ASSOCIATION OF RANDOM VARIABLES, WITH APPLICATIONS
By J. D. Esary, F. ProscHAN AND D. W. WaLkUP
Boeing Scientific Research Laboratories

1. Introduction and summary. It is customary to consider that two random
variables S and T are associated if Cov(S, T] = EST — ES-ET is nonnegative.
If Cov[f(8), g(T)] = 0 for all pairs of nondecreasing functions f, g, then S and T
may be considered more strongly associated. Finally, if Cov[f (S, T),q(S,T)] = 0
for all pairs of functions f, g which are nondecreasing in each argument, then S
and T may be considered still more strongly associated.

The strongest of these three criteria has a natural multivariate generalization
which serves as a useful definition of association:

DermvrioN 1.1. We say random variables Ty, - - - , T, are associated if

(11) Covlf(T), 9(T)] 2 0

for all nondecreasing functions f and g for which Ef(T), Eg(T), Ef(T)g(T)
exist.

(Throughout, we use T for (T, ---, T,); also, without further explicit men-
tion we consider only test functions f, g for which Cov[f(T), ¢(T)] exists.)

In Section 2 we develop the fundamental properties of association: Association
of random variables is preserved under (a) taking subsets, (b) forming unions
of independent sets, (¢) forming sets of nondecreasing functions, (d) taking
limits in distribution.

In Section 3 we develop some simpler criteria for association. We show that to
establish association it suffices to take in (1.1) nondecreasing test functions f
and g which are either (a) binary or (b) bounded and continuous.

In Section 4 we develop the special properties of association that hold in the
case of binary random variables, i.e., random variables that take only the values
0 or 1. These properties turn out to be quite useful in applications. We also dis-
cuss association in the bivariate case. We relate our concept of association in this
case to several discussed by Lehmann (1966).

Finally, in Section 5 applications in probability and statistics are presented
yielding results by Robbins (1954), Marshall-Olkin (1966), and Kimball (1951).
An application in reliability which motivated our original interest in association
will be presented in a forthcoming paper.

2. Properties of association. Association has the following two properties
desirable in any classification of multivariate distributions:

(P1) Any subset of associated random variables are associated.

Proor. (P;) follows immediately from the definition by choosing nondecreas-
ing functions f and g that depend only on the variables in the subset. ]
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(Ps) If two sets of associated random variables are independent of one another,
then their union is a set of associated random variables.

Proor. Let S = (Si, Sz, ---, S.) be associated, T = (Ty, ---, T») be
associated, and S and T be independent of each other. Let f, g be nondecreasing
functions. Writing f for f(S, T), and g for g(S, T), we have

Covlf, g = Esxfg — Esaf-Esxg
= EsErfg — Es{Exf -Erg} + Es{E1f-Erg}
—EgExf-EsErg = Eg Covrlf, g] + CovslExf, Exgl,

where Eg denotes expectation over the distribution of S, Er expectation over
the distribution of T, and Egr expectation over the joint distribution of S and
T. Es 1 = EgEy from the independence of S and T. Since Cove[f(s, T), g(s, T)]
= 0 for each fixed s, then Eg Covlf, g] = 0. Since Exf(s, T), Erg(s, T) are non-
decreasing functions in s, Covg[Erf, Erg] = 0. []

Another standard multivariate property, valid for association, is

(P3) The set consisting of a single random variable is associated.

Proor. The result is a consequence of a classical inequality for similarly
ordered functions due to Chebyshev (Hardy, Littlewood, and Pélya, (1934)
Section 2.17). A simple direct proof is given in Section 3. ]

Properties Py, P, , and P; permit some standard multivariate manipulations
with associated random variables. Additional manipulations having useful appli-
cations become possible using

(Py) Nondecreasing functions of associated random variables are associated.

Proor. Let Ty, ---, T, be associated, f; be nondecreasing, and 8; = f:(T),
i=1,---,m.If fand g are nondecreasing, then f(fy, -+ , fm) and g(f1, - -+ ,fm)
are nondecreasing. Thus by Definition 1.1, Covs[f(S), ¢(S)] = Covz[f(f(T)),
g(f(T))] 2 0.0

At this point we state an additional natural property of associated random
variables:

(Ps) If Ty%, -+, T.® are associated for each k, and T® — T in distribution,
then Ty, - -+, T, are associated.

We defer the proof until Section 3.

P, and P; imply

TareoreM 2.1. Independent random variables are associated.

The case of independent random variables represents one extreme of associa-
tion. An opposite extreme is represented by the case of random variables T
taking values only along a nondecreasing curve t(6); i.e., £;() is nondecreasing
ing (¢ =1,---,n). The set containing only the random variable ® defined by
T:; = t(0),7 =1, ---, n, is associated by P; . It follows that Ty, T2, ---, T
are associated by Py .

3. Equivalent criteria for association. In this section we show that association

of random variables may be established by taking in (1.1) nondecreasing test
functions f and g which are (a) binary, or (b) bounded and continuous. We also
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develop an alternate criterion for association under which it suffices to show
association of indicator functions of the random variables.

We will need the following identity: Define X(¢) = 1if f(T) > ¢, X;(¢) = 0
if f(T) = ¢. Then

(3.1) Cov[f(T), g(T)] = [Zu [2 CovX,(s)X,(t)] ds dt.

The identity is presented in Lehmann (1966) along with a proof attributed to
Hoeffding. See also Marshall-Olkin (1966) for a comparable result on moment
generating functions.

Using (3.1) we may now prove

TuaeoreM 3.1. Let

(3.2) Cov[y(T), 6(T)] = 0 for all binary nondecreasing functions v, 8.

Then Ty, -- -, T, are assoctated.
Proor. Let f, g be nondecreasing test functions. By (3.1)

Cov[f(T), g(T)] = [Ze JZw Cov[X;(s), X,(t)] ds di.

But X,(s), X,(¢) are nondecreasing functions of T, and so by hypothesis (3.2),
CoviX;(s), X,(¢)] = 0. It follows by Definition (1.1) that Ty, ..., T, are
associated. []

REMARK. One proof of property P; is by the observation that for any pair of
binary, nondecreasing functions v, § of a’'single argument, either y(¢) =< 6(¢) for
all ¢t or 6(¢) < v(¢) for all ¢. If for example v =< §, then Covly(T), §(T)] =
Ev6 — Evy-E6 = Ey — Ey-Eé = Ev(1 — E§) = 0. Property P; then follows from
Theorem 3.1. The previously cited inequality of Chebyshev can be proved by
this remark and Theorem 3.1. A multivariable version of the Chebyshev in-
equality may be obtained readily using property P; .

To show that it suffices to take bounded continuous functions in Definition
(1.1), we must first prove

Lemma 3.2. If Coviu(T), o(T)] = 0 for all bounded continuous nondecreasing
u, v, then Covip(T), ¢(T)] = 0 for all binary, right continuous nondecreasing ¢, .

Proor. Let A = {t|¢(t) = 1}, and d(t, A) be the Euclidean distance from a
point t to the set A. Define u™® (t) = 0 ifd(t,4) = ELu®@) =1 —Fk d(t,4)
if d(t, A) < k. Each function u* is nonnegative, bounded above by 1, con-
tinuous, and nondecreasing. In a similar way we may define v™ in terms of y.

By hypothesis, Coviu®(T), v (T)] = 0. Since ¢ is right continuous, 4 is
closed, and so u® | ¢. Similarly +® | . We conclude by monotone con-
vergence that Cov[p(T), ¢(T)] = 0. [

Turgorem 3.3. Let

(3.3) Cov[u(T), »(T)] = 0

for all bounded, continuous, nondecreasing functions u, v.
Then Ty, ---, Ta are associated.

Proor. For a binary nondecreasing function v;, let 4; = {t|y:(t) = 1},
1 = 1, 2. We can find a compact set C; C A; such that P[C;] 4+ ¢ = P[4.]. Let
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Cr=f{c+t|lceCi,t =0, ,t = 0}, a closed set. Then C; c C;" < 4.
Let ¢,(t) = 1if te Ci", ¢:(t) = 0 otherwise. The function ¢, is binary, right
continuous, and nondecreasing. Thus by Lemma 3.2,

(3.4) Covigi(T), ¢2(T)] 2
Since v; = ¢;, then

(3.5) Evi(T)va(T) = E¢y(T)$a(T).
At the same time-

(3.6) E$(T) + ¢ = Evi(T).

Combining (3.4), (3.5), and (3.6), we obtain
Cov[yi(T), 72(T)] = E¢:(T)$2(T) — [Edi(T) + el[Ede(T) + ¢
Covigi(T), ¢2(T)] — 2¢ — € = —2¢ — €.

Letting e — 0; we conclude Cov[y:(T), v2(T)] = 0. By Theorem 3.1, Ty, - -+, T,
are associated. []

ReEMAREK. The proof of property P; is an munedlate consequence of Theorem
3.3 and the Helly-Bray theorem.

Next we establish a criterion for association of Ty, ---, T, in terms of indi-
cator functions X,(t), defined tobe 1 for¢t < T;,0fort = T;.

TuaroreM 3.4. Let the array of random variables

Xl.(tl) cee Xl.(tk)

(1%

Xo(t) -+ Xu(te)

be associated for every chozce of kand &, -+, tx. Then Ty, ---, T, are asso-
clated.

Proor. Let u, v be nonnegatlve, bounded, continuous, nondecreasing func-
tions. For given #; < --- < #,, define w®(T) = 0 if any X:(4)
i=1,--,n;u®(T) = u(S), where S; = max; {¢; | X:(¢;) = 1},if all Xi(4) =
1. The functions u® are nonnegative and nondecreasing, viewed either as func-
tions of T or as functions of X(t). Define »*® in a similar way, corresponding to v.
Now let {#;, - -- , &} increase with k to a countable dense set in (— o, « ), Since
u, v, and uv are continuous, then 0 < u® 7 4,0 < v® 1 v,and 0 gu(k)v““) T w
at each fixed value of T. Since u, v, and uv are bounded, then by monotone con-
vergence Eu®(T) 1 Eu(T), Ev®(T) 1 Evo(T), and Eu®(T)o®(T) 1
Eu(T)o(T). Since by hypothesis, 0 < Cov[u®(T), v*®(T)], it follows that
Cov[u(T), »(T)] = limge Coviu® (T), o®(T)] = 0.

Next, given bounded, continuous, nondecreasing functions u, v, by adding a
sufficiently large constant to each, we can make them nonnegative. By the result
obtained just above, we conclude Cov[u(T), »(T)] = 0. By Theorem 3.3,
Ty ,~--, T, are associated. []

4. Special cases of interest. In this section we consider two special cases:
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(1) association of binary random variables,

(2) wvarious concepts of bivariate dependence.

4.1. Association of binary random variables. In the special case of binary
random variables, association leads to some interesting applications. We first
obtain the intuitively reasonable property:

(BPy) If Xy, -+ , X, are associated binary random variables, then 1 — Xy, -« -,
1 — X, are associated binary random variables.

Proor. If v is a binary, nondecreasing function, then the dual function
¥P(x) =1 — 41 —x),wherel —x = (1 —a;,---,1 — ,), is alsobinary
and nondecreasing. Let Y = 1 — X. Then

Covyly(Y), 8(Y)] = Covzly”(X), 8°(X)] 2 0,

for binary nondecreasing v, 6. []
Next we obtain .
TaeoreEM 4.1. Let Xy, --- , X, be associated binary random variables. Then

(4.1) PXy=1,---,X,=1] 2 P[X; = 1] --- P[X, = 1],
and
(4.2) PX,=0,---,X,=0] = P[X; =0] --- P[X, =0].
Proor. Choose v(X) = X, 6(X) = X, .-+ X,, both nondecreasing func-
tions of X. Since Xi, -- -, X, are associated, we have EX; --- X, = EX;-EX,

.-+ X, . Repeated use of this argument yields EX; --- X, = EX; --- EX,.
Since for a binary random variable X, EX = P[X = 1], we obtain (4.1).

Using BP; and (4.1), we obtain (4.2). []

TueoreEM 4.2. For binary random variables X, Y, association is equivalent to
CovlX, Y] = 0.

Proor. If X, Y are associated, then Cov[X, Y] = 0 by definition.

Now suppose Cov[X, Y] = 0. We list all possible binary nondecreasing
functions y(X, Y):

=0sG=XNsIIPsG=X+V-XN <=1
The covariance between any pair of binary functions v, § such that v < 4 is
automatically nonnegative. The remaining pair ¥y = X, = Y has nonnegative
covariance by hypothesis. ]

4.2. Various concepts of bivariate dependence. As observed in the introduction,
the conditions

(4.3) Cov[S, T] = 0,
(4.4) Cov[f(S), g(T)] = 0 for all nondecreasing f, g,
(4.5) S, T associated,

are successively stronger, ie., (4.5) = (4.4) = (4.3). We can add to the list
the condition described by Lehmann (1966) as positive regression dependence of
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T on S,
(4.6) PIT > t|S = s] is nondecreasing in s.

We prove _

TraroreEM 4.3. If T is positively regression dependent on S, then S and T are
assoctated, i.e., (4.6) implies (4.5).

Proor. Write Cov[f(S, T), ¢g(S, T)] = Efg — EfEg = EsErsg —
EsErsfEsErsg, where we have omitted the arguments of f and g and where
E x5 denotes expectation over the conditional distribution of T given S. Thus

Covlf, 9] = EsErsfg — Es{Ensf-Ersg}
+ Es{Eﬂsf'ETl,gg} - E,gETlgf'E,gETlgg
Es Covridlf, g1 + CovslErnsf, Ersg)-

Now assume f, g nondecreasing. Then Covz;slf, g] = 0 by P;, and so
Es Covrslf, g1 2 0. To show CovslErsf, Erisg] = 0, note that P[T > t| S = s]
nondecreasing in s implies that P[f(T, s') > t| S = s] is nondescreasing in s,
which in turn implies P[f(T, s) > ¢| S = s] is nondecreasing in s, which finally
implies Er s=sf(T, s) is nondecreasing in s. Thus Covs[Ersf, Ersg] = 0 by
P;.[

Lehmann (1966) calls S, T positively quadrant dependent if

(4.7) PIS<sT=<t=PS<sPT=<i foral st

We prove

TuroreMm 4.4. S, T are positively quadrant dependent if and only if Cov[f(S),
g(T)] = 0 for all nondecreasing f, g; i.e., (4.4) is equivalent to (4.7).

Proor. To show (4.4) implies (4.7), choose, in particular, f(z) = 0 forz < s,
1forxz > s,and g(x) = 0 forxz = t, 1 for x > t. Then f, g are nondecreasing, and
so by (4.4)

0 = Cov[f(8), ¢(T)] = Covl — f(S),1 — ¢(T)]
=P[S=sT=t—-PS=sPT =1

Next assume S, T satisfy (4.7). Then for f, ¢ nondecreasing, f(S), g(T) also
satisfy (4.7), as shown in Theorem 1 of Lehmann (1966). Using Lemma 3 of
Lehmann (1966), (4.4) follows. []

Next we point out that for general random variables no two of the conditions
(4.3), (44), (4.5), (4.6) are equivalent. It is easy to find S, T satisfying (4.3)
but not (4.4). To show 8, T may satisfy (4.4) but not (4.5), let S, T take on
values a1 < ay < az with probabilities

S = S = Qa2 S = Q3
T = as 8/64 0 15/64
T = a 0 18/64 0
T=uam 15/64 0 8/64
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Finally, to show S, T may satisfy (4.5) but not (4.6), let S, T take on values
a1 < a2 < a3 with probabilities:

S=a S =a S = a
T = 1/8 0 1/4
T = 0 1/4 0
T = 1/4 0 1/8

However, for binary random variables X, Y, conditions (4.3), (4.4), (4.5),
(4.6) are equivalent. This is a consequence of the following two facts:

(1) As pointed out in Example 11 of Lehmann (1966), binary X, Y satisfy
(4.6) if and only if
(48) PIX=0,Y=0PX=1,Y=12P[X=0,Y=1P[X=1,Y =0].

(2) Binary X, Y satisfy '(4.3) if and only if (4.8) holds, as may be verified
directly.

6. Applications to probability and statistics. Several interesting applications
may be obtained as a consequence of

Turorem 5.1. Let Ty, - - -, T, be associated, S; = f;(T), and f; be nondecreas-
ing, T =1,---, k. Then

(5.1) PlS < s8,-,8 2 [T PIS: = s
and

(5.2) P[S:> s, -+, 8> s) = [[i=1 PIS: > s
forall sy, -+, 8.

Proor. By Py, S, -+, Sk are associated. Let X;(s) = 1if S; > 8, X:(s) =0
if S; £ s. Then X;(s) is nondecreasing in S;, and so by Ps, Xi(s1), - -+, Xk(ss)
are associated. Using (4.1) and (4.2), we obtain (5.1) and (5.2).[]

Partial sums (Robblns 1954) Let Tl , +++, T, be independent random vari-
ables, and S; = X iea Ty, 4 = 1, , 1. Then

P[Slé 81,"',Sn§8n] = H?=1P[Si§si]

forall s;, -+, 8.
The inequality follows immediately from Theorem 5.1 by noting that inde-
pendent random variables are associated, and that each S; is nondecreasing in

Ty, oo, Ta.
Order statistics. Let S; < --- < S, be the order statistics in a sample T, - - -,

T, . Then
P[Sn = Siyy st S'Lk = s%] HJ IP[SH = s":]
P[S"d > Syt Sik > sik] = Hj=1 P[Sz_,, > Sij]

ft;reverychoiceofl Sun< - < =nands; < - < 8.
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This is obtained by noting that each S; is a nondecreasing function of the
independent random variables Ty, -+, T, .

Multivariate exponential. Marshall and Olkin (1966) consider the multivariate
exponential distribution

(53) F(s1,:++,8m) =1 — exp [l:— DT Nsi — Z¢<,~ N\i; max (s,, s;)
— Doicicr Nijt TAX (8¢, 85, 8) — + o+ — Moo MAX (1, 82, -+, Sm)]-

As pointed out by Marshall and Olkin, if random variables Sy, - - - , S,, are dis-
tributed according to (5.3), then there exist independent exponential random
variables T, -+ -, T\, such that S; = min (T; ;¢ ¢ A;), where 4; C {1,2, - -+ , n}

Since Ty, - -+, T, are independent and each S; is a nondecreasing function of
Ty, -+, T., we obtain from Theorem 5.1 that

(54) F(si, ++,8m) = [[fa Fo(si) °

and

(5.5) 1 —F(s1, 0 ,8m) 2 1]ia [l — Fi(sy)],

where F; is the marginal distribution of S;. Marshall and Olkin obtain inequali-
ties (5.4) and (5.5) for the bivariate exponential, and give a further, quanti-
tative analysis of that case.

Analysis of variance. A. W. Kimball (1951) considers the case of analysis of
variance in which two hypotheses are tested using the same error variance for
each test. As an example of particular importance, he cites the case in which the
effects of both rows and columns are to be tested. As usually formulated, three
quadratic forms, ¢;, ¢:, ¢s, are computed, independently distributed as x*
with ny, ns, ns degrees of freedom respectively, ¢; representing the sum of
squares between rows, ¢, the sum of squares between columns, and ¢; the sum of
squares due to error. The likelihood ratio test statistics for testing the two
hypotheses are

Fy = (¢i/m)/(gs/ns) and Fz = (go/n2)/(gs/1s).
The probability of making no errors of the first kind is P[F; < Fio, F; < F),

where Fy,(F3.) is the 100a per cent point of the distribution of F;(F,). Kimball
proves
(5.6) P[F1§F1Q,F2$F2a]>P[F1 éFla]P[F2§F2a]-

In other words, the assurance of no errors of the first kind is greater following
the standard experimental procedure than if separate experiments had been
performed.

Kimball’s result is an immediate consequence of Theorem 5.1 if we note that
@1, @2, ¢s = are associated (since independent), and F;, F, are nondecreasing
functions of ¢;, g2, g5
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