rejection of
null hypothesis. Similarly computation with » = 9 gives B,®™ = 6.11 which



1528 : A. P. BASU

also leads to rejection of Hy, as it should. It is interesting to note that the usual
one-way analysis of variance test gives the value of the F-ratio with (2, 18)
degrees of freedom as Fa 15 = 4.22 which also leads to the rejection of Hy at the

5% level of significance.

It must be pointed out that in the above example sample sizes were quite small
and the conclusion based on the limiting distribution is only approximate.
The exact distribution of B, and its rate of convergence to the limiting distribu-
tion will be investigated later.

Thus the B, statistic seems to be suitable for testing the equality of k
populations against location or scalar alternatives. In the next few sections of
the paper we shall study the V(N, r) statistic which is suitable for ordered al-
ternatives.

6. Definition of the statistic V(N, r). In this section- we define the V(N, r)
statistic which is useful for testing the null hypothesis (1.1) against the alterna-
tive hypothesis H, given by (1.3). As before, let 7., be the cumulative number of
observations from the ¢th population among the first a-ordered observations so
that

(6.1) M = a (6 =1,2, - ,1)
Define V; by
(62) Vi = 2 aca(Mia — i) + 3(N — 1 — 1)(nmir — niltsr)

(4,5 =1,2, -+, k;7 <J).
Then the statistic V(N, r) is defined by
(6.3) V(N,r) = D ii Vis

where the summation in (2.3) is over all pairs (%, j) with¢ < j. Forr = N V(N,r)
reduces to the Jonckhere statistic [6] which is related to a statistic of Terpstra
[11] and for k = 2 it is clear that V(N, r) is the same as the V., statistic proposed
by Sobel [9] which is shown by Basu [3] to be asymptotically equivalent to
modified Wilcoxon-Mann-Whitney statistic as modified by Gastwirth [5] for
censored data.

7. Mean and variance of V(V, r) under H,. To find the mean and variance
of V(N, r) under H, we define for each pair (¢, j) with ¢ < j a sequence of random
variables Zjo (. = 1,2, -+ ,7) by

Zije = +n;if the ath ordered observation is from the ith population
(7.1) = —n; if the ath ordered observation is from the jth population
=0 otherwise.

We have then the following:
Lemma 3.1. For each given pair (3, ) the statistic V i; can be expressed as a linear

combination of the Z ja .
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Proor. Letting us = nis — ninjg = O ves Zija
from (6.2)
(72) Vii= >ohaus+ 3N —r — Dup = 2 g d(N + 7+ 1 — 20) Zija .

Using (7.1) we obtain by routine computation the following results which we

state as
TuarorEM 7.1. Under H,

(7.3) Eo(Zija) = 0

(7.4) Ey(Zia) = nani(ni + n;)/N

(7.5) E(ZijaZijar) = —namj(n: + ni)/{N(N — 1)} CEXD
(7.6) EZiuZvjrar) = 0 (CA, 0 #g,i#= 0,5 #7)
(7.7) Eo(ZijaZija) = nming /N G#=7)
(7.8) Eo(ZjaZiiyrar) = —nmmp/{N(N — 1)} (G #7,a#d)
(7.9) E(ZijeZjta) = —nmmn/N

(7.10) B ZijuZiuar) = nanine/{N(N — 1)} (a # o)
(7.11) Eo(ZijuZ i) = nmimi/N (i #7)
(7.12) Bo(ZiseZirjar) = —nmem;/{N(N — 1)} (i % 7).

Using the results of Theorem 3.1 we prove:
TueoreM 7.2. Under H, the mean and variance of V; are given by

(7.13) Ey(Vi) =0,
and
(7.14) 00’(Vij) = nmi(n: + n;)N°/G,

where G is given by (2.4).
Proor. Using (7.2), (7.3), (7.4) and (7.5) we obtain

Ey (Vi) = D2 aca3(N + 7+ 1 — 2a)Ey(Zija) = 0
and
00 (Vij) = 2 et [3(N + 1 + 1 — 2a0)I00"(Ziza)
+ Destas (N + 7+ 1 — 203N +r + 1 — 28)
[nni(ni + n;) /AN e (N 4+ 7 + 1 — 20)°
— Deptams(N + 74+ 1 = 22)(N + 741 —28)/(N = 1)]
= nmi(n; + n;)N*/G.

Trom Theorem 7.2 we have the obvious:
COROLLARY 7.1. Eo( V(N, 7)) = 0.

I
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To find the variance of V(N, r) under H, we need a few more results. Let
Nagejy = O bams and N2 jla = ZZ-; Nisge o
Define Vs...55: forj < t by: _
(7.15) Vasiyr = 2 ua (nm(lg...;-)., — Nz Nia)
+ 2N — r — 1)(nmaz...jyr — Naze..jNer).

That is, Vae...j¢ is the usual V; statistic as defined in (6.2) where the first j
groups have been pooled together to form one sample. From the definition (7.15)
it is clear that

(7.16) Vgt = 2t Ve
We can now prove:
Lemma 7.2,
(7.17) V(N, 1) = 25 Va.ivi,
(7.18) EdVas...ini} = 0,
(7.19) o0 i Vg ini} = Nag..jpyinas..yN*/G,
(7.20) o Vazini,  Vazejrni} = 0 G #3).

Proor. Using (6.3) we readily prove (7.17), since
Vam = 2452 hein Vi = 2 iaa (L0 V4) = e Vareoni -
(7.18) obviously follows from definition. Now
(7.21) o0 {Vazini} = 250’ (Vi) + 2zl Vi, Vig).
From (7.11) and (7.12) we obtain
oo(Vig, Vi) = nnemN [ e BV + r + 1 — 2a)F
(7.22) — 2t 3NV + 1+ 1 = 205N + 7 + 1 — 28)/
(N —1)]
= nmyn;N*/G.
Using (7.14) and (7.22) in (7.21) we obtain
o0 {Vasicnt = (mN/@)[2iZini(ni + ny) + 2z cinans]
= Naz..inNiNas--5yN /G,

which proves (7.19).
Finally to prove (7.20) we assume without any loss of generality that j < j'.
From (7.2) and (7.6) we obtain

4

(7.23) EBo(ViiVey) = 0 for i 4,5 % 7,7 %4 and 7= j.
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Hence, we have, using (7.2), (7.7), (7.8), (7.9) and (7.10)
ool Viaze-i—0;V ag-.ir—nir}
= B2 I (VaViy + ViiVii)
= DG mam N BN + 1 + 1 — 20))
— D BN + 1+ 1 — 203N 4+ r 4+ 1 —2d)} + none N7
A= [BN + 7+ 1 — 20)F
+ Y3V 41+ 1 — 203N + 7 + 1 — 22)}]
= 0.

The variance of V(N, r) under Hy, now follows directly from Lemma 7.2

and is given as
TurEOREM 7.3. Under H, the variance of V(N, r) is given by

(7.24) o (V(N, 1)) = (N*/@) 252 {nmas..innas...n}

8. Extreme values of V(NV, r). It is of interest to know the extreme values of
V(N, r). From the definition of V... it can be seen that the values of Vas...;:
for t = j + 1 remain unchanged for any permutation of the observations cor-
responding to different cdf’s Fy through F;. Thus to find the maximum value of
V(N, r) we shall find the permutation of the observations belonging to the first
j samples (keeping all observations from other samples fixed) for which Vo...;1;
is maximum. Afterwards, we shall permute between the (j 4+ 1)st and the pooled
set consisting of the first j samples so that Ve...j41 is a maximum. Continuing
this process we find the maximum values for each Vaa...jn; ( = 2,3, ---, k).
From (7.17) the maximum of V(N, r) follows. Similarly, we can also find the
minimum of V(N, r).

From (6.2) and (7.2) it is clear that Vi, is maximum if the observations from
the first sample precede the observations from the second sample (among the
first r observations). Similarly, Vi, and Vs are simultaneously maximum if
the observations from the first sample precede those from the second sample and
observations from the second sample precede the observations from the third
sample (while observations from all other samples are kept fixed). Proceeding
in this way we see that all the V ...;_1); are simultaneously maximum (and there-
fore V(N, r) is maximum) when the first 7, observations are from the first sample,
the next r, observations are from the second sample and so forth where

(8.1) ri=min (n;,r — M — Mg — +++ —Mgq) f r=m
= ( otherwise (1=1,2, -+, k).

Below we compute for k = 3 the maximum values of V(N, r) for different pos-
sible values of r. For r < n, Vi = %(NM2), V(12)3 = %(N’I‘ns) and

(8.2) V(N,r) = Nr(ns + ns)/2.



1532 A. P. BASU

Form <7 =m +ny, Vo = dnfne(N + 7 — ) — (r — m)(N — my)]
(8~3) V(m)g = %(ng) and
V(N,r) = glnmne(N +r —n1) —m(r — m)(N — m) + N,ng) .
Finally, forny + ny <7 < my + ny + n3
Vi = %(nlnz(nl -+ nz)), V(12)3 = %(nl + 712)[”3(N +r—mn — nz)
—(r —mn — n)(N — ny — np)]
and
(84) V(N,r) = 3(n1 + no)[mmns + nay(N 4+ 7 — ny — ny)
—(r—m —m)(N —m — n)l.
Similarly we can compute the minimum value of V(N, r) where the order in
which the observations occur is exactly the reverse of the case for which V(N, r)
is maximum. That is, observations from the kth population will precede all other
observations, observations of the (¢ — 1)st population will precede all but the

observations from the kth population and so forth. In the special case k& = 3,
we compute the minimum values of V(N, r) below. Forr < n;

(8.5) V(N,r) = —(n1 + ny)rN/2.
Forns <r = ny 4 ns
(8.6) V(N,r) = — 3nons(N + 7 — ny) — ng(r — n3)(N — ng) + Nrng
and forny + ns < r £ ny + ny + ns
(87) V(N,r) = —3(ns + n3)[nans + m(N 4+ r — ny — ng)
— (r — ng — n3) (N — ny — ny)).
It can be easily seen from the above equations that in each case if

(8.8) (n1, na, m3) = (ns, ny, ny) then

Maximum value of V(N, r) 4+ Minimum value of V(N, r) = 0.

Also if ny = ny = 3 = n the minimum difference between two successive values
of V(N, r) will be 2n since Vi; changes by steps of 2n when all other Vs...;—1;
are kept fixed.

9. Asymptotic normality of V(N, 7). In this section we shall prove the
asymptotic normality of V(N,r) as N, n; — « with n;/N —X\; > 0. From (7.2)
and (4.13) we have

(9.1) —Vi/N = n(Ty,: — rn/2N)

and in Section 4 the Ty, ,’s are shown to have limiting (k¥ — 1) dimensional normal
distribution. It follows that the V,/’s are asymptotically normally distributed
under the null as well as the non-null hypothesis.
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Since V(N, r) is a linear combination of the Vs the asymptotic normality of
V(N, r) both under the null and the alternative hypothesis follows.
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APPENDIX I.
Variance of B, under H,

In this appendix we compute the variance of B,™ under the null hypothesis.
To this end we first compute the expected value of (B,")? under H,. From
(2.13) we have

(A1) (B = {2 (8#/nd) + Z'f#j=1(S¢2§i2/nm1')
— (©*/2N) Dhi (88 /n) + (1*/16N%)},

For further computation we shall make use of the following elementary results
where all the summations are from o = 1 to @ = r and within any term of a
summation involving several indices (e, 8, v and &) no two of which are equal.

(a) (Xa)=2d+ 2 o,
(X a) = 2o + 32 o8+ 2 aby,
(Ca) =o' + 420 + 32 a8 + 62 aBy
+ 2= aBys;
(b) Yoy = (LX) — 22 ) (X e) = (X))
+ 22 o
(o) + 8(X )X a) + 3(2L )
—6(2 ") (2 a)" — 62 a,
(d) 2 (2a—N-—r—1)=—Nr,
S (2a — N —r —1)" =r(" + 3N* —1)/3 = ¢ (say),
S (2a—N —r—1)°=3(r(r + 1)(2" — 2Nr +r — N — 1))
+ Hr(N + r + 1)*(r + 1 — 2N))
=d (say),
S (2a—=N—r—=1=8(r + 1)(2r + 1)(3" + 3r — 1)/15
+r(N +r+ 1D —4r(r + DN + 7+ 1)
(" +r+ N +N)=a (say).

(e) 2 afyd
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Using above results we get
(2N)*Eo(S) = BolD ae1 (20 — N — 1 — 1)Z.]
= ani/N — B(Nrd + a) — 3(¢ — a)ln®/N®
+ 6(N%*¢"+ 2Nrd — & + 2a)n? /N®
+ (N** — 8Nrd + 3¢ — 6N"r"c — 6a)n?/N®,
where 2 = x(x — 1) --- (x — ¢t + 1). Hence
(2N)* 25 (Bo(84) /nd)
= aN*Xin 4 (3¢ —4Nrd —7a)/N®)(k — 2in")
(A.3) + [6(N*% + 2Nrd — & + 2a)/N®|(N — 3k + 22°n™")
+ [(N** — 8Nrd + 3¢ — 6N’r"c — 6a)/N(4)]
(Xknd — 6N + 11k — 62 ni).
Similarly, denoting 2« — N — r — 1 by g., we have
(2N)'Bo(8787) = 2 gegartoge Bol 2o 227 25" 257}
+ [ gugwgs Bol 2727 (257)')
+ 2 g:0000 ol (2:°)' 267 257 )
(A4) + 20295 Bol (Za7) (2™}
= [(N%* — 8Nrd + 3¢ — 6N*c — 6a)n"n,"]/N®
+ (N*% + 2Nrd — ¢ + 2a)
fnang(ni + n; — 2)}/N® + (& — a)nny/N®.

(A.2)

Hence
(2N)* D iiea Bo( 8787 /nm;
= (& — a)/NOWe(k — 1)

(A.5) + 2(N%%c + 2Nrd — & + 2a)(N — k)(k — 1)/N®
+ [(N** — 8Nrd + 3¢ — 6N*r’c — 6a)
AN? — Yknd — 2N(k — 1) + k(k — 1)}I/N.
Finally,

(A6) (2N) i Eo(S3)/mi = ok/N + (N — o)(N — k)/N®.
From (A.1), (A.3), (A.5) and (A.6) we obtain
(2N)*Eyo(B,™)*/G"
= aN ¢ 1/n + (3¢ — 4Nrd — Ta)(k — 2. 1/n)/N®
+ (¢ — a)k(k — 1)/N® — 2Nr*{ck/N + (N** — ¢)/(N — k)/N?}
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(A7) 4+ N%* 4 2(N%c+2Nrd — ¢+ 2a)(2N — 8k + 6D 1/n;
+ Nk — K*)/N® 4+ (N** — 8Nrd + 3¢ — 6N%*c — 6a) -
-(10k — 4N — 62. 1/n; — 2Nk 4+ N* + k*)/N®.

From (A.7) the variance of B,® vfollows.
As a check on our computation let us compute the variance of B, when
= N, that is when all the observations are available. In this case

= N(4N* —1)/3, d= —N*(2N*—1)
= N{48N* — 40N’ + 7}/15 and G = 12N/(N + 1).

Substituting the above values in (A.7), and after some simplification we obtain
(A.8) Eo(By™)? = (5N + 6)(N — 1)k*/5N(N + 1) + 12k/5N |

— (5N* + 12N + 7/5(N 4+ 1)") — 6 2Zin"/5
Hence, from (3.9) and (A.8) we get
(A9) o’(Bx™) = 2(k — 1) — (2/5)N(N + 1)

-[3k* — 6k + N(2K* — 6k + 1)] — 62171

which is the result obtained by Kruskal [7].
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